Содержание
Каким должно быть напряжение в электроустановке жилого дома и квартиры: 230 В и 400 В или 220 В и 380 В? | Yury Kharechko
Электроустановки индивидуальных жилых домов и квартир, в том числе, характеризуют посредством номинального напряжения. Номинальное напряжение у однофазных электроустановок равно 230 В или 220 В, у трёхфазных электроустановок – 400 В или 380 В.
Номинальные напряжения 220 В и 380 В применяют в нашей стране много десятилетий. В других странах также используют напряжения 230 В и 400 В, 240 В и 415 В. Международной электротехнической комиссией (МЭК), которая разрабатывает международные стандарты на электрооборудование и электроустановки, было принято решение по стандартизации напряжения следующим образом: 230 В и 400 В. Поэтому указанные стандартные напряжения разные станы уже ввели или вводят в свою нормативную документацию.
1 января 1993 г. был введён в действие ГОСТ 29322–92 (МЭК 38–83) «Стандартные напряжения». Стандартом были установлены значения номинального напряжения 230 В – между фазным и нейтральным проводниками, 400 В – между фазными проводниками. До 2003 г. значения номинального напряжения 220 В и 380 В, которые применяли в существующих низковольтных электрических сетях, следовало привести к значению 230 В и 400 В. Однако эти требования стандарта не были выполнены.
1 октября 2015 г. был введён в действие ГОСТ 29322–2014 (IEC 60038:2009) «Напряжения стандартные», который установил значения номинального напряжения, равные 230 В и 400 В. Стандарт также установил допустимые отклонения напряжения от стандартного значения. Напряжение в точке подключения однофазной электроустановки здания к низковольтной электрической сети должно быть равным 230 В ± 10 %, трёхфазной электроустановки здания – 400 В ± 10 % (подробнее см. ГОСТ 29322–2014 «Напряжения стандартные»).
По сравнению с первоисточником – стандартом МЭК 60038:2009 «Стандартные напряжения МЭК» терминология ГОСТ 29322–2014 была мной уточнена и дополнена (подробнее см. ГОСТ 29322–2014: терминология). Она была согласована с терминологией ГОСТ 30331.1–2013 (IEC 60364-1:2005) «Электроустановки низковольтные. Часть 1. Основные положения, оценка общих характеристик, термины и определения» (подробнее см. О новом ГОСТ 30331.1–2013, О переиздании ГОСТ 30331.1–2013). Однако при издании ГОСТ 29322–2014 были допущены отступления от подготовленной мной окончательной редакции проекта стандарта, что привело к появлению в нём ошибок (подробнее см. ГОСТ 29322–2014 следует переиздать, ГОСТ 29322–2014: вопросы к Росстандарту, Ответ Росстандарта от 31.07.2017, Ответ Росстандарта от 01.08.2017).
Однако до сих пор в национальной нормативной документации употребляют значения 220 В и 380 В. Более того, в п. 4.2.2 «Медленные изменения напряжения» ГОСТ 32144–2013 «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения», действующего с 1 июля 2014 г. , сказано, что в электрических сетях низкого напряжения стандартное номинальное напряжение электропитания равно 220 В (между фазным и нейтральным проводниками) и 380 В (между фазными проводниками).
ГОСТ 32144–2013 определяет показатели и нормы качества электрической энергии в точках передачи электрической энергии пользователям электрических сетей низкого, среднего и высокого напряжений систем электроснабжения общего назначения переменного тока частотой 50 Гц. Однако вопреки требованиям ГОСТ 29322–92, на который он ссылается, ГОСТ 32144–2013 установил устаревшие значения номинального напряжения 220 В и 380 В, которые были переписаны из ранее действовавшего одноимённого ГОСТ Р 54149–2010.
Заключение. Противоречия в требованиях национальной нормативной документации к значениям номинального напряжения, с одной стороны, являются существенным препятствием для реконструкции и развития низковольтных распределительных электрических сетей в нашей стране, консервируя их техническое несовершенство. С другой стороны, бытовое однофазное электрооборудование, особенно импортное, как правило, имеет номинальное напряжение 230 В, а трёхфазное электрооборудование – 400 В. Поэтому электрооборудование часто функционирует при более низком напряжении, чем то, на которое оно рассчитано.
Значения номинального напряжения для низковольтных электрических систем и электрооборудования, указанные в ГОСТ 32144, ПУЭ 7-го изд. и другой национальной нормативной документации, должны быть приведены в соответствие с требованиями ГОСТ 29322–2014.
Если основной целью пересмотра ГОСТ 29322–2014 является внесение «поступивших в адрес ТК 016 предложений и замечаний от заинтересованных лиц» (см. Ответ Росстандарта от 01.08.2017), которое сведётся к замене значений стандартных напряжений 230 В и 400 В значениями 220 В и 380 В, то в нашей стране будет нормативно «законсервировано» техническое несовершенство низковольтных распределительных электрических сетей.
Колебание напряжения в сети (скачки, низкое/высокое напряжение) Интепс
Для того чтобы разобраться в причинах колебания напряжения в домашней сети, в том числе и при включении нагрузки, с начала надо понять какие процессы на это влияют. Большинство людей, не имеющих глубоких познаний в области электричества, считают, что у них в розетке ровно 220 Вольт и так оно и должно быть, ни меньше, ни больше. Попробуем разобраться во всем этом. Итак, по порядку…
Предположим, что у нас идеальный источник энергии, внутренним сопротивлением которого можно пренебречь, и к нему напрямую подсоединена нагрузка. Тогда можно смело утверждать, что напряжения на источнике энергии и на нагрузке равны и не меняются при изменении величины нагрузки
Uип=Uн.
Но на самом деле, между источником питания (трансформаторной подстанцией) и обычными потребителями электрической энергии большое количество различных элементов, которые участвуют в передаче энергии от источника до потребителя. К ним относятся сами линии электропередач (провода, шины), различные разъединители, автоматические выключатели, предохранители, счетчики и т.д. Все это в сумме создает дополнительную внутреннюю нагрузку в системе передачи электроэнергии, а, как известно, на каждой нагрузке возникает падение напряжения в зависимости от величины этой нагрузки. При отсутствии внутренней нагрузки ток в линии рассчитывался бы по формуле:
Iн=Uип/Rн, где Uип — напряжение источника питания, Rн — сопротивление нагрузки.
Тогда как с внутренней нагрузкой, ток уже рассчитывается по формуле:
Iн=Uип/Rвн+Rн, где Rвн — сопротивление внутренней нагрузки
Отсюда следует, что снижение напряжения ΔUвн на внутренней нагрузке Rвн равно:
ΔUвн=Iн х Rвн
А напряжение на нагрузке Uн рассчитывается по формуле второго закона Кирхгофа:
Uн=Uип-ΔUвн.
Из формулы видно, при подсоединении нагрузки напряжение снижается на величину падения напряжения на внутренней нагрузке передающей линии электропередач. Соответственно, с повышением нагрузки увеличивается и падение напряжения на внутренней нагрузке линии, что и является фактом снижения напряжения на нагрузке.
Теперь, когда понятно за счет чего происходит изменение напряжения в сети, рассмотрим конкретные причины:
1. Плохой контакт.
Эта причина является самой распространенной, поэтому если у вас вдруг начались проблемы с морганием света, особенно при включении какой-либо нагрузки, то в первую очередь необходимо провести профилактические работы по проверке и протяжке всех основных электрических соединений. Такую работу лучше доверить опытному электрику, т.к. причина может быть как в щите, так и в любой распределительной коробке или в общедомовой линии электропередач. При плохом контакте в соединении увеличивается нагрев контактирующих поверхностей, вследствие этого происходит окисление контакта, что в свою очередь еще хуже влияет на соединение. Это может привести к полной потере контакта (обрыву, разрушению) и даже к возгоранию изоляции проводников. То есть, по сути, плохой контакт не что иное, как дополнительное внутреннее сопротивление в линии, на котором и происходит падение напряжения, отражаясь, например, на мигании света.
2. Малое сечение электропроводки.
Данная причина возможна в старых зданиях, где при строительстве было заложено малое сечение электропроводки (толщина) ввиду отсутствия в то время мощных потребителей. И действительно, еще каких-то тридцать лет назад в быту не было ничего мощнее утюга, а сейчас у каждого огромное количество разных электроприборов: стиральные машины, микроволновые печи, духовки, пылесосы, чайники и т.д. При подключении большого числа энергоемких приборов к сети, которая не была рассчитана на большую мощность, также происходит проседание напряжения из-за сопротивления электропроводки. Омическое сопротивление проводника (электропроводки) обратно пропорционально сечению этого провода, соответственно, чем меньше сечение провода, тем больше его сопротивление. Сечение провода и текущий по нему ток можно сравнить с туннелем и идущим по нему человеком. Чем уже туннель, тем сложнее по нему продвигаться, так и току по проводам. Соответственно, чем больше ток нагрузки и меньше сечение проводов, тем больше падение на этих проводах. Такая причина возможна и в случае неправильно выбранного сечения провода при прокладке электропроводки.
В данной ситуации может помочь только замена электропроводки на провода с большим сечением (рассчитанным под данную нагрузку).
3. Большое количество потребителей на одной линии.
Довольно часто можно услышать такие жалобы, что когда сосед пользуется мощной нагрузкой (например – электро сауна, мощный станок), то у другого соседа свет то притухает, то ярко вспыхивает. Стоит понимать, что все потребители (дома) подключены к линии электропередач параллельно, поэтому если кто то из соседей включает мощную нагрузку, то напряжение начинает проседать не только у него, но и у всех, кто подключен к этой линии. Величина изменения напряжения в сети также зависит и от времени суток. Чаще всего колебания напряжения возникают в час пик, когда большая часть потребителей пользуются электроприборами (вечернее время и выходные).
4. Несимметричная нагрузка.
В бытовых электросетях, где в основном преобладает однофазная нагрузка (ТВ, ПК, стиральные машины, холодильники и т.д.), энергетикам зачастую сложно распределить равномерно потребителей по всем трем фазам линии электропередач, т.к. они самостоятельны и включаются в разное время. Основной причиной увеличения потерь в данном случае является несимметричная нагрузка, из-за которой сильно возрастают потери в трансформаторе подстанции.
Устранить причины колебаний напряжения, описанных в пунктах 3 и 4, поможет стабилизатор напряжения переменного тока. При подборе стабилизатора нужно учесть диапазон его входного напряжения, который должен быть шире значения колебаний напряжения в вашей электросети. Мощность выбираемого стабилизатора напряжения всегда лучше рассчитывать с запасом на 25-30%. Подробнее как выбрать стабилизатор здесь: ссылка.
6 опасностей электричества
В современном мире невозможно представить нашу жизнь без электроэнергии. Большинство устройств и приборов, окружающих нас, в той или иной мере зависят в своей работе от наличия электропитания, а без освещения наших квартир и домов уже невозможно даже представить современную жизнь. Однако, как и любая энергия, помимо созидания, электричество несет и определенные опасности, о которых будет идти речь в этой статье.
Итак, таких опасностями являются: короткое замыкание (или просто КЗ, как его часто называют), перегрузка электрической сети, перенапряжение, повышение напряжения в сети выше нормального уровня, поражение человека электрическим током, пожар. Расскажем о каждом явлении подробнее.
Короткое замыкание (КЗ) можно представить в виде ситуации, когда проводники провода или кабеля электрической сети замыкаются друг на друга. Такая авария сопровождается появлением токов, которые могут достигать сотен и даже тысяч ампер и является одним из самых разрушительных явлений. Основным последствием КЗ является нагрев всех элементов электрической сети, что может привести к выходу их из строя и даже разрушению, но все же главной опасностью является риск возникновения пожара. Именно поэтому в электрической сети важно иметь защитные устройства, которые не только вовремя обнаружат КЗ, но и гарантировано и максимально быстро отключат его до того, как последствия станут необратимыми.
Перегрузка электрической сети еще один из типов аварии в электрической сети, при котором ток в цепи превышает допустимый для элементов электрической сети. Это не менее опасное явление, т.к. не смотря на меньшие токи, является более длительным и может привести нагреву электрических конструкций и в конечном итоге, к пожару. К сожалению, перегрузка является одним из самых распространенных явлений и возникает она, как правило, по вине самих людей. Многим знакома ситуация, когда не хватает розеток в доме. Поступают в этом случае просто – применяют устройства типа удлинители с несколькими гнездами, но при этом не учитывается, что суммарный потребляемый ток на данном участке электрической цепи может превысить допустимый, скажем для розетки, к которой подключен удлинитель. Результат предсказуем – розетка начнет нагреваться и, если данный участок цепи не отключить, в итоге воспламениться, что может привести к пожару. Именно по этому, защита от перегрузки обязательно нужна в электрической сети.
В данный момент функции защиты от перегрузки и КЗ выполняют устройства, называемые автоматическими выключателями. Это компактные устройства, сочетающие защитные свойства с рядом дополнительных функций. Например, в автоматических выключателях серии Acti 9 от Schneider Electric, можно с помощью дополнительных контактов, контролировать состояние включено/выключено и своевременно обнаружить момент аварийного отключения. Это удобно, если речь идет о загородном доме. Хозяин бесспорно будет чувствовать себя гораздо спокойнее за сохранность своего имущества, имей он возможность удаленно контролировать ситуацию.
Однако, короткими замыканиями и перегрузками опасности электричества не ограничиваются. Еще более серьезной опасностью является поражение человека электрическим током. В этом случае речь идет уже о сохранении жизни и здоровья нашего и наших близких, особенно детей и вопрос этот требует самого пристального внимания.
Давайте разберемся, что может стать причиной поражения электрическим током. Возможны несколько вариантов: когда опасный потенциал попадает на корпус устройства в результате повреждения. Например, в изоляции провода внутри стиральной машины появилась трещина, и небольшой электрический ток «утекает» на металлический корпус, на котором из-за этого появляется опасное напряжение или когда человек по неосторожности касается частей под напряжением. Не стоит сбрасывать со счетов и тот случай, когда ребенок из любопытства засовывает в розетку посторонние предметы – такое тоже увы не редкость…
Что же происходит, когда человек попадает под действие электрического тока? Этот вопрос достаточно изучен и подробно изложен во многих источниках. Нужно сказать только одно – протекание тока через организм человека СМЕРТЕЛЬНО ОПАСНО и с большой долей вероятности может привести к летальному исходу. Поэтому, устройства, способные защитить от поражения электрическим током ОБЯЗАТЕЛЬНО должны быть установлены в каждом электрическом щите, особенно там, где присутствуют дети! И эти устройства называются Выключателями Дифференциального Тока (часто употребляемое название – устройство защитного отключения — УЗО).
Что же такое УЗО и как оно защищает нас? По сути это выключатель, который сравнивает ток на входе и на выходе одной электрической цепи. Если токи равны или разница минимальная, значит электрическая цепь и присоединенный к ней прибор исправны, если же разница превышает заданное значение, называемое уставкой срабатывания – УЗО отключается, обесточивая электрическую цепь. Величина уставки отключения для УЗО очень мала и составляет 10 или 30 мА (миллиАмпер и тысячных долей Ампера), данные токи являются безопасными для человека, и в сочетании с быстротой отключения УЗО обеспечивается гарантированная защита жизни и здоровья человека. Это объясняет требование обязательного применения УЗО для защиты розеток в т.ч. в жилых домах, электрических цепей во влажных помещениях (санузлы и ванные комнаты, сауны, бани и т.п.).
Но только защитой от поражения электрическим током роль УЗО не ограничивается, отдельно стоит отметить способность УЗО защищать от возникновения пожара. Дело в том, что появляющаяся «утечка» тока около 300 мА (миллиАмпер) способна вызвать нагрев и возгорание элементов строительных конструкций. В этом случае знакомый нам автоматический выключатель не отключится, т.к. ток все-таки мал, а вот УЗО как раз способно обнаружить и защитить от такой опасности. УЗО с уставкой срабатывания 100 и 300 мА (их называют иногда противопожарными) устанавливаются в начале электрической цепи и дополняют защиту от токов КЗ и перегрузки, а также защиту от поражения током. Такие устройства не используются для защиты от поражения током!
Итак, мы обеспечили защиту людей от опасностей, которые таит в себе электрическая энергия, но как быть с окружающей нас техникой? Ведь каждый владелец хотел бы, что бы любимый ноутбук или телевизор работали безотказно долгие годы. Давайте рассмотрим, какие же риски существуют для бытовой техники.
Одной из частых причин выхода бытовых электрических устройств из строя является повышение напряжения выше допустимых значений. Статистика неумолима – сообщения о сгоревших холодильниках, телевизорах и другой технике появляются периодически и причина, как правило, колебания напряжения. В чем же причина таких явлений? Для понимания причин повышения напряжения, стоит сказать несколько слов о том, какие же напряжения действуют в 3-х фазной электрической сети.
Итак, в 3-х фазной сети действуют 2 вида напряжения: линейное – напряжение между двумя фазами и фазное, это напряжение между фазой и рабочим нулевым проводником, (его еще часто называют «нулем» или «нейтралью»). Соответственно, линейное напряжение равно 380 В, фазное — 220 В. В бытовой электросети мы используем фазное напряжение, но при обрыве нулевого проводника (так называемом «обрыве нуля») это напряжение может достигать 1,73* фазного напряжения, или 380 В. Таким образом, подключенные к сети устройства в этом момент окажутся под напряжением, на которые не расчитаны и будут выведены из строя или, что еще хуже, загорятся и могут вызвать пожар.
Защитить оборудование в доме от подобной опасности может устройство, называемое реле напряжения. Это компактный защитный элемент сети, который устанавливается в электрическом щитке и контролирует напряжение в сети. Как только напряжение превышает заданный порог, устройство отключает участок сети, но само при этом остается включенным. После того, как напряжение вновь станет нормальным, реле напряжения снова включит питание. Таким образом реле напряжения позволяет защитить от повреждения подключенное оборудование.
Еще одним опасным для бытового оборудования фактором являются так называемые перенапряжения, причиной которых являются грозовые разряды и внутренние процессы электрических сетей. Обычно этот вид опасности незаслуженно забывают при установке защитного оборудования в электрическом щите, а между тем, перенапряжения, вызванные грозовыми разрядами часто являются причиной не только сбоев в работе электрического и, особенно, электронного оборудования, но и выводят это оборудование из строя, что требует от владельцев дорогостоящего ремонта. Какова же причина подобных явлений? Ответ лежит в школьном курсе физики. Представим здание, электроснабжение которого осуществляется по воздушной линии электропередач (ВЛ). Во время грозы разряд молнии распространяет вокруг себя электромагнитные колебания, которые наводят в проводниках ВЛ напряжение. Далее по проводам наведенное напряжение попадает в сеть нашего дома и воздействует на подключенное к сети оборудование. Учитывая, что напряжение разряда молнии может достигать миллиона вольт, в сети наводится напряжение, порой достигающее нескольких тысяч вольт и имеющее длительность тысячные доли секунды. Конечно же, оборудование, особенно имеющее в своем составе электронные блоки, не в состоянии без последствий выдержать такие перенапряжения. В лучшем случае это вызовет сбой в работе, но чаще всего при таких воздействиях речь идет о выходе оборудования из строя. Однако и от таких опасностей можно защититься с помощью Устройств Защиты от импульсных перенапряжений (УЗИП) или как их еще называют ограничителей перенапряжений (ОПН).
Установленные в электрическом щите, они способны ограничить импульс перенапряжения до безопасных значений, тем самым защитив оборудование, подключенное к сети. Современные УЗИП способны защитить электрическую сеть дома даже если разряд молнии ударит прямо в провод линии электропередач. Такие устройства есть в линейке УЗИП Acti 9, производимых Schneider Electric.
Итак, мы рассмотрели все виды опасностей, которые могут подстерегать нас при пользовании электрической энергией. Однако, если правильно выбрать и установить защитные устройства, то можно защитить наш дом и нас самих и сделать его безопасным и комфортным.
У меня повышенное напряжения в сети что делать?-инженерная компания LiderTeh
Вопрос:
У меня повышенное напряжения в сети что делать?
Ответ:
Оглавление статьи для быстрого перехода.
1. Признаки перенапряжения сети
2. Причины
3. Последствия
4. Быстрое решение
5. Недорогое решение
6. Видео
Повышенное напряжение в сети, является одним из самых опасных перепадов сети, которые могут привести к очень неприятным последствиям.
- Первые признаки перенапряжения сети, это чрезмерно яркое свечение электрических ламп накаливания.
- Непроизвольное отключение электрических приборов, на короткое время, что может быть связано со срабатыванием защиты, которая иногда реализована в электрическом устройстве питания электроприборов.
- При замерах в момент яркого свечения лам в доме, измерительный прибор мультиметр, показывает напряжение выше 253 вольт.
Почему и из за чего происходит такие явления, как перенапряжение электросетях с нормальным напряжением сети 220 -230 вольт?
-
Такое явление связано с неправильной регулировкой общего трансформатора питающего поселок или деревню.Изменение настроек такой машины сразу же отражается на электрическом питании всего поселка.
- Замена трансформатора на более мощный, может изменить напряжения в питании поселка и там где было нормальное напряжение, может стать повышенным. Как правило это происходит в домах находящихся слишком близко на линии электропитания к трансформаторной подстанции.
- К таким же последствием может привести замена старой электропроводки, в которой ранее происходили потери напряжения, при замене на правильное сечение токи уменьшаются и возрастает напряжение.
- Одной из самых опасных неисправностей является отгорание или пропадание нуля в трехфазной сети, что также приводит к аварийному перенапряжению и может достигать напряжения по фазе более 300 вольт, что сразу приводит к выходу дорогостоящей техники из строя.
- Одна из самых распространенных причин, это так называемый перекос фаз, который возникает при неправильном распределении нагрузок по каждой фазе.
Опасность и последствия работы электрооборудования в режиме перенапряжения.
Первыми признаками будет частая замена электрических ламп освещения, частый выход из строя систем освещения как правила говорит о неправильном напряжении в сети.
Выход из строя электрической техники, такой как стиральная машина, кухонная техника. Холодильник или насос.
В случаях выхода из строя бытовой и другой техники по причине перенапряжения или пониженного напряжения, сервисные службы по ремонту, не признают случай гарантийным, и стоимость ремонта ложится на плечи пользователя.
В некоторых случаях повышенное напряжение может привести к разогреву слабых мест на контактах, что приводит к критическому нагреву и даже опасности возникновения возгорания в некоторых случаях.
Стоимость возможных последствий в разы превышает стоимость профилактических мер, установки защитных устройств, таких как реле напряжения, симметрирующий трансформатор или стабилизатор напряжения.
Что делать при повышенном напряжении в сети?
Быстрое решение проблем перенапряжения в электросети 220в.
Локальная установка защитных устройств на весь дом или квартиру. Можно установить на каждый электроприбор в отдельности, но мы бы рекомендовали делать защиту на весь дом, так более выгодно с точки зрения цены на оборудование и самих работ.
1 Вариант наиболее дешевый, а потому и распространенный.
Это реле напряжения. Такой вариант работает как защита, ограничивая работу при выходе напряжения за рамки заданного, например при достижении напряжения на входе более 250 вольт реле отключит питание, а при возвращении напряжения в рамки установленного ограничения в данном случае ниже 250 вольт, реле автоматически подключит питание от сети. Минус в том что электропитание будет отключено и вы будете лишены благ цивилизации при том что напряжение в сети есть, хоть и завышенное.
2 й вариант это стабилизатор напряжения, также быстро устанавливается, такое решение дороже, но имеет ряд преимуществ. Стабилизатор при любом напряжении выдает 220 вольт, и оборудование продолжает работать несмотря на волнения в сети, при напряжении в 256 вольт в вашей сети будет 220 вольт.
3-й вариант установка симметрирующего трансформатора, но такое решение применимо только в трехфазных электросетях.
4-е самое недорогое решение, но более затратное по времени и даже не всегда выполнимое, это подача жалобы на напряжение в сети. Подробные шаги и образец заявления.
Вы можете подать жалобу в организацию, которая занимается поставкой электроэнергии в ваш поселок, дачу, дом, квартиру.
Жалоба может быть как от одного лица так и коллективная. Чем больше количество обращений, тем быстрее и эффективнее решается вопрос.
Сначала ознакомьтесь с государственным
ГОСТ 29322-2014, согласно которому должно обеспечиваться качество подаваемой электроэнергии в ваш дом или квартиру.
Предварительно сделайте замеры специализированными приборами самостоятельно или лучше, вызвав электрика из организации, которая занимается обслуживанием ваших электросетей. В этом случае вы можете потребовать письменное подтверждение проводимых замеров и результатов. Которое вы приложите к заявлению.
Заявление можно заполнить в свободной форме, основное требование в содержании заявления, оно должно нести необходимую информацию.
1 . Шапка с содержанием информации, в какую организацию вы обращаетесь. Здесь должны быть указаны — юридическое имя организации и ФИО руководителя этой организации.
2 . Ниже под шапкой, личные данные заявителя, такие как ФИО, контактная информации (телефон, электронная почта), адрес.
3 . В основной части заявления должна быть указана информация о том как часто, и когда происходят перебои с электроэнергией, указаны данные проведенных замеров. Были ли электрики и их рекомендации. Перечислить испорченное оборудовании, в случае если это произошло.
Дополнительно приложить копии экспертных организаций, подтверждающих что техника вышла из строя, из за некачественного электропитания.
Ниже указать дату составления заявления и подпись.
- При личной передачи заявления в организацию, позаботьтесь о наличии копии заявления на которой принимающая организация должна оставить пометку о принятии заявления.
- При отправке почтой, запросите уведомление о вручении, или отправьте заказным письмом.
Скачать образец заявления вы можете
здесь.
Видео почему перегораю лампочки.
youtube.com/embed/Uce7wltFkBM» frameborder=»0″ allow=»accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»/>
Как настроить реле напряжения | Электрик
Реле напряжения предназначено для отключения бытовой нагрузки при недопустимых колебаниях напряжения в сети с автоматическим повторным включением после восстановления параметров сети.
В нормальном режиме реле напряжения пропускает через себя весь ток нагрузки, и заодно служит цифровым индикатором уровня напряжения а в некоторых моделях и потребляемого тока.
Согласитесь, это очень удобно, поэтому рекомендуется к установке в каждом домашнем электрощите ввиду того что электрическая сеть подаваемая в дом или квартиру может быть непредсказуемая по своим параметрам.
Простой пример — обрив или отгорания нуля в этажном электрощите что неприкословно приведет к сдвигу фаз где напряжение в розетках квартиры «пойдет в разнос» и может составить даже 400 вольт! Естественно все незащищенные электроприборы которые будут подключены к сети в это время выйдут из строя.
Кроме всего прочего по разным причинам в сети могут появится импульсные «скачки» высокого напряжения или же напряжения может «просесть» до критически опасных низких уровней напряжения при которых домашние электроприборы могут также выйти из строя.
Во всех подобных случаях для защиты домашнего оборудования можно применять реле напряжения. Но все же несмотря на такие полезные его свойства пропускать в розетки только оптимальное напряжение, если в вашей электросети бывают частые понижения напряжения, например в сельской местности где еще старое оборудования местних электростанций, стоит обратить внимание на стабилизатор напряжения.
Несмотря на большое изобилие производителей выпускающих реле напряжения разных моделей у всех моделей принцип работы одинаков и зачастую подключить его не составит проблем.
О выборе, параметрах и правильных схемах подключения реле напряжения можно почитать здесь.
Электрическая схема подключения есть и в инструкции и на самом приборе.
После установки реле напряжения в электрощит наступает момент когда его нужно правильно настроить для надежной и безопасной работы домашней электротехники, особенно холодильников, кондиционеров и другой морозильной, компрессорной и не только, техники..
В реле напряжения можно настраивать напряжения сработки (повышенное и пониженное), а также время повторного включения после восстановления заданных параметров напряжения.
В большинства реле, параметры такие:
Нижний предел 120-200 вольт
Верхний предел 210-270 вольт
Время (повторного) включения нагрузки 5-300 (600) секунд
Максимальный ток нагрузки 40 ампер
Кроме того очень важные и стоит обратить внимание на параметры аварийного отключения (сработки) реле напряжения, качественные модели срабатывают за 0.04 секунды для верхнего предела и 0.06 для нижнего.
По стандарту напряжение в сети может отличаться от номинала не более чем на 10%, а это 198 — 242 вольт и стоит заметить что большинство электрооборудования росчитаны на нормальную работу в таких пределах. В технической документации к каждому электроприбору (оборудованию), как правило указывается и напряжение питания и процент отклонений от номинала. Правда, сейчас введён новый стандарт номинала — 230 вольт, а это значит, что пределы должны быть от 207 до 253 В.
Но на практике если напряжение сети у вас составляет 190-220 Вольт, то верхний предел лучше всего установить на 245 вольт, а нижний предел на 180 В. Но если же напряжение сети 230-245, верхнее лучше установить на уровне 255 вольт, а нижнее 190 В.
Если к данной линии подключены холодильники, кондиционеры или другие приборы с пусковыми рабочими свойствами время восстановления рекомендуется выставлять максимальное 300 сек. Такая выдержка времени подключения отсрочит включение бытовых приборов, и они останутся невредимыми и работоспособными.
Если же такая задержка включения вам не по душе, можно применить два варианта, сделать отдельную линию и отдельное реле напряжения для холодильно-компрессорных устройств и с соответствующей задержкой только для того реле в 300-500 секунд, а на реле всех остальных линий дома настроить 5 секунд включения, или второй вариант — настроить реле напряжения (если оно одно и на весь дом) минимум на 150 секунд, но не меньше.
Если скачки «верхнего напряжения» будут очень частыми, то стоит попробовать увеличить верхний предел на 5 Вольт, а если вниз—то уменьшить. Но не устанавливать более 260 вольт, лучше в таких случаях применять квартирный стабилизатор напряжения.
Вносить параметри напряжений нужно согласно инструкции к конкретному реле напряжения, рассмотрим пример настройки реле напряжения (и тока) фирмы DigiTOP.
Настройка реле напряжения
Чтоб установить (изменить) верхний предел отключения по напряжению – жмем и удерживаем более 5 секунд верхнюю клавишу (стрелка вверх). В правом нижнем углу индикатора обязана появится точка и уровень начнет поочередно изменятся с шагом 1 В. Стрелками «вверх» и «вниз» (верхняя и центральная кнопки) устанавливаем нужное нам значение и отпускаем элементы управления. Через 10 сек происходит автоматический выход из меню, параметры остаются в энергонезависимой памяти до их последующей корректировки. Кроме того происходит настройка нижнего значения, лишь начинаем со стрелки «вниз». В случае если нажать и удерживать две стрелки, мы перейдем в настройку времени задержки на включение с шагом 5 сек. При краткосрочном нажатии на одну либо несколько стрелок, мы увидим параметр, который установлен в памяти прибора.
В некоторых моделях еще есть кнопка «і» . Прибор запоминает значение напряжения, вызвавшего последнее срабатывание. На дисплей это значение можно вывести нажатием этой кнопки.
Настройка защиты по току в реле типу VA-63(32) делается при помощи нижней кнопки в виде символа «пуск». При ее единоразовом нажатии мы увидим на нижнем табло символ «ON» либо «OFF». Удерживая клавишу, переходим в режим настройки и стрелками устанавливаем подходящий вариант. По умолчанию, с завода, контроль тока включен.
При необходимости в некоторых реле напряжения можно произвести калибровку показаний вольтметра и амперметра.
Внимание! Эта операция есть сервисной и обязана производится специалистом, с надлежащими познаниями и устройствами замера напряжения, и исключительно в тех случаях когда часто имеются отличия характеристик питания наружной электросети (отклонение частотных характеристик, искаженная синусоида) что приводит к неверному измерению устройством («реле») настоящего напряжения.
Для исполнения калибровки вольтметра нужно, при отключенном питании, зажать две стрелки (кнопки) устройства и после чего подать входное напряжение. В режиме калибровки, используя внешний цифровой либо стрелочный вольтметр, стрелками на защите подстраиваем показания на верхнем индикаторе под значение нужного нам эталонного устройства. После чего выключаем питание. Конфигурации сберегаются в энергонезависимой памяти.
По мере надобности, переходим к амперметру. Вход в режим его калибровки производится параллельным нажатием средней и нижней кнопки при выключенном питании и его следующем подключении при удержании кнопок. Подстройка в верхнюю сторону либо наоборот вниз на основании показаний эталонного амперметра исполняется нажатием и удержанием стрелок вверх-вниз.
Обратите внимание! Подстройка показаний случается еще медленнее, нежели в первом варианте с вольтметром.
Номинальные напряжения электрических сетей | elesant.ru
Напряжения электрических сетей
Важнейшей характеристикой любой электрической сети является её номинальное напряжение (U ном.). Именно на это напряжение производится расчет всего оборудования ЭС. Определяется номинальное напряжение электросети переправляемой активной мощностью и протяженностью ЛЭП.
Согласно стандартам принята линейка номинальных межфазных напряжений ЭС (электросети) и ЭП (электроприёмников) до 1000 Вольт, а именно: 220 Вольт, 380 Вольт, 660 Вольт. (гост 21128_75).
Для ЭС и ЭП переменного тока выше 1000 Вольт, установлена следующая линейка межфазных напряжений: 380 В, 3000 В, 6000 В, 10000 В, 20000 В, 35000 В, 110000 В, 150 000 В, 220 000 В, 330 000 В, 500 000 В, 750000 В, 1150000 В. (гост 721_77)
Классы электросетей по напряжению
В таблице видим классы электросетей по напряжению. Как видим сети делятся на: электросети низкого (НН), среднего (СН), высокого (ВН), сверх высокого (СВН), ультра высокого (УВН) напряжений.
Условия нормальной работы электрической сети
Для стабильной работы электроприёмников, должно соблюдаться следующее правило равенства напряжений: номинальное напряжение электроприемников должно равняться номинальному напряжению электросети. Uном.эп =Uном.сети. Но обеспечить такое равенство, при котором не будет, ни потерь, ни убытков на практике не возможно.
Нагрузка электроприёмников не может быть постоянной, она меняется и отклоняется от номинального значения. Принята допустимая зона отклонения напряжения электроприёмника в ±5%.
Кроме этого, протяженность ЛЭП предполагает потерю напряжения на линии, а это значит, что напряжение у приёмника будет меньше, напряжения у источника. Разница напряжений и будет величина потерь. Это учитывается при проектировании и по ГОСТ, напряжения (ном.) вырабатываемые генераторами, должны быть на 5% больше необходимого напряжения сети.
Напряжения на обмотках трансформаторов ЭС
Повышающие трансформаторы на первичных обмотках должны иметь напряжение равное напряжению генераторов. Напомню, повышающие трансформаторы стоят сразу после генераторов электроэнергии на ТЭЦ или ГЭС.
Первичные обмотки понижающих трансформаторов по отношению к сети являются потребителями, поэтому напряжение на них должно равняться номинальному напряжению сети.
Посмотрим на вторичные обмотки трансформаторов. Они, у обоих типов трансформаторов, являются источником напряжения для питаемой электросети. Поэтому, напряжение вторичных обмоток трансформаторов должно быть на 5%, а иногда и на 10% больше нужного напряжения сети.
Все эти 5-10 % нужны для компенсации падения напряжений в электрической сети. Иллюстрация компенсации и падения напряжения смотрим на эпюре напряжений.
Вводы
Суммируя всё вышесказанное, делаем выводы:
- U ген. должно быть на 5% больше U ном. сети;
- U первичных обмоток повышающих трансф-ов должно совпадать с напряжением генераторов, а следовательно должно быть на 5% больше U ном. сети;
- U вторичных обмоток повышающих трансф-ов должно быть на 5-10% быть больше U ном. сети;
- U первичных обмоток понижающих трансф-ов должно равняться U ном. сети;
- U вторичных обмоток понижающих трансф-ов должно быть на 5-10% быть больше U ном. сети.
©Elesant.ru
Другие статьи раздела: Электрические сети
Похожие статьи
Как выбрать стабилизаторы напряжения для дома и дачи?
Стабилизатор напряжения бесспорно необходим на даче или в загородном доме, где в электросетях постоянно скачет напряжение. Этот прибор сбережет дорогую электронную аппаратуру и бытовую технику. Как его выбрать? Об этом пойдет речь в данной статье.
Актуальность применения стабилизаторов напряжения не требует доказательств. Они необходимы для нивелирования всплесков напряжения в электросетях. Сегодня такие проблемы встречаются намного реже, но даже небольшие скачки приводят к негативным последствиям, связанным с выходом из строя дорогостоящей бытовой техники. Качественные стабилизаторы для дома и дачи выравнивают величину напряжения электротока до стандартных параметров и очищают от высокочастотных помех. Аппараты для дома выпускаются номиналами мощности от 10 до 20 кВт.
Таким образом, на даче или в загородном доме стабилизаторы обеспечивают:
Стабильность работы бытовой техники и электронных устройств с повышенными требованиями к устойчивости напряжения.
Продление срока эксплуатации дорогостоящего бытового и электронного оборудования.
Принцип работы стабилизатора напряжения и его конструкция
Принцип работы устройства состоит в отслеживании изменений входного напряжения и его регулировании в соответствии с обстоятельствами и согласно определенному алгоритму:
Первая фаза (20 м/с) используется при изменении входного напряжения для его тестирования.
Тестирование напряжения и реакция на ситуацию.
При изменении напряжения в пределах диапазона, оно выравнивается до 220 В.
При падении напряжения ниже допустимого диапазона идет фаза «вытягивания», в пределах имеющегося ресурса трансформатора.
При скачке выше допустимых показателей происходит аварийное отключение.
При импульсных скачках и при отключениях и включениях, идет выравнивание напряжения.
Процесс корректировки напряжения идет за счет добавочных обмоток трансформатора. Напряжение переключается электронными ключами, которые срабатывают при падении синусоиды напряжения на нулевое значение. Сами ключи управляются процессором, который собирает с датчиков данные и коммутирует ключи согласно заданному алгоритму. Он не дает включаться более чем одному ключу и контролирует их исправность.
Процессор работает в определенных режимах:
Транзитном, когда напряжение на входе имеет нормальные показатели. Стабилизатор осуществляет только защиту от скачков.
Повышенном, когда входное напряжение ниже нормы и агрегат вытягивает его до номинального.
Аварийном, очень низком напряжении на входе. Стабилизатор поднимает его до возможностей ресурса своего транформатора. Другой аварийный режим связан со скачком напряжения вверх. Тогда прибор отключается, переходит в работу дежурного режима и ждет падения напряжения.
Пониженном, когда напряжение на входе высокое, но еще в диапазоне возможной корректировки. Агрегат понижает его до номинала.
Задержка включения, этот режим обеспечивает сглаживание скачка в сети при включении электроэнергии после отключения.
Конструкция стабилизатора напряжения
Устройство разных стабилизаторов отличается друг от друга в зависимости от вида. Но по своей сути, стабилизатор – это регулируемый трансформатор, с обратной связью.
Виды стабилизаторов напряжения: их преимущества и недостатки
Стабилизаторы на основе трансформаторов делятся на две группы (по способу регулирования).
Электромеханические стабилизаторы представляют собой электромагнитную катушку с бегунком. Положение бегунка изменяется действием мотора или реле. В отличие от других видов аналогичного оборудования такие стабилизаторы имеют плавную регулировку напряжения. Основным их плюсом считается высокая точность стабилизации. Это главный аргумент в пользу применения электромеханических стабилизаторов в качестве защиты особо чувствительной электротехники. Они оснащены автоматической системой защиты, позволяющей обезопасить бытовые приборы и сам аппарат от скачков напряжения и помех в электросетях. Еще один плюс данных приборов – низкая цена.
Недостатки у приборов электромеханического типа тоже есть. Это – медленное изменение параметров и шум при работе. Менее шумные – аппараты с мотором. Еще один минус – перенапряжение в случаях, когда резко упавшее напряжение также резко приходит в норму. Он попросту не успевает среагировать на резкий подъем напряжения и на выходе возникает скачок, губительный для бытовой техники. Для исключения такой неприятности на входе ставится защита по напряжению, отключающая питание.
Электронные стабилизаторы работают на симисторах или тиристорах. Они имеют многоступенчатую регулировку, которая работает на включение/выключение в зависимости от входного напряжения. Функция переключения выполняется электронным ключом или реле. К достоинствам данных приборов относят высокую скорость реакции и бесшумность работы. Минусы – низкая точность стабилизации и высокая стоимость. Чем больше ступеней, тем выше точность регулировки, тем дороже прибор.
Основные параметры выбора стабилизатора напряжения
Стабилизаторы напряжения выбирают по нескольким параметрам:
Мощность. Перед тем как выбрать оптимальный вариант стабилизатора для дома надо правильно рассчитать суммарную потенциальную мощность нагрузки. Полная мощность указана в техпаспорте и измеряется в вольт-амперах — ВА, VA. При расчете надо учитывать пусковые токи электродвигателей, сделать поправку на рост входного тока при пониженном напряжении. Не стоит нагружать прибор на все сто процентов, чтобы он прослужил в исправном состоянии долгое время.
Тип стабилизатора. По способу регулирования они бывают ступенчатые, симисторные, тиристорные и стабилизаторы плавного регулирования. Последние лучше выбирать при несущественных скачках напряжения. Чаще выбирают релейные и тиристорные аппараты, которые отличаются более качественными характеристиками и могут работать при резких перепадах напряжения в сети.
Точность стабилизации. Эта характеристика выбирается в зависимости с диапазоном допустимых напряжений, необходимых для работы оборудования. Более высокая точность у тиристорных вариантов. Она получается за счет большого числа ступеней, переключение на которые связано с кратковременным разрывом фазы.
Фаза. Для выбора фазы аппарата надо знать, к какой сети он будет подключен. Если сеть однофазная, то и стабилизатор должен быть однофазный. При наличии хотя бы одного трехфазного потребителя необходимо приобретать трехфазный стабилизатор напряжения. Преимущества трехфазного варианта – возможность работы этого устройства при исчезновении напряжения на одной из фаз.
По производителю. Аппараты делятся по этому параметру на российские, китайские, итальянские. У каждой группы есть как более качественные марки, так и менее качественные. Более выгодные в соотношении цена/качество – российские и китайские модели. Итальянские стабилизаторы отличаются высоким качеством, длительным сроком службы, но высокой стоимостью.
Как выбрать номинальную мощность стабилизатора напряжения
Выбирая номинальную мощность бытового стабилизатора, необходимо подсчитать полную мощность всех подключаемых к нему потребителей, которые могут работать одновременно. Она указывается в ВА при напряжении 220В. Снижение питающего напряжения ведет к уменьшению мощности прибора. Поэтому, рассчитывая полную мощность потребителей, надо умножить ее на 1,2 при 180В в сети и на 1,3 при 170В. Если стабилизатор будет использоваться длительное время, то коэффициент составит 1,25. Номинальная мощность прибора, указанная на маркировке, не должна быть меньше полной величины мощности при расчетах.
Как выбрать стабилизаторы напряжения для дома и дачи
Оптимальным вариантом прибора защиты от перебоев электропитания станет тот вариант, который обеспечит автоматическое поддержание установленного значения выходного напряжения (220В). Основными критериями выбора являются:
Наличие питающей сети. Для трехфазной сети лучшими решениями станут: один трехфазный стабилизатор напряжения 380 В, или три однофазных на 220В, по одному на каждую фазу.
Тип подключения. Важно определиться, что будет подключаться к стабилизатору – один прибор, или все электрооборудование в доме. Для небольшого дома или дачи подойдет однофазный прибор на 220В, подключаемый через бытовую розетку и рассчитанный на несколько потребителей. В большой загородный коттедж более подходящий вариант – мощный однофазный или трехфазный прибор, обеспечивающий комплексную защиту всей электросети.
Мощность. Как показывает опыт для современной дачи или загородного дома для самой основной техники следует рассматривать варианты моделей мощностью 5-6 кВт. Если необходим стабилизатор напряжения на весь загородный дом, то мощность его должна составлять не менее 15 кВт.
Диапазон входного напряжения. Более дешевые варианты стабилизаторов имеют небольшие границы входного напряжения. Они не всегда справляются с ситуацией, когда скачки напряжения в сети находятся в интервалах ниже 165В и выше 250В. Определить отклонения в электросети можно произведя замеры вольтмером через розетку. На основании выполненного тестирования можно определить нижние и верхние границы сетевых колебаний. Исходя из этого, можно подобрать стабилизатор, который справится с ними.
Точность стабилизации. Этот критерий должен соответствовать требованиям к качеству электричества, подключенных к нему электроприборов. Есть допустимые отклонения для некоторых категорий бытовой техники: для сложной электронной аппаратуры – от 1% до 3%; для осветительных приборов – 3%; для бытовой техники – от 5% до 7%. Если стабилизатор имеет точность стабилизации более 7%, то он не соответствует требованиям современного электрооборудования.
Стоимость. Цена стабилизатора зависит от его характеристик и сложности схемы. Самые дорогостоящие – симисторные и тиристорные стабилизаторы. Но их технические характеристики намного выше электромеханических и релейных вариантов.
Если стабилизатор необходим для работы такого оборудования как отопительный котел, то выбирать надо только электронный вариант (симисторный или тиристорный). Устройства другого типа не гарантируют стабильность работы газового или электрического котла.
Уровень шума при работе. Более шумные в работе – релейные и электромеханические приборы. Электронные приборы работают без шума.
В заключение надо
отметить, что бытует мнение, что современная техника вполне может обойтись без
стабилизаторов и выдерживает перепады в электросетях до 10-15%. В то же время,
частые поломки сложной бытовой техники не всегда можно отнести на счет
недобросовестности производителя. В действительности же, в большинстве случаев
виноваты скачки в электросетях. Поэтому, в целях рациональной экономии средств
на ремонт дорогостоящей бытовой аппаратуры лучшим решением будет приобретение
надежного стабилизатора напряжения.
Диапазон напряжения в вашем доме
Легко запутаться, когда мы говорим о диапазоне напряжений, которые бытовая электрическая система подает на наши устройства. Долгое время большинство людей называло мощность домашней розетки «110 вольт». Точно так же «220 вольт» использовалось для более крупных бытовых приборов, таких как электрические плиты и сушилки для одежды. Эти обозначения домашней сети переменного тока фактически устарели. Они неточно описывают диапазон напряжения, который поступает в ваш дом от электросети.Итак, к чему такая путаница?
В наши дни почти каждый потребитель может получить 120 вольт от розетки. Однако обычно в ваш дом подается питание с номинальным напряжением 240 вольт. Внутри трансформатора на опоре электросети питание делится на систему с расщепленными фазами, каждая линия имеет номинальное напряжение 120 вольт. Номинальное напряжение — это напряжение, на которое рассчитана линия; однако в реальных условиях допуск к колебаниям напряжения составляет от –5% до + 5%.Это приводит к фактическому диапазону напряжения от 114 В до 126 В от вашей розетки и диапазону напряжения от 228 до 252 В для ваших полнофазных устройств. Теперь вы можете посмотреть на эти диапазоны напряжения и подумать, что такая большая разница может потенциально представлять опасность для вас или ваших электрических устройств. Однако могу вас заверить, что это совершенно нормально и учитывается при проектировании схем.
Мы коротко поговорили о 240 вольтах, которые подаются в ваш дом от энергокомпании.В трансформаторе однофазное питание от энергокомпании делится на 3 провода: 2 линейных провода и заземление. Это известно как однофазная трехпроводная или двухфазная система. Обычно ваши лампы и другие устройства на 120 В подключаются между одним линейным проводом и заземленным центром, в то время как электрические плиты, сушилки и другие устройства подключаются как к линейным проводам, так и к заземлению. Таким образом, каждая половина может уравновесить другую при увеличении электрических нагрузок. Наш преобразователь напряжения Quick 220 ® объединяет эти половинки и обеспечивает удобную розетку с диапазоном напряжения от 228 В до 252 В без необходимости вызывать дорогостоящего подрядчика по электрике.
Надеюсь, вы узнали сегодня немного об электросети Северной Америки и о том, как работают преобразователи напряжения Quick 220 ® . Наша всегда миссия — не только делать электроэнергию удобнее, но и просвещать.
Слишком высокое напряжение в вашем доме?
Высокое напряжение вызывает высокие счета за электроэнергию
Слишком высокое напряжение в вашем доме?
Это длинная страница, поэтому следующий обзор может оказаться полезным.
Обзор —
- Каким должно быть напряжение?
- Как узнать, слишком ли высокое напряжение
- Как слишком высокое напряжение приведет к увеличению счета за электроэнергию
- Термодинамика
- Почему Hydro One это делает?
- Это немного похоже…
- Чрезвычайная ситуация и моя жалоба
- Отговорки от Hydro One
- Итог
Вниманию потребителей энергии + — Если у вас возникли проблемы
с вашим напряжением и являетесь клиентом Energy + в городе или рядом с ним
из Кембридж, Онтарио , свяжитесь со мной.
Ваши наблюдения могут помочь соседу. Спасибо.
1. Какое должно быть напряжение?
Напряжение в розетках должно быть в пределах нескольких вольт от 120 В переменного тока ,
скажем, 118–122 В переменного тока, в зависимости от «нагрузки», то есть в зависимости от того, сколько и какие
тип бытовой техники, которую используете вы и ваши соседи, а также как далеко вы находитесь от
последний трансформатор.
Кроме того, среднее напряжение за периоды
несколько дней или более должно быть очень близко к 120 В переменного тока, а напряжение должно быть выше
120 В переменного тока примерно в половине случаев и ниже 120 В переменного тока в другой половине времени. В периоды
при чрезвычайно высокой нагрузке, например, в очень жаркую или очень холодную погоду, многие
Энергогенерирующие компании изо всех сил стараются обеспечить своих потребителей номинальными 120 В переменного тока.
Вся бытовая техника, одобренная для продажи в Канаде канадскими стандартами.
Association (CSA) рассчитаны на работу при 120 В переменного тока (за исключением, конечно, тех, которые рассчитаны на
для 240 В переменного тока).Моя электроэнергетическая компания
Hydro One
который поставляет электроэнергию напрямую большинству сельских и некоторых пригородных потребителей в
провинции Онтарио, Канада, но многие электроэнергетические компании работают так же, как
Hydro One делает.
Желтая зона на диаграмме выше — это диапазон напряжений, измеренных в моем доме во время
Декабрь 2015 года, январь и февраль 2016 года, а в последнее время — 2019 и 2020 годы.
Зеленая и красная зоны выше определены в документе Канадской ассоциации стандартов.
CAN3-235-83 Таблица 3, «Рекомендуемые пределы изменения напряжения для цепей до 1000 вольт.
у служебного входа ».(См., В частности, «Указания по напряжению» на стр. 35–36
Документ Совета по энергии Онтарио.) Совет по энергии Онтарио четко заявляет, что
Hydro One поставляет только стандартные напряжения. Эти напряжения
будет соответствовать стандартам Канадской ассоциации стандартов («CSA»).
Фактически, эти же стандарты повторяются в «окончательном проекте» заявления Hydro One о
условия обслуживания Hydro One
клиентов (см., в частности, Таблицу 2, Рекомендуемые пределы изменения напряжения).
Итак, мы знаем, что этот стандарт используется Hydro One и что напряжение всегда должно быть
находиться в зеленой зоне и никогда не должен находиться ни в одной из красных зон на графике выше.
Рекомендация CSA для напряжения в нормальных условиях эксплуатации составляет 110–125 В переменного тока , но как и любое другое
Электрик скажет вам, что работа в течение длительного времени на
верхний предел этого диапазона. Фактически, та же рекомендация CSA определяет 127 В переменного тока.
как «экстремальные условия эксплуатации» , всего на два вольта выше, чем верхний предел
из «нормального» рабочего диапазона.
Текущая ситуация в моем доме —
В течение первых 7 дней декабря среднее напряжение составляло 122,06 В переменного тока, а напряжение было выше номинального напряжения (120 В переменного тока) в 91,1% случаев. Обратите внимание на продолжающуюся высокую изменчивость напряжения в течение каждого дня. Смотрите подробности моих измерений напряжения здесь.
2. Как узнать, слишком ли высокое напряжение
Если у вас есть цифровой мультиметр или другой подходящий прибор,
диапазон напряжения, проверьте напряжение, которое появляется в электрических розетках вашего дома.Помните,
вы имеете дело с переменным током (AC), а не с постоянным током (DC), поэтому выберите соответствующий
настройку на вашем вольтметре. Измеренное напряжение
должно быть в пределах очень немногих вольт 120 В переменного тока. Это приемлемое напряжение. Проверь это
в разное время дня и ночи в течение нескольких дней, чтобы найти разумное среднее значение. Если
вы обнаружите, что напряжение в ваших розетках постоянно составляет около 124 В переменного тока или выше,
тогда у вас в доме слишком много электричества, и вы потребляете и платите значительно больше
энергии, чем необходимо вашим приборам.
Обратите внимание: — Вы имеете дело с потенциально смертельным
напряжение, поэтому, если вы не можете безопасно проверить напряжение самостоятельно, обратитесь к квалифицированному специалисту.
электрик, техник, технолог или инженер сделает это за вас. Нет стыда
попросить кого-то сделать это, и это может спасти вам жизнь.
3. Насколько высокое напряжение приведет к увеличению счета за электроэнергию
Если ваш счет за электроэнергию слишком высок, одна из причин может заключаться в том, что ваша электроэнергетическая компания
подает в ваш дом слишком много электроэнергии, то есть слишком высокое напряжение.В
Северная Америка, большинство ваших электроприборов рассчитаны на работу с
напряжение 120 вольт переменного тока (VAC), и позвольте плюс или минус несколько вольт для
колебания нагрузки и резистивных потерь в электрических проводах. Если ваша электроэнергетическая компания,
как Hydro One, подает напряжение
которые на постоянно превышают 120 В переменного тока , тогда ваши приборы будут
постоянно используют больше энергии, чем им нужно, и вам придется платить за больше энергии, чем вы
нужный.
Вы, возможно, помните из своего школьного урока физики, что при 120 вольт 100 ваттный
лампа накаливания рассеивает мощность 100 Вт в виде света и тепла
(в основном тепло).Это нормально, и это то, за что мы рассчитываем заплатить, когда
на выключателе света.
Если у вашего напряжение | Мощность, используемая При нагрузке 100 Вт | И вы заплатите Это намного больше |
---|---|---|
118 В перем. Тока | 96,6 Вт | -3,3% |
120 В перем. Тока (номинальное) | 100 Вт | 0% |
122 В перем. Тока | 103.4 Вт | + 3,4% |
124 В перем. Тока | 106,8 Вт | + 6,8% |
126 В перем. Тока | 110,3 Вт | + 10,3% |
128 В перем. Тока | 113,8 Вт | + 13,8% |
130 В перем. Тока | 117,4 Вт | + 17,4% |
Однако при 124 В переменного тока та же лампочка рассеивает почти 107
вместо 100 ватт, и вы будете платить за электроэнергию почти на 7% больше.В
126 В переменного тока, лампа рассеивает чуть более 110 Вт, и вы заплатите на 10,2% больше за
ваше электричество. Ваш холодильник, морозильник, плита, топка с воздушным отоплением,
электрические обогреватели, тостер, отстойник, водяной насос из колодца, стиральная машина, сушилка для белья, кофеварка,
много лампочек — все эти приборы одинаково подвержены влиянию
более высокое напряжение, которое доставляется. И вы заплатите за это дополнительно
энергия. Все время, что они включены.
Примечание для читателей — вы получаете дополнительные баллы, если заметили в таблице выше
что мощность и напряжение не имеют «линейной зависимости».За исключением «импульсных источников питания».
упомянутые ниже, мощность и энергия пропорциональны квадрату
напряжения , так что при увеличении напряжения мощность и энергия будут
увеличиваются немного быстрее, чем напряжение. Точные отношения очень точно
описывается законом Ома. Спросите любого инженера.
Используемая мощность = (приложенное напряжение) ² / (сопротивление нагрузки)
или P = E² / R
Единственным исключением из этого являются электронные устройства, использующие
импульсные источники питания без трансформаторов и
специально разработан для работы в большом диапазоне напряжений, скажем, 100–250 В переменного тока.
В пределах своего расчетного диапазона входного напряжения эти нелинейные источники питания не подчиняются закону Ома, когда
мы пытаемся рассчитать их энергопотребление. Зарядное устройство для мобильного телефона, вероятно,
этого типа.
4. Термодинамика
При чем здесь термодинамика? Что ж, вы могли подумать, что
более высокое напряжение нагревает предметы быстрее или делает другие вещи быстрее, тем самым компенсируя
с более короткими временами за дополнительную плату высокого напряжения. Конечно, резистивная нагрузка, подобная вашей
тостер или водонагреватель нагреваются быстрее, а затем отключаются раньше, чем выше
напряжения, но все еще есть потери из-за утечки тепла, и эти потери могут
никогда не восстановиться.Из-за этих потерь сокращается время нагрева на более высоких
напряжение не может полностью компенсировать дополнительные затраты на работу на более высоком
Напряжение. Итак, хотя тостер (например) с рейтингом выше
напряжение будет поджаривать ваш хлеб быстрее, чем тостер, работающий при расчетном напряжении
(120 В переменного тока), тостер с проектным напряжением по-прежнему стоит меньше в эксплуатации, чем тостер с
напряжение выше расчетного. Как в мифических поисках вечного двигателя,
термодинамика всегда в конце концов приведет нас.
5. Почему Hydro One это делает?
Почему Hydro One подает больше напряжения, чем вам действительно нужно? Чтобы заработать больше денег,
конечно. Hydro One часто имеет избыток энергии для продажи, особенно во время
зимой, и они поставляют более высокое напряжение в наши дома, чтобы продать
эта дополнительная энергия для нас.
После производства и продажи основного количества энергии любая дополнительная энергия становится намного дешевле.
чтобы производить, поэтому прибыль выше, когда Hydro One может продавать свои излишки энергии.Как клиенты,
мы с вами покупаем излишки.
Странно, что, с одной стороны, Hydro One всегда подчеркивает важность экономии
энергии с помощью программируемых термостатов, компактных люминесцентных ламп (КЛЛ), приборов EnergyStar и
обращая внимание на график времени использования, в то время как, с другой стороны, обеспечивая уровень
напряжение, которое сводит на нет любую экономию от этих усилий по сохранению.
6. Это немного похоже на …
- отвести семью в дорогой ресторан, где порции огромные, и никто не может съесть все
это было положено им на тарелки, но ресторан не предлагает услуги по доставке собачьих сумок, поэтому вы
придется платить за всю еду, даже если ее нельзя было полностью съесть; - нужно покупать бензин у заправки, которая намеренно переполняет ваш бак, и вам нужно
заплатить за весь пролившийся на землю бензин, даже если вы не можете его использовать; - приходится платить за дополнительное место (пустое!) Каждый раз, когда вы берете семью в кино
театр.
7. Экстремальная ситуация и моя жалоба
Напряжение в моем доме
Зима 2015/16 года принесла экстремальную ситуацию, так как напряжение в моем доме в среднем составляло
от 124 до 125 В переменного тока и была выше зеленой зоны, рекомендованной CSA, примерно на половину
время, иногда граничащее с верхней крайней красной зоной при 127 В переменного тока. Неудивительно, что мой
лампочки перегорели той зимой, даже дорогие лампы КЛЛ, и высокое напряжение
может объяснить, почему наш дорогой HD-ресивер «зависал» часами, несмотря на
прием сильных телевизионных сигналов.
Фактически Hydro One продолжает поставлять напряжения, которые почти всегда выше
чем номинальное 120 В переменного тока. См. Здесь
сводка напряжений, подаваемых в мой дом компанией Hydro One за первые месяцы
с декабрем 2015 года. Хотя это не слишком высокое напряжение, все мои приборы
использовать больше энергии, чем необходимо для нормальной работы. Подробная информация о ежемесячном
измерения показаны на
архив.
8. Извинения от Hydro One
В прошлом, когда я жаловался в Ontario Hydro, теперь Hydro One, на высокое напряжение в
мой дом, они назвали несколько разных «причин», но ни одна из этих причин не является логической или
действительный.
- «Но нам придется снизить напряжение и у ваших соседей». — Дох! Из
конечно, вы бы. Напряжения у всех моих соседей слишком высокие, как и у меня, так и должно быть.
уменьшенный. - «Нам нравится подавать более высокое напряжение, чтобы двигатели запускались легче». —
Извините, но я живу в жилом районе, а НЕ в индустриальном парке, и могу считать по пальцам
количество значительных моторов в моем доме. Все они рассчитаны на 120 В переменного тока и
они отлично работают при таком напряжении. - «Но напряжение меняется, и оно не всегда высокое». — Да,
напряжение меняется нормально, и я жалуюсь на моменты, когда оно слишком высокое
о. В течение декабря 2015 года я измерил напряжение 135 раз, более
или меньше случайно в течение дня и ночи (я немного страдаю бессонницей), и напряжение никогда не было меньше
чем 121,0 В переменного тока (уже выше номинальных 120 В) и достигает 127,2 В переменного тока. Среднее
моих измерений за месяц было 124.25 В переменного тока так
мои соседи и я использовали примерно на 8% больше энергии, чем необходимо. И, да, напряжение
в течение остальной части зимы все еще оставался слишком высоким. (Подробнее см. В таблицах моих измерений.) - «Но вы все неправильно поняли! С увеличением напряжения ток уменьшается, поэтому
мощность остается прежней »- Эту« строчку »примерили на мне
несколькими лицами (один из них — специалист, работающий в электроэнергетике). Это полный
неверная формулировка закона Ома, что может быть проверено ссылкой на любую физику или электротехнику.
учебник.Общий принцип «мощность остается неизменной» применим только к электрическим
линии передачи, по которым постоянное количество энергии подается от генерирующей станции к
трансформаторная подстанция. Ваш дом не
трансформаторная подстанция, а вместо этого является «переменной нагрузкой», которая требует постоянного напряжения. Видеть
подробнее здесь. Утверждать, что «власть остается прежней»
это ложь, противоречащая законам физики, и изящная пропаганда, используемая для того, чтобы спрятаться от
фактическая критика электроэнергетики.Эта линия может подействовать на политиков и некоторых
журналисты, но это не работает на меня и не должно работать на вас.
Все это от Hydro One и энергетиков, которые любят изображать себя
хранители энергосбережения и энергоэффективности.
9. Итог
В идеале, , среднее напряжение за 24 часа должно составлять 120,0 В переменного тока и варьироваться в пределах,
скажем, от 117 до 123 вольт или лучше от 118 до 122 вольт, в зависимости от источника питания и
условия нагрузки.Значит, напряжение должно быть на выше 120 вольт около
в половине случаев и ниже 120 вольт, в другой половине — . Hydro One следует
стремиться достичь такого уровня предложения во всех жилых кварталах. Это справедливо и правильно, и
не заставляет наши приборы потреблять больше мощности и энергии, чем они должны, и не стоит нам дороже
денег, чем мы должны были бы заплатить. Однако у меня дома измерения показали, что напряжение
обычно превышает 120,0 В переменного тока более 80% времени, по крайней мере, с начала 2018 года и
до июня 2020 года.Можно надеяться, что ситуация с напряжением с начала июня 2020 г.
стать правилом, а не исключением.
Компания Hydro One точно знает, что такое интеллектуальные счетчики и другие телеметрические системы.
какое напряжение они подают, и у них нет оправдания, что они не знают о чрезмерных и дорогостоящих
напряжения, которые я описал выше.
Здесь приведены результаты многих измерений в моем собственном доме. Надо брать большой
количество измерений каждый месяц (сейчас около 4000 автоматических измерений каждый месяц), чтобы гарантировать
точности и преодолеть эффекты почасовой и
ежедневные колебания нагрузки и мощности поставки.
Измерения напряжения для в прошлом месяце являются
резюмировано здесь. Пожалуйста
также смотрите архив замеров за предыдущие месяцы
(вернемся к декабрю 2015 года).
Правильное напряжение для работы кондиционера | Руководства по дому
Джек Бертон Обновлено 29 декабря 2018 г.
Домашние кондиционеры предлагаются в двух стилях: центральный кондиционер для всего дома, который часто сочетается с системой центрального отопления, и оконные блоки, предназначенные для охлаждения отдельных комнат.Для правильной работы этих двух типов приборов требуется разное электрическое напряжение. Даже небольшой кондиционер может вызвать нагрузку на домашнюю электрическую систему.
Центральные кондиционеры
Центральные кондиционеры требуют для работы выделенной цепи 220 или 240 В. Когда центральный кондиционер запускается, ему может потребоваться до 5000 ватт электроэнергии, что делает его одним из крупнейших потребителей электроэнергии в доме. Холодопроизводительность кондиционера измеряется либо в британских тепловых единицах (БТЕ), либо в тоннах.«Чем больше количество БТЕ или тонн, тем выше охлаждающая способность агрегата. Для более крупного агрегата также требуется больше электроэнергии. Покупка агрегата, слишком большого для вашего дома, приводит к потере электроэнергии и приводит к более быстрому износу агрегата.
Оконные кондиционеры
Оконные кондиционеры предлагаются в моделях на 110/120 В или 220/240 В. В зависимости от их холодопроизводительности. Блок, предназначенный для охлаждения одной небольшой комнаты, такой как спальня, обычно обеспечивает 15 000 БТЕ и часто работает. на стандартной розетке на 110/120 вольт меньшего размера.Из-за большого энергопотребления у вас не должно быть других устройств в цепи, чтобы избежать перегрузки. Для оконного блока более 15000 БТЕ может потребоваться выделенная цепь 220/240.
Добавление цепей
Во многих домах цепи 220/240 В не используются в качестве стандартного оборудования в жилых помещениях, и они должны быть добавлены квалифицированным электриком. По словам Билла Ферреры из Ferrera Electric в Сан-Франциско, это может стоить от 500 до 1500 долларов на дату публикации, в зависимости от типа дома, его местоположения и объема работ.Все оконные кондиционеры содержат необходимую информацию об электрических требованиях на упаковке устройства. Как и в случае с центральным блоком, покупка слишком большого оконного блока тратит впустую энергию и деньги.
Определение размеров блока
В технических характеристиках, перечисленных для отдельных блоков кондиционирования воздуха, указывается размер охлаждаемой ими зоны. Например, кондиционер, который охлаждает площадь в 120 квадратных футов, будет лучше всего работать в комнатах шириной 10 футов и шириной 12 футов. Подбирая размер вашей комнаты или дома в соответствии с техническими характеристиками устройства, вы можете выбрать кондиционер соответствующего размера.Другие факторы, которые вы можете принять во внимание, — это количество окон и теплоизоляция. Если через окна поступает больше тепла, вам понадобится более крупный агрегат. Плохо изолированный дом позволит прохладному воздуху выходить быстрее, и может потребоваться оконный блок большего размера. Квалифицированный техник может помочь вам выбрать центральный блок переменного тока, соответствующий вашим потребностям.
Низковольтная проводка — что вам нужно знать
Низкое напряжение на низковольтной проводке
Многие сегодняшние домовладельцы не могут представить себе дом без высокоскоростного Интернета и Wi-Fi, средств домашней автоматизации для удобства такие как освещение и музыка и современные системы безопасности с камерами.
Вот почему многие застройщики делают установку структурированной кабельной разводки в соответствии с новым стандартом строительства или предлагают ее в качестве опции. И хотя некоторые основы остались прежними, установка низковольтной проводки — это совсем другое дело. Независимо от того, руководите ли вы электрическим проектом или являетесь домовладельцем, это руководство поможет вам лучше понять, как работает низковольтная проводка и чем может помочь подрядчик по электрике.
Краткое описание низковольтной проводки
Итак, чем монтаж структурированных кабелей отличается от прокладки стандартных электрических кабелей? В большинстве розеток для кабеля подается электричество на 120 или 240 В.Но низковольтная проводка не пропускает такой же ток, как электрические розетки, приспособления и выключатели, обычно устанавливаемые в домах. Низковольтная проводка рассчитана на подачу электричества 50 вольт или меньше. Обычные низкие напряжения — 12 В, 24 В и 48 В.
Низковольтная проводка часто используется для интеллектуальных дверных звонков, телефонов, средств управления открыванием гаражных ворот, термостатов отопления и охлаждения, ландшафтного освещения, датчиков и элементов управления системой сигнализации (камеры системы безопасности, датчики движения), аудиовизуальной проводки (объемный звук аудиосистемы, кабельное телевидение, системы внутренней связи), интернет-сеть и Wi-Fi, а также светодиодное или низковольтное освещение.
Инфраструктура, в которой работает низковольтная проводка, называется структурированной кабельной системой. Структурированная система электропроводки построена на отдельной сети от большей части домашней электропроводки. В большинстве случаев в первую очередь монтируется основная электрическая система дома, а затем — проводка низкого напряжения.
Оптимальная производительность структурированной кабельной системы зависит от хорошей конструкции. Хороший дизайн учитывает проблемы с воздушным потоком и охлаждением, обеспечивает резервирование, выбирает правильную кабельную разводку для работы и планирует пути прокладки кабелей.Некоторые из наиболее распространенных типов кабелей, используемых в низковольтной проводке, включают:
- Неэкранированная витая пара (UTP) — кабели категории 6 или 6a сегодня наиболее часто используются в домах.
- Волоконно-оптический кабель — используется для работы на большие расстояния. С ним сложно работать, и для него требуются специальные инструменты для обжима и соединители.
- Провод динамика — используется для домашнего аудио и домашнего кинотеатра.
- Провод термостата
- Коаксиальный кабель (коаксиальный) — в домашних условиях чаще всего используются типы RG-59 / U (.64-миллиметровая жила и одиночный экран), RG-6 / U (1,024-миллиметровая жила с двойным экраном) и / RG-6 / UQ (сердечник 1,024 мм с четырехугольным экраном.
- Провод системы безопасности — обычно для 18 и 24AWG, с двумя или четырьмя проводниками.
Структурированная кабельная система проста, эффективна, легко адаптируется и организована. Можно быстро определить конкретные провода. Ее также легко изменить или дополнить. Она может передавать данные с высокой скоростью. при одновременном снижении затрат на электроэнергию и техническое обслуживание.
Вот некоторые из наиболее важных деталей, которые необходимо изучить подрядчикам, работающим с электричеством, перед установкой структурированных кабельных систем.
Нельзя тянуть за провод низкого напряжения так же, как за электрический провод. Провод низкого напряжения очень хрупкий. Неосторожное обращение может привести к его повреждению, выдергиванию скрутки и ухудшению характеристик кабеля. Рекомендуется максимальная сила тяги 25 фунтов, хотя у каждого производителя есть свои стандарты, которым вы должны следовать.
Еще одна важная вещь, на которую следует обратить внимание, это то, что низковольтный провод, например оптоволоконный кабель, не может изгибаться под углом 90 градусов. Если вам нужно повернуть его в другом направлении, вам придется образовать петлю. Опять же, посмотрите на стандарты производителя, чтобы определить максимальный радиус петли. Волокна кабеля склонны к перекручиванию или обрыву, что может ухудшить сигнал.
Низковольтные провода следует прокладывать как минимум в футе от основных электрических проводов дома, параллельно со всеми кабелями.Более высокое напряжение на электрических кабелях может создавать помехи сигналам, которые могут повлиять на кабели данных. Если вы не можете избежать прокладки низковольтных проводов между электрическими проводами, их следует прокладывать под углом 90 градусов. И, как правило, длина медных кабелей не должна превышать 100 метров, хотя есть некоторые исключения.
Отличные возможности для роста
Ожидается, что к 2022 году мировой рынок структурированных кабелей достигнет 17 181,2 миллиона долларов.Рынок особенно устойчив в США из-за высокого спроса на подключение к Интернету, а также из-за того, что здесь расположены штаб-квартиры многих технологических гигантов.
Это создает отличные финансовые возможности для подрядчиков по электротехнике. В то время как существует жесткая конкуренция со стороны других установщиков кабеля, таких как подрядчики электронных систем, установщики систем сигнализации и установщики домашних развлечений, электрические подрядчики во многих отношениях имеют более выгодные возможности, чтобы воспользоваться этой прибыльной возможностью.
Почему? Генеральным подрядчикам нравится работать с компаниями, с которыми они знакомы, и с компаниями, с которыми у них был хороший опыт работы на предыдущих должностях. Генеральные подрядчики осознают важность отношений, построенных на доверии. Кроме того, большую часть проекта составляют электрические подрядчики, которые уже на строительной площадке устанавливают основные электрические компоненты. Например, их нельзя заменить установщиком сигнализации.
Еще одна причина, по которой генеральные подрядчики предпочитают передавать все кабельные установки подрядчикам, сводится к чистой прибыли.Наличие электрического подрядчика в качестве единого контактного лица вместо того, чтобы иметь дело с несколькими установщиками, может сэкономить генеральному подрядчику до 20 процентов затрат на электромонтаж работы.
Стоит ли прыгать на подножку?
Тот факт, что это было бы выгодно для генеральных подрядчиков, не обязательно означает, что электрические подрядчики должны присоединиться к делу. Как мы видели, установка основной электрической системы сильно отличается от установки системы низкого напряжения.Без надлежащей подготовки и опыта использование этой новой возможности может привести к отказу сети. А это может поставить черную метку на профессиональной репутации вашей компании. Это также требует смещения фокуса: ваша компания должна будет стать более ориентированной на обслуживание клиентов при работе с клиентами.
Низковольтная проводка работает в соответствии с другим набором правил и руководящих органов (IEEE, ANSI, EIA, TIA и BICSI), чем электрическая проводка, которая соответствует стандартам, установленным NEC.Лицензирование низковольтного оборудования варьируется от штата к штату и даже от города к городу в некоторых штатах.
Индустрия структурированных кабельных систем также сталкивается с конкуренцией со стороны других домашних сетевых технологий, таких как системы связи по линиям электропередач и беспроводные системы. Оба варианта менее дороги в установке и требуют минимум профессиональных навыков установки.
Тем не менее, структурированная кабельная разводка — это бизнес-возможность, которую электрические подрядчики не должны упускать из виду. Это потребует лицензирования, страховки, профессиональных сертификатов и возможности протестировать и сертифицировать установку системы.
Но при надлежащем обучении и аккредитации электрические подрядчики могут успешно конкурировать с другими монтажниками кабеля.
Если вы предпочитаете окунуть пальцы ног в воду, чем нырнуть прямо, подумайте о партнерстве с подрядчиком по низковольтному оборудованию в качестве субподрядчика. Таким образом, вы сможете изучить основы, прежде чем принять решение. Роль и обязанности подрядчиков по низковольтному оборудованию расширились, и теперь они включают разработчика систем, интегратора и специалиста по устранению неполадок, а также установщика.Подрядчики по низковольтному оборудованию могут очень захотеть передать монтажную часть подрядчикам-электрикам. Это могло быть беспроигрышным для всех.
Каждая компания должна принимать решение сама. Но в будущем электрические подрядчики, имеющие опыт и образование в области структурированной прокладки кабелей, будут иметь сильное конкурентное преимущество перед электрическими подрядчиками, у которых нет этого инструмента в своем наборе инструментов.
Приборы и напряжение | Подключение устройств
Подключение устройств отвечает на вопрос, касающийся устройств и напряжения
Очевидное утверждение: сегодняшним основным бытовым приборам для работы требуется электричество.Приборы и электроника обычно рассчитаны на работу от двух основных категорий напряжения, необходимого для их работы. Существуют также разные токи электричества, используемые для передачи энергии: постоянный (DC) и переменный (AC) ток.
В начале использования и обеспечения электричеством городов и домохозяйств здесь, в Соединенных Штатах, шла настоящая война, чтобы определить, что лучше. Короче переменный ток победил. В чем основное различие между ними? Проще говоря, постоянный ток использует две точки контакта, а именно положительную и отрицательную клеммы, при этом электричество течет в одном направлении.Постоянный ток обычно встречается в батареях. Переменный ток может изменять направление потока и более экономичен и эффективен для доставки энергии в дома. Кроме того, с помощью трансформатора легко манипулировать и изменять напряжение переменного тока. Это основная причина, по которой энергетические компании используют переменный ток для подачи энергии в ваш дом.
Электричество, вероятно, лучшее открытие человечества, ответственного за современный мир, каким мы его знаем.В частности, способность человечества использовать и контролировать электричество для питания оборудования и освещения позволила существенно повысить производительность в целом. Вся ваша бытовая техника и освещение в вашем доме включаются одним щелчком выключателя. Не пытайтесь самостоятельно выполнять какие-либо электромонтажные работы, если вы не уверены или неопытны. Всегда консультируйтесь с лицензированным электриком по поводу любых работ, которые вы собираетесь выполнять, особенно с новыми подключениями.
220 В — 240 В Приборы в США
Обычно в США обычное напряжение в домах составляет 110–120 В переменного тока (вольт переменного тока).В то время как другие части мира используют 220–240 В переменного тока в качестве стандартного источника питания для жилых домов. Некоторым приборам для нормальной работы требуется определенное напряжение. В большинстве случаев, если прибор не соответствует подключенному напряжению, прибор просто не будет работать.
Мало кто обратит внимание на напряжение, необходимое для бытовых приборов, или, возможно, существует некоторая неуверенность в том, будет ли более низкое или более высокое номинальное напряжение прибора правильно работать в их домах.По большей части здесь, в Штатах, основная проблема заключается в том, будут ли устройства на 240 В работать в жилых домах и какие шаги необходимы для обеспечения правильной работы. Для приборов, использующих более высокое напряжение, чем стандартные 110 В, в вашем доме необходимо установить специальное соединение, чтобы обеспечить работу 240 В или аналогичного.
Подключение вашего устройства будет использовать диапазон 110–120 В переменного тока или 220–240 В переменного тока. Некоторые приборы могут работать с двойным напряжением, но большинство — нет.Те, которые имеют одно напряжение, должны использовать правильное соответствующее напряжение, в противном случае вы рискуете повредить свое устройство. Здесь, в Соединенных Штатах, мы настроены на работу бытовой техники и электроники в диапазоне от 100 до 127 В. Разница колеблется в зависимости от нескольких вариантов, связанных с источниками питания и подключениями проводов. В последнее время наблюдается рост использования приборов и оборудования на 230 В, стандарт используется на более широком рынке во всем мире с использованием адаптера или соединительной вилки.По большей части более высокое напряжение означает большую мощность, что, в свою очередь, обеспечивает более строгие характеристики. Чтобы использовать более высокое или более низкое номинальное напряжение, которое не соответствует вашей выходной мощности, вам нужно будет оборудовать трансформатор для повышения или понижения источника питания.
Типы устройств, использующих напряжение 220-240 В
Шайба
Стиральные машины, рассчитанные на напряжение 240 В, могут более эффективно выполнять тяжелые действия, такие как циклы стирки и отжима.
Сушилки
Сушилки
240 В обычно бывают электрическими, тогда как сушилки 110 В используют газ в качестве основного компонента для нагрева.
Диапазоны
Диапазоны, в которых используется работа на 240 В, обычно работают на двух видах топлива. В горелках используется газ в качестве основного источника топлива, а в духовке используется электричество для нагрева пищи.
Кондиционеры
Кондиционерам требуется более высокое напряжение для быстрого и эффективного охлаждения помещения.
Настенные печи
Настенные печи, использующие электричество для приготовления пищи, очень популярны благодаря своей эффективности по сравнению с газом. Более высокое напряжение позволяет им нагреваться быстрее, а с помощью электричества они более эффективно распределяют тепло по сравнению с газом.
Варочные панели
Варочные панели с традиционными нагревательными элементами или индукционными элементами значительно выигрывают при более высоком напряжении. В некоторых случаях, как в случае с индукционной горелкой, время кипения сокращается по сравнению с газовыми горелками.
Домашняя зарядка — Часто задаваемые вопросы
Поведение при зарядке дома
Домашняя зарядная установка
Настенный соединитель
Общественная зарядка
Поведение при зарядке в домашних условиях
Как лучше всего заряжать Tesla дома?
Мы рекомендуем включать его каждый вечер, чтобы зарядить аккумулятор.
На какой процент заряжать аккумулятор?
Для регулярного использования мы рекомендуем держать ваш автомобиль в пределах диапазона «Daily», примерно до 90%.Зарядку до 100% лучше всего сэкономить, когда вы готовитесь к более длительной поездке. Вы можете настроить уровень заряда аккумулятора в меню настроек заряда.
Следует ли подождать, пока аккумулятор полностью разрядится, перед зарядкой?
Tesla использует литий-ионные аккумуляторы, поэтому нет эффекта памяти, а это означает, что нет необходимости разряжать аккумулятор перед зарядкой. Мы рекомендуем подключаться как можно чаще.
Сколько времени нужно, чтобы зарядить Tesla?
Скорость зарядки мобильных и настенных разъемов зависит от автомобиля и источника питания.
Домашняя зарядная установка
Сколько времени нужно, чтобы установить домашнее зарядное оборудование?
Установка домашнего зарядного оборудования может занять несколько часов. Более сложные работы могут занять до двух дней.
Сколько стоит установка домашнего зарядного устройства Tesla?
Стоимость установки зависит от электрической системы и типа установки. Tesla предоставляет список рекомендованных электриков в вашем районе, которые могут предоставить вам расценки.
Могу ли я использовать для зарядки обычную розетку на 110 вольт?
Да. Адаптер для розетки на 110 вольт (NEMA 5-15) входит в стандартную комплектацию всех новых автомобилей Tesla. Это обеспечивает примерно от двух до четырех миль запаса хода в час в зависимости от автомобиля. Для оптимальной домашней зарядки мы рекомендуем установить настенный разъем.
У меня в гараже есть розетка на 240 вольт. Могу я его использовать?
Существует много различных типов розеток на 240 вольт.Tesla поддерживает переходники для самых распространенных розеток.
Я живу в квартире или кондоминиуме. Могу ли я установить домашнюю зарядку Tesla?
Все чаще в квартирах и многоквартирных домах требуется разрешать зарядку электромобилей. Кроме того, вам или вашему управляющему недвижимостью могут быть доступны льготы на федеральном уровне, уровне штата, округа, муниципалитета и коммунального предприятия для снижения затрат. Посетите https://afdc.energy.gov/fuels/electricity.html для получения дополнительной информации.
Мы предлагаем следующие шаблоны, которые помогут начать эти разговоры с вашим менеджером здания или ТСЖ:
Примечание: Всегда проверяйте наличие разрешения перед установкой любого зарядного оборудования.
Где я могу узнать больше о льготах, относящихся к домашней зарядке?
Поощрения, связанные с домашней зарядкой, можно найти в Центре данных по альтернативным видам топлива Министерства энергетики США.
Специальные льготы для домашних зарядных устройств обычно назначаются на местном уровне, часто в виде тарифов на электроэнергию по времени использования или скидок от поставщиков коммунальных услуг.Свяжитесь со своим поставщиком электроэнергии, чтобы узнать, есть ли у них специальные тарифы на зарядку электромобилей.
Настенный соединитель
Нужно ли мне устанавливать настенный соединитель Tesla?
Настенный разъем — это наше рекомендуемое решение для домашней зарядки, так как оно обеспечивает максимальное удобство и максимальную скорость зарядки. Однако Tesla также можно заряжать с помощью мобильного разъема или на универсальных зарядных станциях с помощью прилагаемого адаптера J1772.
Как подключить настенный разъем к Wi-Fi?
Следуя инструкциям по подключению настенного разъема к локальному Wi-Fi, вы можете гарантировать, что настенный разъем всегда будет в актуальном состоянии, с помощью беспроводных обновлений прошивки и удаленной диагностики.
У меня две машины Тесла. Как лучше всего заряжать обе батареи одновременно?
Лучшим вариантом будет установка двух настенных соединителей, настроенных на разделение мощности.
Могу ли я контролировать, кто имеет доступ для зарядки моего настенного разъема?
Да.Контроль доступа к зарядке дает вам полный контроль над тем, какие автомобили могут заряжаться с помощью настенного разъема. Вы можете ограничить доступ напрямую через мастер ввода в эксплуатацию, не прибегая к физическому запирающему устройству.
Общественная зарядка
Почему Supercharging намного быстрее, чем зарядка дома?
Нагнетатели пропускают бортовое зарядное устройство автомобиля, обеспечивая до 120 кВт постоянного тока (DC) для аккумулятора.Для этого уровня мощности требуются специальные трансформаторы и подключения к электросети, которые недоступны в жилых помещениях.
Могу ли я просто использовать местное зарядное устройство для зарядки моей машины?
Да, но для вашего удобства лучше всего заряжать дома.
Что такое тарификация по месту назначения?
Мы работаем с гостиницами, курортами, ресторанами и другими заведениями сферы гостеприимства, чтобы установить настенные соединители для зарядки вдали от дома.
У меня есть собственность с общедоступной парковкой. Как я могу присоединиться к программе тарификации пункта назначения?
Вы можете подать заявку, чтобы стать партнером по зарядке Tesla.
Back to Home Обзор зарядки
ЭЛЕКТРИЧЕСКАЯ БЕЗОПАСНОСТЬ — прикладное промышленное электричество
Важность электробезопасности
С помощью этого урока я надеюсь избежать распространенной ошибки, обнаруживаемой в учебниках по электронике, состоящей в игнорировании или недостаточном освещении темы электробезопасности.Я предполагаю, что тот, кто читает эту книгу, хотя бы частично заинтересован в реальной работе с электричеством, и поэтому тема безопасности имеет первостепенное значение.
Еще одно преимущество включения подробного урока по электробезопасности — это практический контекст, который он устанавливает для основных понятий напряжения, тока, сопротивления и проектирования схем. Чем более актуальной будет техническая тема, тем больше вероятность того, что студент обратит внимание и поймет. А что может быть важнее приложения для личной безопасности? Кроме того, поскольку электроэнергия является повседневным явлением в современной жизни, почти любой может ознакомиться с иллюстрациями, приведенными на таком уроке.Вы когда-нибудь задумывались, почему птиц не шокируют, когда они отдыхают на линиях электропередач? Читайте и узнайте!
Физиологические эффекты электричества
Большинство из нас испытали ту или иную форму электрического «шока», когда электричество заставляет наше тело испытывать боль или травму. Если нам повезет, степень этого переживания будет ограничена покалыванием или приступами боли из-за накопления статического электричества, проходящего через наши тела. Когда мы работаем над электрическими цепями, способными передавать большую мощность нагрузкам, поражение электрическим током становится гораздо более серьезной проблемой, а боль — наименее значимым результатом поражения электрическим током.
Поскольку электрический ток проходит через материал, любое противодействие току (сопротивлению) приводит к рассеиванию энергии, обычно в виде тепла. Это самый простой и понятный эффект воздействия электричества на живую ткань: ток заставляет ее нагреваться. Если количество выделяемого тепла достаточно, ткань может обжечься. Эффект носит физиологический характер, такой же, как повреждение, вызванное открытым пламенем или другим высокотемпературным источником тепла, за исключением того, что электричество обладает способностью сжигать ткани под кожей жертвы, даже обжигая внутренние органы.
Как электрический ток влияет на нервную систему
Еще одно воздействие электрического тока на организм, возможно, наиболее опасное, касается нервной системы. Под «нервной системой» я имею в виду сеть особых клеток в организме, называемых нервными клетками или нейронами, которые обрабатывают и проводят множество сигналов, ответственных за регуляцию многих функций организма. Мозг, спинной мозг и сенсорные / двигательные органы в теле функционируют вместе, позволяя ему чувствовать, двигаться, реагировать, думать и запоминать.
Нервные клетки взаимодействуют друг с другом, действуя как «преобразователи», создавая электрические сигналы (очень малые напряжения и токи) в ответ на ввод определенных химических соединений, называемых нейротрансмиттерами , и высвобождая эти нейротрансмиттеры при стимуляции электрическими сигналами. Если электрический ток достаточной силы проходит через живое существо (человека или другое), его эффект будет заключаться в подавлении крошечных электрических импульсов, обычно генерируемых нейронами, что приводит к перегрузке нервной системы и предотвращению возможности передачи как рефлекторных, так и волевых сигналов. задействовать мышцы.Мышцы, вызванные внешним (шоковым) током, непроизвольно сокращаются, и жертва ничего не может с этим поделать.
Эта проблема особенно опасна, если пострадавший касается руками проводника под напряжением. Мышцы предплечья, отвечающие за сгибание пальцев, как правило, лучше развиты, чем мышцы, отвечающие за разгибание пальцев, и поэтому, если оба набора мышц будут пытаться сокращаться из-за электрического тока, проводимого через руку человека, «сгибающие» мышцы выиграют, сжимая пальцы в кулак.Если проводник, подающий ток к пострадавшему, обращен к ладони его или ее руки, это сжимающее действие заставит руку крепко ухватиться за провод, тем самым ухудшая ситуацию, обеспечивая отличный контакт с проводом. Пострадавший совершенно не сможет отпустить проволоку.
С медицинской точки зрения это состояние непроизвольного сокращения мышц называется столбняком . Электрики, знакомые с этим эффектом поражения электрическим током, часто называют обездвиженную жертву поражения электрическим током «зависшей в цепи».Вызванный током столбняк можно прервать, только отключив ток через пострадавшего.
Даже когда ток прекращается, жертва не может восстановить добровольный контроль над своими мышцами на некоторое время, поскольку химический состав нейромедиатора находится в беспорядке. Этот принцип был применен в устройствах «электрошокера», таких как электрошокеры, которые основаны на принципе мгновенного поражения жертвы высоковольтным импульсом, передаваемым между двумя электродами. Удачно нанесенный электрошокер временно (на несколько минут) обездвиживает жертву.
Однако электрический ток может воздействовать не только на скелетные мышцы жертвы электрошока. Мышца диафрагмы, контролирующая легкие, и сердце, которое само по себе является мышцей, также могут быть «заморожены» в состоянии столбняка под действием электрического тока. Даже токи, слишком слабые для того, чтобы вызвать столбняк, часто способны перебивать сигналы нервных клеток настолько, что сердце не может биться должным образом, что приводит к состоянию, известному как фибрилляция . Фибриллирующее сердце скорее трепещет, чем бьется, и не может перекачивать кровь к жизненно важным органам тела.В любом случае смерть от удушья и / или остановки сердца обязательно наступит в результате прохождения через тело достаточно сильного электрического тока. По иронии судьбы, медицинский персонал использует сильный разряд электрического тока, приложенный к груди жертвы, чтобы «подтолкнуть» фибриллирующее сердце к нормальному ритму биений.
Эта последняя деталь подводит нас к другой опасности поражения электрическим током, свойственной коммунальным энергосистемам. Хотя наше первоначальное исследование электрических цепей будет сосредоточено почти исключительно на постоянном токе (постоянный ток или электричество, которое движется в непрерывном направлении в цепи), современные энергетические системы используют переменный ток или переменный ток.Технические причины этого предпочтения переменного тока перед постоянным током в энергосистемах не имеют отношения к этому обсуждению, но особые опасности каждого вида электроэнергии очень важны для темы безопасности.
Воздействие переменного тока на организм во многом зависит от частоты. Низкочастотный (от 50 до 60 Гц) переменный ток используется в домашних хозяйствах США (60 Гц) и Европы (50 Гц); он может быть опаснее высокочастотного переменного тока и в 3-5 раз опаснее постоянного тока того же напряжения и силы тока. Низкочастотный переменный ток вызывает продолжительное сокращение мышц (тетанию), которое может прижать руку к источнику тока, продлевая воздействие.Постоянный ток, скорее всего, вызовет одиночное судорожное сокращение, которое часто уводит жертву от источника тока.
Переменный характер
AC имеет большую тенденцию приводить нейроны кардиостимулятора сердца в состояние фибрилляции, тогда как DC имеет тенденцию просто вызывать остановку сердца. Как только ток разряда прекращается, у «замороженного» сердца больше шансов восстановить нормальный ритм сердечных сокращений, чем у фибриллирующего сердца. Вот почему «дефибриллирующее» оборудование, используемое врачами скорой помощи, работает: разряд тока, подаваемого дефибриллятором, является постоянным, что останавливает фибрилляцию и дает сердцу шанс восстановиться.
В любом случае электрические токи, достаточно высокие, чтобы вызвать непроизвольное мышечное действие, опасны, и их следует избегать любой ценой. В следующем разделе мы рассмотрим, как такие токи обычно входят в тело и выходят из него, а также рассмотрим меры предосторожности против таких случаев.
- Электрический ток может вызвать глубокие и серьезные ожоги тела из-за рассеяния мощности через электрическое сопротивление тела.
- Столбняк — это состояние, при котором мышцы непроизвольно сокращаются из-за прохождения внешнего электрического тока через тело.Когда непроизвольное сокращение мышц, управляющих пальцами, приводит к тому, что жертва не может отпустить проводник, находящийся под напряжением, жертва считается «замороженной в цепи».
- Диафрагма (легкие) и сердечные мышцы одинаково подвержены воздействию электрического тока. Даже токи, слишком слабые, чтобы вызвать столбняк, могут быть достаточно сильными, чтобы мешать работе нейронов кардиостимулятора, заставляя сердце трепетать, а не сильно биться.
- Постоянный ток (DC) с большей вероятностью вызовет столбняк в мышцах, чем переменный ток (AC), поэтому постоянный ток с большей вероятностью «заморозит» жертву в случае шока.Однако переменный ток с большей вероятностью вызовет фибрилляцию сердца жертвы, что является более опасным состоянием для жертвы после прекращения действия электрического тока.
Электричество требует непрерывного протекания полного пути (цепи). Вот почему удар, полученный от статического электричества, является только мгновенным толчком: течение тока обязательно кратковременно, когда статические заряды уравниваются между двумя объектами. Подобные самоограниченные шоки редко бывают опасными.
Без двух точек контакта на теле для входа и выхода тока, соответственно, опасность поражения электрическим током отсутствует. Вот почему птицы могут спокойно отдыхать на высоковольтных линиях электропередачи, не подвергаясь электрошоку: они контактируют с цепью только в одной точке.
Рисунок 1.1
Для того, чтобы ток протекал по проводнику, должно присутствовать напряжение, которое его мотивирует. Напряжение, как вы должны помнить, всегда составляет относительно двух точек . Нет такой вещи, как напряжение «на» или «в» одной точке цепи, и поэтому птица, контактирующая с одной точкой в вышеуказанной цепи, не имеет напряжения, приложенного к ее телу, чтобы установить ток через нее.Да, несмотря на то, что они опираются на две опоры , обе ступни касаются одного и того же провода, что делает их электрически общими . С точки зрения электричества, обе птичьи лапы соприкасаются с одной и той же точкой, поэтому между ними нет напряжения, которое могло бы стимулировать ток через тело птицы.
Это может привести к мысли, что невозможно получить поражение электрическим током, прикоснувшись только к одному проводу. Как птицы, если мы будем касаться только одного провода за раз, мы будем в безопасности, верно? К сожалению, это не так.В отличие от птиц, при контакте с «живым» проводом люди обычно стоят на земле. Часто одна сторона энергосистемы будет намеренно подключена к заземлению, и поэтому человек, касающийся одного провода, фактически устанавливает контакт между двумя точками в цепи (провод и заземление):
Рисунок 1.2
Значок земли представляет собой набор из трех горизонтальных полос уменьшающейся ширины, расположенных в нижнем левом углу показанной схемы, а также у ступни человека, подвергающегося электрошоку.В реальной жизни заземление энергосистемы представляет собой какой-то металлический проводник, закопанный глубоко в землю для максимального контакта с землей. Этот проводник электрически подключен к соответствующей точке соединения в цепи толстым проводом. Заземление жертвы осуществляется через ноги, которые касаются земли.
В этот момент в уме ученика обычно возникает несколько вопросов:
- Если наличие точки заземления в цепи обеспечивает легкую точку контакта для кого-то, чтобы получить электрошок, зачем вообще она в цепи? Разве схема без заземления не была бы безопаснее?
- Человек, которого шокирует, вероятно, не ходит босиком.Если резина и ткань являются изоляционными материалами, то почему их обувь не защищает их, предотвращая образование цепи?
- Насколько хорошим проводником может быть грязь ? Если вы можете получить ток, протекающий через землю, почему бы не использовать землю в качестве проводника в наших силовых цепях?
В ответ на первый вопрос, наличие преднамеренной точки «заземления» в электрической цепи предназначено для обеспечения того, чтобы одна сторона была безопасной для контакта.Обратите внимание, что если бы наша жертва на приведенной выше диаграмме коснулась нижней стороны резистора, ничего бы не произошло, даже если бы их ноги все еще касались земли:
Рисунок 1.3
Поскольку нижняя сторона схемы надежно соединена с землей через точку заземления в нижнем левом углу схемы, нижний проводник схемы выполнен с соединением и с заземлением. Поскольку между электрически общими точками не может быть напряжения, на человека, контактирующего с нижним проводом, не будет напряжения, и он не получит удара током.По той же причине провод, соединяющий цепь с заземляющим стержнем / пластинами, обычно остается оголенным (без изоляции), так что любой металлический объект, о котором он задевает, будет электрически общим с землей.
Заземление цепи гарантирует, что по крайней мере одна точка в цепи будет безопасна для прикосновения. Но как насчет того, чтобы оставить цепь полностью незаземленной? Разве это не сделало бы человека, прикасавшегося только к одному проводу, так же безопасно, как птицу, сидящую на одном проводе? В идеале да. Практически нет.Посмотрите, что происходит без земли:
Рисунок 1.4
Несмотря на то, что ноги человека все еще соприкасаются с землей, любая точка в цепи должна быть безопасной для прикосновения. Поскольку не существует полного пути (цепи), проходящего через тело человека от нижней стороны источника напряжения к верхней, нет возможности установить ток через человека. Однако все это может измениться из-за случайного заземления, например, если ветка дерева касается линии электропередачи и обеспечивает соединение с землей.Такое случайное соединение проводника энергосистемы с землей (землей) называется замыканием на землю .
Рисунок 1.5
Замыкания на землю
Замыкания на землю могут быть вызваны многими причинами, в том числе скоплением грязи на изоляторах линий электропередач (создание пути грязной воды для тока от проводника к полюсу и к земле, когда идет дождь), проникновением грунтовых вод в подземные проводники линии электропередачи. , и птицы, приземляющиеся на линии электропередачи, перемыкая линию к полюсу своими крыльями.Учитывая множество причин замыканий на землю, они, как правило, непредсказуемы. В случае с деревьями никто не может гарантировать , с каким проводом могут касаться их ветви. Если бы дерево задело верхний провод в цепи, это сделало бы верхний провод безопасным для прикосновения, а нижний опасным — как раз противоположность предыдущему сценарию, когда дерево касается нижнего провода:
Рисунок 1.6
Когда ветвь дерева соприкасается с верхним проводом, этот провод становится заземленным проводом в цепи, электрически общим с заземлением.Следовательно, между этим проводом и землей нет напряжения, а есть полное (высокое) напряжение между нижним проводом и землей. Как упоминалось ранее, ветви деревьев являются лишь одним потенциальным источником замыканий на землю в энергосистеме. Рассмотрим незаземленную энергосистему без соприкосновения деревьев с деревьями, но на этот раз с двумя людьми, касающимися отдельных проводов:
Рис. 1.7
Когда каждый человек стоит на земле и контактирует с разными точками цепи, путь для электрического тока проходит через одного человека, через землю и через другого человека.Несмотря на то, что каждый человек думает, что он в безопасности, только коснувшись одной точки в цепи, их совместные действия создают смертельный сценарий. Фактически, один человек действует как замыкание на землю, что делает его небезопасным для другого человека. Именно поэтому незаземленные энергосистемы опасны: напряжение между любой точкой цепи и землей (землей) непредсказуемо, потому что замыкание на землю может возникнуть в любой точке цепи в любое время. Единственный персонаж, который гарантированно будет в безопасности в этих сценариях, — это птица, которая вообще не связана с землей! Надежно подключив обозначенную точку цепи к заземлению («заземлив» цепь), по крайней мере, безопасность может быть обеспечена в этой точке.Это большая гарантия безопасности, чем полное отсутствие заземления.
Отвечая на второй вопрос, обувь с резиновой подошвой действительно обеспечивает некоторую электрическую изоляцию, чтобы помочь защитить кого-то от проведения электрического тока через ступни. Однако наиболее распространенные конструкции обуви не являются электрически «безопасными», поскольку их подошва слишком тонкая и не из подходящего материала. Кроме того, любая влага, грязь или токопроводящие соли из пота тела на поверхности подошвы или проникающие через нее могут поставить под угрозу ту небольшую изоляционную ценность, которая должна была изначально иметь обувь.Есть обувь, специально предназначенная для опасных электромонтажных работ, а также толстые резиновые коврики, на которых можно стоять во время работы с цепями под напряжением, но эти специальные детали оборудования должны быть в абсолютно чистом и сухом состоянии, чтобы быть эффективными. Достаточно сказать, что обычной обуви недостаточно, чтобы гарантировать защиту от поражения электрическим током от электросети.
Исследования контактного сопротивления между частями человеческого тела и точками контакта (например, с землей) показывают широкий диапазон цифр (информацию об источнике этих данных см. В конце главы):
- Контакт для рук или ног, с резиновой изоляцией: обычно 20 МОм.
- Контакт ступни через кожаную подошву обуви (сухой): от 100 кОм до 500 кОм
- Контакт ступни через кожаную подошву обуви (мокрый): от 5 кОм до 20 кОм
Как видите, резина не только является гораздо лучшим изоляционным материалом, чем кожа, но и присутствие воды в пористом веществе, таком как кожа , значительно снижает электрическое сопротивление.
Отвечая на третий вопрос, грязь — не очень хороший проводник (по крайней мере, когда она сухая!). У него слишком плохой проводник, чтобы поддерживать постоянный ток для питания нагрузки.Однако, как мы увидим в следующем разделе, требуется очень мало тока, чтобы ранить или убить человека, поэтому даже плохой проводимости грязи достаточно, чтобы обеспечить путь для смертельного тока при наличии достаточного напряжения, как обычно находится в энергосистемах.
Некоторые шлифованные поверхности лучше изолируют, чем другие. Например, асфальт на масляной основе имеет гораздо большее сопротивление, чем большинство видов грязи или камней. Бетон, с другой стороны, имеет довольно низкое сопротивление из-за внутреннего содержания воды и электролита (проводящего химического вещества).
- Поражение электрическим током может произойти только при контакте между двумя точками цепи; когда на тело жертвы подается напряжение.
- обычно имеют обозначенную точку, которая «заземлена»: прочно соединена с металлическими стержнями или пластинами, закопанными в грязь, чтобы гарантировать, что одна сторона цепи всегда находится под потенциалом земли (нулевое напряжение между этой точкой и землей).
- Замыкание на землю — это случайное соединение проводника цепи с землей (землей).
- Специальная изолированная обувь и коврики предназначены для защиты людей от ударов через заземление, но даже эти части снаряжения должны быть в чистом, сухом состоянии, чтобы быть эффективными. Обычная обувь недостаточна для защиты от ударов, изолируя ее владельца от земли.
- Хотя грязь — плохой проводник, она может проводить ток, достаточный для того, чтобы ранить или убить человека.
Цепи питания
Распространенная фраза в отношении электробезопасности звучит примерно так: « Убивает не напряжение, а ток ! «Хотя в этом есть доля правды, об опасности поражения электрическим током нужно понимать больше, чем эта простая пословица.Если бы напряжение не представляло опасности, никто бы никогда не распечатал и не вывесил надписи: ОПАСНО — ВЫСОКОЕ НАПРЯЖЕНИЕ!
Принцип «убивает текущее» по сути верен. Это электрический ток, который сжигает ткани, замораживает мышцы и вызывает фибрилляцию сердца. Однако электрический ток не возникает сам по себе: должно быть доступное напряжение, чтобы побудить ток протекать через жертву. Тело человека также оказывает сопротивление току, что необходимо учитывать.
Принимая закон Ома для напряжения, тока и сопротивления и выражая его через ток для заданных напряжения и сопротивления, мы получаем следующее уравнение:
[латекс] \ textbf {закон Ома} [/ латекс]
[латекс] Ток = \ frac {Напряжение} {Сопротивление} [/ латекс] [латекс] I = \ frac {E} {R} [/ латекс]
Величина тока, протекающего через тело, равна величине напряжения, приложенного между двумя точками этого тела, деленному на электрическое сопротивление, оказываемое телом между этими двумя точками.Очевидно, что чем больше напряжения доступно для протекания тока, тем легче он будет проходить через любое заданное сопротивление. Следовательно, существует опасность высокого напряжения, которое может генерировать ток, достаточный для получения травмы или смерти. И наоборот, если тело имеет более высокое сопротивление, меньший ток будет протекать при любом заданном напряжении. Насколько опасно напряжение, зависит от общего сопротивления цепи, препятствующего прохождению электрического тока.
Сопротивление тела не является фиксированной величиной.Это варьируется от человека к человеку и время от времени. Существует даже метод измерения содержания жира в организме, основанный на измерении электрического сопротивления между пальцами рук и ног. Разный процент жира в организме обеспечивает разное сопротивление: одна переменная, влияющая на электрическое сопротивление в организме человека. Чтобы методика работала точно, человек должен регулировать потребление жидкости за несколько часов до теста, что указывает на то, что гидратация тела является еще одним фактором, влияющим на электрическое сопротивление тела.
Сопротивление тела также варьируется в зависимости от того, как происходит контакт с кожей: от руки к руке, от руки к ноге, от ступни к ступне, от руки к локтю и т. Д. Пот, богатый солью и минералами. , являясь жидкостью, является отличным проводником электричества. То же самое и с кровью с таким же высоким содержанием проводящих химикатов. Таким образом, контакт с проводом потной рукой или открытой раной будет оказывать гораздо меньшее сопротивление току, чем контакт с чистой сухой кожей.
Измеряя электрическое сопротивление чувствительным измерителем, я измеряю примерно 1 миллион Ом (1 МОм) на руках, держась за металлические щупы измерителя между пальцами.Измеритель показывает меньшее сопротивление, когда я плотно сжимал щупы, и большее сопротивление, когда я держу их свободно. Я сижу за компьютером и печатаю эти слова, мои руки чистые и сухие. Если бы я работал в жаркой, грязной промышленной среде, сопротивление между моими руками, вероятно, было бы намного меньше, представляя меньшее сопротивление смертоносному току и большую опасность поражения электрическим током.
Насколько опасен электрический ток?
Ответ на этот вопрос также зависит от нескольких факторов.Химический состав тела человека оказывает значительное влияние на то, как электрический ток влияет на человека. Некоторые люди очень чувствительны к току, испытывая непроизвольное сокращение мышц из-за разряда статического электричества. Другие могут получить большие искры от разряда статического электричества и почти не почувствовать его, не говоря уже о мышечном спазме. Несмотря на эти различия, с помощью тестов были разработаны приблизительные руководящие принципы, которые показывают, что для проявления вредных эффектов требуется очень небольшой ток (опять же, информацию об источнике этих данных см. В конце главы).Все текущие значения даны в миллиамперах (миллиампер равен 1/1000 ампер):
ТЕЛО ВЛИЯНИЕ | МУЖЧИНЫ / ЖЕНЩИНЫ | ПРЯМОЙ ТОК (ПОСТОЯННЫЙ ТОК) | 60 Гц | 100 кГц |
Легкое ощущение под рукой | Мужчины | 1,0 мА | 0,4 мА | 7 мА |
Женщины | 0,6 мА | 0,3 мА | 5 мА | |
Порог боли | Мужчины | 5.2 мА | 1,1 мА | 12 мА |
Женщины | 3,5 мА | 0,7 мА | 8 мА | |
Болезненный, но произвольный контроль мышц сохраняется | Мужчины | 62 мА | 9 мА | 55 мА |
Женщины | 41 мА | 6 мА | 37 мА | |
Болезненно, провода не отпускаются | Мужчины | 76 мА | 16 мА | 75 мА |
Женщины | 60 мА | 15 мА | 63 мА | |
Сильная боль, затрудненное дыхание | Мужчины | 90 мА | 23 мА | 94 мА |
Женщины | 60 мА | 15 мА | 63 мА | |
Возможна фибрилляция сердца через 3 секунды | Мужчины и женщины | 500 мА | 100 мА |
«Гц» означает единицу измерения Гц .Это мера того, насколько быстро изменяется переменный ток, иначе известный как частота . Таким образом, столбец цифр, обозначенный «60 Гц переменного тока», относится к току, который изменяется с частотой 60 циклов (1 цикл = период времени, когда ток течет в одном направлении, а затем в другом) в секунду. Последний столбец, обозначенный «10 кГц переменного тока», относится к переменному току, который совершает десять тысяч (10 000) возвратно-поступательных циклов каждую секунду.
Имейте в виду, что эти цифры являются приблизительными, поскольку люди с разным химическим составом тела могут реагировать по-разному.Было высказано предположение, что поперечный ток через грудную клетку всего 17 мА переменного тока достаточно, чтобы вызвать фибрилляцию у человека при определенных условиях. Большинство наших данных относительно индуцированной фибрилляции получены в результате испытаний на животных. Очевидно, что проводить тесты индуцированной фибрилляции желудочков на людях непрактично, поэтому имеющиеся данные отрывочны. О, и если вам интересно, я понятия не имею, почему женщины более восприимчивы к электрическому току, чем мужчины! Предположим, я положил руки на клеммы источника переменного напряжения с частотой 60 Гц (60 циклов в секунду).Какое напряжение потребуется на этой чистой сухой коже, чтобы получить ток в 20 миллиампер (достаточно, чтобы я не мог отпустить источник напряжения)? Чтобы определить это, мы можем использовать закон Ома:
[латекс] E = IR [/ латекс]
[латекс] E = (20 мА) (1 M \ Omega) [/ латекс]
[латекс] \ textbf {E = 20 000 вольт или 20 кВ} [/ латекс]
Имейте в виду, что это «лучший случай» (чистая, сухая кожа) с точки зрения электробезопасности, и что это значение напряжения представляет собой величину, необходимую для индукции столбняка.Чтобы вызвать болезненный шок, потребуется гораздо меньше! Кроме того, имейте в виду, что физиологические эффекты любой конкретной силы тока могут значительно отличаться от человека к человеку, и что эти расчеты являются приблизительными оценками , всего лишь .
Обрызгав пальцы водой для имитации пота, я смог измерить сопротивление рук в руках всего 17 000 Ом (17 кОм). Имейте в виду, что это касается только одного пальца каждой руки, касающегося тонкой металлической проволоки. Пересчитав напряжение, необходимое для возникновения тока в 20 мА, мы получим эту цифру:
[латекс] E = IR [/ латекс]
[латекс] E = (20 мА) (17 кОмега) [/ латекс]
[латекс] \ textbf {E = 340 V} [/ латекс]
В этих реальных условиях потребуется всего 340 вольт потенциала от одной моей руки к другой, чтобы вызвать ток 20 миллиампер.Тем не менее, все же возможно получить смертельный удар от меньшего напряжения, чем это. При условии значительно более низкого сопротивления тела, увеличенного за счет контакта с кольцом (полоса золота, обернутая по окружности пальца, обеспечивает отличную точку контакта для поражения электрическим током) или полный контакт с большим металлическим предметом, таким как труба или металл рукоятки инструмента, сопротивление корпуса может упасть до 1000 Ом (1 кОм), в результате чего даже более низкое напряжение может представлять потенциальную опасность.
[латекс] E = IR [/ латекс]
[латекс] E = (20 мА) (1 кОмега) [/ латекс]
[латекс] \ textbf {E = 20 V} [/ латекс]
Обратите внимание, что в этом состоянии 20 вольт достаточно, чтобы произвести ток в 20 миллиампер через человека; достаточно, чтобы вызвать столбняк. Помните, было высказано предположение, что сила тока всего 17 миллиампер может вызвать фибрилляцию желудочков (сердца). При сопротивлении рукопашной в 1000 Ом для создания этого опасного состояния потребуется всего 17 вольт.
[латекс] E = IR [/ латекс]
[латекс] E = (17 мА) (1 кВт) [/ латекс]
[латекс] \ textbf {E = 17 В} [/ латекс]
Семнадцать вольт — это не очень много для электрических систем. Конечно, это «наихудший» сценарий с напряжением переменного тока 60 Гц и отличной проводимостью тела, но он действительно показывает, насколько низкое напряжение может представлять серьезную угрозу при определенных условиях.
Условия, необходимые для создания сопротивления тела 1000 Ом, не должны быть такими экстремальными, как то, что было представлено (потная кожа при контакте с золотым кольцом).Сопротивление тела может уменьшаться при приложении напряжения (особенно если столбняк заставляет пострадавшего крепче держать проводник), так что при постоянном напряжении удар может усилиться после первого контакта. То, что начинается как легкий шок — ровно настолько, чтобы «заморозить» жертву, чтобы она не могла отпустить ее, может перерасти в нечто достаточно серьезное, чтобы убить ее, поскольку сопротивление их тела уменьшается, а сила тока соответственно увеличивается.
Исследования предоставили приблизительный набор цифр для электрического сопротивления точек контакта человека в различных условиях:
Ситуация | Сухой | мокрый |
Проволока касалась пальцем | 40 000 Ом — 1 000 000 Ом | 4000 Ом — 15000 Ом |
Проволока в руке | 15000 Ом — 50 000 Ом | 3000 Ом — 5000 Ом |
Ручные плоскогубцы по металлу | 5000 Ом — 10 000 Ом | 1000 Ом — 3000 Ом |
Контакт ладонью | 3000 Ом — 8000 Ом | 1000 Ом — 2000 Ом |
1.5-дюймовая металлическая труба с захватом одной рукой | 1000 Ом — 3000 Ом | 500 Ом — 1500 Ом |
1,5-дюймовая металлическая труба с захватом двумя руками | 500 Ом — 1500 кОм | 250 Ом — 750 Ом |
Рука погружена в проводящую жидкость | 200 Ом — 500 Ом | |
Опора, погруженная в проводящую жидкость | 100 Ом — 300 Ом |
Обратите внимание на значения сопротивления для двух состояний с 1.5-дюймовая металлическая труба. Сопротивление, измеренное при захвате трубы двумя руками, составляет ровно половину сопротивления, когда одна рука держит трубу.
Рисунок 1.8
Двумя руками площадь контакта с телом вдвое больше, чем с одной рукой. Это важный урок: электрическое сопротивление между любыми контактирующими объектами уменьшается с увеличением площади контакта при прочих равных условиях. Если держать трубу двумя руками, ток будет иметь два параллельных путей, по которым протекает от трубы к телу (или наоборот).
Рис. 1.9.
Как мы увидим в более поздней главе, параллельных цепей всегда приводят к меньшему общему сопротивлению, чем любой отдельный путь, рассматриваемый отдельно.
В промышленности 30 вольт обычно считается консервативным пороговым значением для опасного напряжения. Осторожный человек должен рассматривать любое напряжение выше 30 вольт как опасное, не полагаясь на нормальное сопротивление тела для защиты от поражения электрическим током. Тем не менее, при работе с электричеством все же отличной идеей является держать руки чистыми и сухими и снимать все металлические украшения.Даже при более низком напряжении металлические украшения могут представлять опасность, поскольку проводят ток, достаточный для ожога кожи, при контакте между двумя точками в цепи. Металлические кольца, в частности, были причиной более чем нескольких ожогов пальцев из-за замыкания между точками в низковольтной и сильноточной цепи.
Кроме того, напряжение ниже 30 может быть опасным, если его достаточно, чтобы вызвать неприятное ощущение, которое может вызвать вздрагивание и случайное соприкосновение с более высоким напряжением или другую опасность.Я вспоминаю, как однажды жарким летним днем работал над автомобилем. На мне были шорты, моя голая нога касалась хромового бампера автомобиля, когда я затягивал контакты аккумулятора. Когда я прикоснулся металлическим ключом к положительной (незаземленной) стороне 12-вольтовой батареи, я почувствовал покалывание в том месте, где моя нога касалась бампера. Сочетание плотного контакта с металлом и моей вспотевшей кожи позволило почувствовать шок всего лишь с 12 вольт электрическим потенциалом.
К счастью, ничего плохого не произошло, но если бы двигатель работал и удар ощущался в моей руке, а не ноге, я мог бы рефлекторно толкнуть руку на пути вращающегося вентилятора или уронить металлический ключ на клеммы аккумулятора (производя большой () ток через гаечный ключ с большим количеством искр).Это иллюстрирует еще один важный урок, касающийся электробезопасности; этот электрический ток сам по себе может быть косвенной причиной травмы, заставляя вас подпрыгивать или спазмировать части вашего тела в опасную для вас сторону.
Ток, проходящий через человеческое тело, имеет значение, насколько он опасен. Ток будет влиять на все мышцы, встречающиеся на его пути, а поскольку мышцы сердца и легких (диафрагмы), вероятно, наиболее важны для выживания, токи, проходящие через грудную клетку, являются наиболее опасными.Это делает путь электрического тока из рук в руки очень вероятным способом получения травм и смертельного исхода.
Во избежание подобных ситуаций рекомендуется работать с цепями под напряжением, находящимися под напряжением, только одной рукой, а вторую руку держать в кармане, чтобы случайно ни к чему не прикоснуться. Конечно, всегда безопаснее работать в цепи, когда она отключена, но это не всегда практично или возможно. При работе одной рукой обычно предпочитают правую руку левой по двум причинам: большинство людей правши (что обеспечивает дополнительную координацию при работе), а сердце обычно находится слева от центра в грудной полости.
Для левшей этот совет может быть не лучшим. Если такой человек недостаточно скоординирован с правой рукой, он может подвергнуть себя большей опасности, используя руку, с которой ему меньше всего комфортно, даже если электрический ток, протекающий через эту руку, может представлять большую опасность для его сердца. Относительная опасность между сотрясением одной рукой или другой, вероятно, меньше, чем опасность работы с менее чем оптимальной координацией, поэтому выбор руки для работы лучше всего оставить на усмотрение человека.
Лучшая защита от ударов цепи под напряжением — это сопротивление, а сопротивление может быть добавлено к телу с помощью изолированных инструментов, перчаток, обуви и другого снаряжения. Ток в цепи является функцией доступного напряжения, деленного на общее сопротивление на пути потока. Как мы рассмотрим более подробно позже в этой книге, сопротивления имеют аддитивный эффект, когда они сложены друг с другом, так что есть только один путь для прохождения тока:
Рисунок 1.10
Человек, находящийся в прямом контакте с источником напряжения: ток ограничен только сопротивлением тела.
[латекс] I = \ frac {E} {R_ {boot}} [/ латекс]
Теперь мы рассмотрим эквивалентную схему для человека в изолированных перчатках и ботинках:
Рисунок 1.11
Лицо в изоляционных перчатках и сапогах;
Ток теперь ограничен сопротивлением цепи:
[латекс] I = \ frac {E} {R_ {glove} + R_ {body} + R_ {boot} +} [/ latex]
Поскольку электрический ток должен проходить через ботинок и тело и перчатку, чтобы замкнуть цепь обратно к батарее, общая сумма ( сумма ) этих сопротивлений противодействует протеканию тока в большей степени, чем любое другое. сопротивлений рассматривается индивидуально.
Безопасность — одна из причин, по которой электрические провода обычно покрывают пластиковой или резиновой изоляцией: чтобы значительно увеличить сопротивление между проводником и тем или иным предметом, который может с ним контактировать. К сожалению, было бы непомерно дорого изолировать проводники линии электропередач из-за недостаточной изоляции для обеспечения безопасности в случае случайного контакта. Таким образом, безопасность обеспечивается за счет того, что эти стропы должны быть достаточно далеко вне досягаемости, чтобы никто не мог случайно их коснуться.
Если возможно, отключите питание цепи перед выполнением каких-либо работ с ней.Вы должны обезопасить все источники вредной энергии, прежде чем систему можно будет считать безопасной для работы. В промышленности обеспечение безопасности цепи, устройства или системы в этом состоянии обычно называют переводом их в состояние с нулевой энергией . В центре внимания этого урока, конечно же, электробезопасность. Однако многие из этих принципов применимы и к неэлектрическим системам.
- Вред для тела зависит от силы электрического тока. Более высокое напряжение позволяет производить более высокие и опасные токи.Сопротивление противостоит току, поэтому высокое сопротивление является хорошей защитой от ударов.
- Обычно считается, что любое напряжение выше 30 может создавать опасные ударные токи. Металлические украшения определенно плохо носить при работе с электрическими цепями. Кольца, ремешки для часов, ожерелья, браслеты и другие подобные украшения обеспечивают отличный электрический контакт с вашим телом и сами могут проводить ток, достаточный для возникновения ожогов кожи даже при низком напряжении.
- Низкое напряжение может быть опасным, даже если оно слишком низкое, чтобы напрямую вызвать поражение электрическим током.Их может быть достаточно, чтобы напугать жертву, заставив ее отпрянуть и коснуться чего-то более опасного в непосредственной близости.
- Когда необходимо работать в «живой» цепи, лучше всего выполнять работу одной рукой, чтобы предотвратить смертельный путь электрического тока из рук в руки (через грудную клетку).
- По возможности отключите питание цепи перед выполнением каких-либо работ с ней.
При работе с оборудованием отключите все источники питания перед выполнением любых работ.В промышленности удаление этих источников питания из схемы, устройства или системы обычно известно как перевод их в состояние нулевой энергии . В центре внимания этого урока, конечно же, электробезопасность. Однако многие из этих принципов применимы и к неэлектрическим системам.
Обеспечение безопасности чего-либо в состоянии нулевой энергии означает избавление от любого вида потенциальной или накопленной энергии, включая, помимо прочего:
- Опасное напряжение
- Давление пружины
- Гидравлическое давление (жидкость)
- Пневматическое (воздушное) давление
- Подвес
- Химическая энергия (легковоспламеняющиеся или иным образом реагирующие вещества)
- Ядерная энергия (радиоактивные или делящиеся вещества)
Напряжение по своей природе является проявлением потенциальной энергии.В первой главе я даже использовал приподнятую жидкость в качестве аналогии с потенциальной энергией напряжения, имеющей способность (потенциал) производить ток (поток), но не обязательно осознавая этот потенциал, пока не будет установлен подходящий путь для потока. и сопротивление потоку преодолевается. Пара проводов с высоким напряжением между ними не выглядит и не кажется опасной, даже если они несут между собой достаточно потенциальной энергии, чтобы протолкнуть смертоносное количество тока через ваше тело. Несмотря на то, что это напряжение в настоящее время ничего не делает, у него есть потенциал, и этот потенциал необходимо нейтрализовать, прежде чем можно будет физически контактировать с этими проводами.
Все правильно спроектированные схемы имеют механизмы отключения для снятия напряжения в цепи. Иногда эти «разъединения» служат двойной цели: автоматически размыкаются в условиях чрезмерного тока, и в этом случае мы называем их «автоматическими выключателями». В других случаях выключатели-разъединители представляют собой устройства с ручным управлением без автоматической функции. В любом случае они существуют для вашей защиты и должны использоваться должным образом. Обратите внимание, что устройство отключения должно быть отдельно от обычного выключателя, используемого для включения и выключения устройства.Это предохранительный выключатель, который должен использоваться только для защиты системы в состоянии нулевого потребления энергии:
Рисунок 1.12
Когда выключатель находится в «разомкнутом» положении, как показано (нет непрерывности), цепь разомкнута, и ток не будет. На нагрузке будет нулевое напряжение, а полное напряжение источника будет падать на разомкнутые контакты выключателя. Обратите внимание, что в нижнем проводе цепи нет необходимости в размыкающем выключателе. Поскольку эта сторона цепи надежно соединена с землей (землей), она электрически является общей с землей, и ее лучше оставить таким образом.Для максимальной безопасности персонала, работающего с нагрузкой в этой цепи, можно установить временное заземление на верхней стороне нагрузки, чтобы исключить падение напряжения на нагрузке:
Рисунок 1.13
При наличии временного заземляющего соединения обе стороны проводки нагрузки соединяются с землей, обеспечивая нулевое состояние энергии на нагрузке.
Поскольку заземление, выполненное с обеих сторон нагрузки, электрически эквивалентно короткому замыканию через нагрузку с помощью провода, это еще один способ достижения той же цели максимальной безопасности:
Рисунок 1.14
В любом случае обе стороны нагрузки будут электрически общими с землей, с учетом отсутствия напряжения (потенциальной энергии) между обеими сторонами нагрузки и землей, на которой стоят люди. Этот метод временного заземления проводов в обесточенной энергосистеме очень распространен при работах по техническому обслуживанию, выполняемых в системах распределения электроэнергии высокого напряжения.
Еще одним преимуществом этой меры предосторожности является защита от возможности включения размыкающего переключателя (включения, чтобы обеспечить непрерывность цепи), когда люди все еще контактируют с нагрузкой.Временный провод, подключенный к нагрузке, создавал бы короткое замыкание, когда выключатель был замкнут, немедленно отключая любые устройства защиты от перегрузки по току (автоматические выключатели или предохранители) в цепи, что снова отключало бы питание. Если это произойдет, разъединитель вполне может получить повреждение, но рабочие на нагрузке находятся в безопасности.
Здесь было бы хорошо упомянуть, что устройства максимального тока не предназначены для защиты от поражения электрическим током.Скорее, они существуют исключительно для защиты проводников от перегрева из-за чрезмерных токов. Только что описанные временные закорачивающие провода действительно могут вызвать «срабатывание» любых устройств перегрузки по току в цепи, если выключатель должен быть замкнут, но следует понимать, что защита от поражения электрическим током не является предполагаемой функцией этих устройств. Их основная функция будет просто использоваться для защиты рабочего с установленным перемычкой.
Структурированные системы безопасности: блокировка / маркировка
Поскольку очевидно, что важно иметь возможность закрепить любые отключающие устройства в разомкнутом (выключенном) положении и убедиться, что они остаются в этом положении во время работы в цепи, существует потребность в структурированной системе безопасности, которая должна быть введена в место.Такая система обычно используется в промышленности и называется Lock-out / Tag-out .
Процедура блокировки / маркировки работает следующим образом: все люди, работающие в защищенной цепи, имеют свой собственный замок или кодовый замок, который они устанавливают на рычаге управления устройства отключения перед работой с системой. Кроме того, они должны заполнить и подписать ярлык, который они вешают на свой замок, с описанием характера и продолжительности работы, которую они собираются выполнять в системе.Если есть несколько источников энергии, которые необходимо «заблокировать» (множественные разъединения, как электрические, так и механические источники энергии, которые должны быть защищены, и т. Д.), Рабочий должен использовать столько своих замков, сколько необходимо для защиты питания от системы. до начала работы. Таким образом, система поддерживается в состоянии нулевого энергопотребления до тех пор, пока не будет снята каждая последняя блокировка со всех устройств отключения и отключения, а это означает, что каждый последний работник дает согласие, снимая свои личные блокировки. Если будет принято решение повторно активировать систему, а замок (и) одного человека все еще остается на месте после того, как все присутствующие снимают свои, метка (и) покажет, кто этот человек и что они делают.
Даже при наличии хорошей программы обеспечения безопасности по блокировке / маркировке все еще необходимы осмотрительность и разумные меры предосторожности. Это особенно актуально в промышленных условиях, когда над устройством или системой может одновременно работать множество людей. Некоторые из этих людей могут не знать о надлежащей процедуре блокировки / маркировки или могут знать об этом, но слишком самоуверенны, чтобы следовать ей. Не думайте, что все соблюдают правила безопасности!
После того, как электрическая система была заблокирована и помечена вашим личным замком, вы должны дважды проверить, действительно ли напряжение было зафиксировано в нулевом состоянии.Один из способов проверить — увидеть, запустится ли машина (или что-то еще, над чем она работает), если будет задействован переключатель или кнопка start . Если он запускается, значит, вы знаете, что не смогли обеспечить от него электрическую энергию.
Кроме того, вы должны всегда проверять наличие опасного напряжения с помощью измерительного устройства, прежде чем касаться каких-либо проводников в цепи. Для большей безопасности вы должны выполнить следующую процедуру проверки, использования, а затем проверки вашего глюкометра:
- Убедитесь, что ваш измеритель правильно показывает на известном источнике напряжения.
- Используйте свой измеритель, чтобы проверить цепь блокировки на наличие опасного напряжения.
- Еще раз проверьте свой измеритель на известном источнике напряжения, чтобы убедиться, что он по-прежнему показывает, как должен.
Хотя это может показаться чрезмерным или даже параноидальным, это проверенный метод предотвращения поражения электрическим током. Однажды у меня был счетчик, который не смог показать напряжение, когда он должен был, при проверке цепи, чтобы убедиться, что она «мертвая». Если бы я не использовал другие средства для проверки наличия напряжения, меня бы сегодня не было в живых, чтобы написать это.Всегда есть шанс, что ваш вольтметр окажется неисправным именно тогда, когда он понадобится вам для проверки на наличие опасного состояния. Следуя этим инструкциям, вы никогда не попадете в смертельную ситуацию из-за поломки счетчика.
Наконец, электротехник прибудет к тому моменту в процедуре проверки безопасности, когда будет считаться безопасным фактическое прикосновение к проводнику (проводам). Имейте в виду, что после принятия всех мер предосторожности возможно (хотя и очень маловероятно) наличие опасного напряжения.Последней мерой предосторожности, которую следует предпринять на этом этапе, является кратковременный контакт проводника (проводов) тыльной стороной руки перед тем, как схватить его или металлический инструмент, соприкасающийся с ним. Почему? Если по какой-то причине между этим проводником и заземлением все еще присутствует напряжение, движение пальца из-за реакции удара (сжатие в кулак) приведет к разрыву контакта с проводником. Обратите внимание, что это абсолютно последний шаг , последний шаг , который должен выполнить любой электромонтер перед началом работы с энергосистемой, и никогда не следует использовать в качестве альтернативного метода проверки опасного напряжения.Если у вас когда-либо будут основания сомневаться в надежности вашего глюкометра, воспользуйтесь другим глюкометром, чтобы получить «второе мнение».
- Состояние нулевой энергии: Когда цепь, устройство или система защищены так, что не существует потенциальной энергии, которая могла бы нанести вред кому-либо, работающему с ними.
- Отключающие выключатели должны присутствовать в правильно спроектированной электрической системе, чтобы обеспечить удобную готовность к состоянию нулевого потребления энергии.
- К обслуживаемой нагрузке могут быть подключены временные заземляющие или закорачивающие провода для дополнительной защиты персонала, работающего с этой нагрузкой.
- Lock-out / Tag-out работает следующим образом: при работе с системой в состоянии нулевого энергопотребления рабочий помещает личный замок или кодовый замок на каждое устройство отключения энергии, имеющее отношение к его или ее задаче в этой системе. Кроме того, на каждый из этих замков навешивается тег, описывающий характер и продолжительность работы, которую необходимо выполнить, и того, кто ее выполняет.
- Всегда проверяйте, что цепь была зафиксирована в состоянии нулевого потребления энергии с помощью испытательного оборудования после «блокировки». Обязательно проверьте свой глюкометр до и после проверки цепи, чтобы убедиться, что она работает правильно.
- Когда придет время действительно вступить в контакт с проводником (-ами) предположительно мертвой энергосистемы, сделайте это сначала тыльной стороной руки, чтобы в случае удара током мышечная реакция оттолкнула пальцы от проводника. .
Безопасное и эффективное использование электросчетчика — это, пожалуй, самый ценный навык, которым может овладеть электронщик, как ради собственной безопасности, так и для профессионального мастерства. Поначалу может быть сложно использовать счетчик, зная, что вы подключаете его к цепям под напряжением, которые могут содержать опасные для жизни уровни напряжения и тока.Это опасение небезосновательно, и всегда лучше действовать осторожно, используя счетчики. Небрежность больше, чем какой-либо другой фактор, является причиной несчастных случаев с электричеством у опытных технических специалистов.
Мультиметры
Самым распространенным электрическим испытательным оборудованием является мультиметр . Мультиметры названы так потому, что они могут измерять множество переменных: напряжение, ток, сопротивление и часто многие другие, некоторые из которых не могут быть объяснены здесь из-за их сложности.В руках обученного техника мультиметр является одновременно эффективным рабочим инструментом и защитным устройством. Однако в руках невежественного и / или неосторожного человека мультиметр может стать источником опасности при подключении к «действующей» цепи.
Существует много разных марок мультиметров, причем каждый производитель выпускает несколько моделей с разными наборами функций. Мультиметр, показанный здесь на следующих иллюстрациях, представляет собой «общую» конструкцию, не специфичную для какого-либо производителя, но достаточно общую, чтобы научить основным принципам использования:
Рисунок 1.15
Вы заметите, что дисплей этого измерителя имеет «цифровой» тип: числовые значения отображаются с использованием четырех цифр аналогично цифровым часам. Поворотный селекторный переключатель (теперь установлен в положение Off ) имеет пять различных положений измерения, в которых он может быть установлен: два значения «V», два значения «A» и одно положение посередине с забавной «подковой». Символ на нем, представляющий «сопротивление». Символ «подкова» — это греческая буква «Омега» (Ω), которая является общим символом для электрической единицы измерения ом.
Из двух настроек «V» и двух настроек «A» вы заметите, что каждая пара разделена на уникальные маркеры либо парой горизонтальных линий (одна сплошная, одна пунктирная), либо пунктирной линией с волнистой кривой над ней. . Параллельные линии представляют «постоянный ток», а волнистая кривая — «переменный ток». «V», конечно, означает «напряжение», а «A» означает «сила тока» (ток). В измерителе для измерения постоянного тока используются другие методы, чем для измерения переменного тока, поэтому пользователю необходимо выбрать тип напряжения (В) или тока (А) для измерения.Хотя мы не обсуждали переменный ток (AC) в каких-либо технических деталях, это различие в настройках счетчика важно помнить.
Мультиметр Розетки
На лицевой панели мультиметра есть три разных гнезда, к которым мы можем подключить наши измерительные провода . Измерительные провода — это не что иное, как специально подготовленные провода, используемые для подключения измерителя к тестируемой цепи. Провода покрыты гибкой изоляцией с цветовой кодировкой (черной или красной), чтобы руки пользователя не касались оголенных проводов, а кончики зондов представляют собой острые жесткие кусочки проволоки:
Рисунок 1.16
Черный измерительный провод всегда подключается к черному разъему на мультиметре: с пометкой «COM» для «общего». Красные измерительные провода подключаются либо к красному разъему с маркировкой напряжения и сопротивления, либо к красному разъему с маркировкой тока, в зависимости от того, какое количество вы собираетесь измерить с помощью мультиметра.
Чтобы увидеть, как это работает, давайте посмотрим на пару примеров, показывающих, как используется измеритель. Сначала мы настроим измеритель для измерения постоянного напряжения от батареи:
Рисунок 1.17
Обратите внимание, что два измерительных провода подключены к соответствующим гнездам на измерителе для измерения напряжения, а селекторный переключатель установлен на постоянный ток «V». Теперь рассмотрим пример использования мультиметра для измерения напряжения переменного тока от бытовой электрической розетки (настенной розетки):
Рисунок 1.18
Единственное отличие в настройке счетчика — это расположение селекторного переключателя: теперь он установлен на переменный ток «V». Поскольку мы все еще измеряем напряжение, измерительные провода останутся подключенными к тем же гнездам.В обоих этих примерах настоятельно рекомендуется, , чтобы вы не позволяли наконечникам пробников соприкасаться друг с другом, пока они оба находятся в контакте со своими соответствующими точками в цепи. Если это произойдет, произойдет короткое замыкание, создающее искру и, возможно, даже шар пламени, если источник напряжения способен обеспечить достаточный ток! Следующее изображение иллюстрирует потенциальную опасность:
Рис. 1.19.
Это лишь один из способов, которым счетчик может стать источником опасности при неправильном использовании.
Измерение напряжения, пожалуй, самая распространенная функция, для которой используется мультиметр. Это, безусловно, первичное измерение, выполняемое в целях безопасности (часть процедуры блокировки / маркировки), и оно должно быть хорошо понято оператором счетчика. Поскольку напряжение между двумя точками всегда является относительным, измеритель должен быть надежно подключен к двум точкам в цепи, прежде чем он будет обеспечивать надежное измерение. Обычно это означает, что оба щупа должны быть схвачены руками пользователя и прижаты к правильным точкам контакта источника напряжения или цепи во время измерения.
Поскольку путь электрического тока из рук в руки является наиболее опасным, удерживание измерительных щупов в двух точках высоковольтной цепи таким образом всегда представляет собой потенциальную опасность . Если защитная изоляция на датчиках изношена или потрескалась, пальцы пользователя могут соприкоснуться с проводниками датчика во время испытания, что приведет к сильному удару. Это более безопасный вариант, если можно использовать только одну руку для захвата зондов. Иногда можно «защелкнуть» один наконечник щупа на контрольной точке цепи, чтобы его можно было отпустить, а другой установить на место, используя только одну руку.Для облегчения этого можно прикрепить специальные аксессуары для наконечников зонда, такие как пружинные зажимы.
Помните, что измерительные провода измерителя являются частью всего комплекта оборудования и что с ними следует обращаться так же осторожно и уважительно, как и с самим измерителем. Если вам нужен специальный аксессуар для ваших измерительных проводов, такой как пружинный зажим или другой специальный наконечник зонда, обратитесь к каталогу продукции производителя измерителя или другого производителя испытательного оборудования. Не пытайтесь проявить творческий подход и изготавливать свои собственные испытательные пробники, поскольку вы можете подвергнуть себя опасности в следующий раз, когда будете использовать их в цепи под напряжением.
Также необходимо помнить, что цифровые мультиметры обычно хорошо справляются с различением измерений переменного и постоянного тока, поскольку они настраиваются на одно или другое при проверке напряжения или тока. Как мы видели ранее, напряжение и ток как переменного, так и постоянного тока могут быть смертельными, поэтому при использовании мультиметра в качестве устройства проверки безопасности вы всегда должны проверять наличие как переменного, так и постоянного тока, даже если вы не ожидаете найти и то, и другое. ! Кроме того, при проверке наличия опасного напряжения вы должны обязательно проверить всех пар точек, о которых идет речь.
Например, предположим, что вы открыли шкаф с электропроводкой и обнаружили три больших проводника, подающих питание переменного тока на нагрузку. Автоматический выключатель, питающий эти провода (предположительно), был отключен, заблокирован и помечен. Вы перепроверили отсутствие питания, нажав кнопку Start для нагрузки. Ничего не произошло, поэтому теперь вы переходите к третьему этапу проверки безопасности: проверке измерителя напряжения.
Сначала вы проверяете свой измеритель на известном источнике напряжения, чтобы убедиться, что он работает правильно.Любая ближайшая электрическая розетка должна обеспечивать удобный источник переменного напряжения для проверки. Вы делаете это и обнаруживаете, что счетчик показывает как следует. Затем вам нужно проверить наличие напряжения между этими тремя проводами в шкафу. Но напряжение измеряется между двумя точками, так где же проверить?
Рисунок 1.20
Ответ — проверить все комбинации этих трех точек. Как видите, на рисунке точки обозначены буквами «A», «B» и «C», поэтому вам нужно будет взять мультиметр (установленный в режиме вольтметра) и проверить его между точками A и B, B и C, а также A и C.Если вы обнаружите напряжение между любой из этих пар, цепь не находится в состоянии нулевой энергии. Но ждать! Помните, что мультиметр не будет регистрировать напряжение постоянного тока, когда он находится в режиме переменного напряжения, и наоборот, поэтому вам необходимо проверить эти три пары точек в для каждого режима , в общей сложности шесть проверок напряжения для завершения!
Однако, даже несмотря на всю эту проверку, мы еще не охватили все возможности. Помните, что опасное напряжение может появиться между одиночным проводом и землей (в этом случае металлический каркас шкафа будет хорошей точкой отсчета заземления) в энергосистеме.Итак, чтобы быть в полной безопасности, мы не только должны проверять между A и B, B и C, и A и C (как в режимах переменного, так и постоянного тока), но мы также должны проверять между A и землей, B и землей, и C и заземление (как в режимах переменного, так и постоянного тока)! Это дает в общей сложности двенадцать проверок напряжения для этого, казалось бы, простого сценария с использованием всего трех проводов. Затем, конечно же, после того, как мы завершили все эти проверки, нам нужно взять мультиметр и повторно проверить его на известном источнике напряжения, таком как розетка, чтобы убедиться, что он по-прежнему в хорошем рабочем состоянии.
Использование мультиметра для проверки сопротивления
Использование мультиметра для проверки сопротивления — гораздо более простая задача. Измерительные провода будут оставаться подключенными к тем же розеткам, что и для проверки напряжения, но селекторный переключатель необходимо повернуть, пока он не укажет на символ сопротивления «подкова». Касаясь щупами устройства, сопротивление которого необходимо измерить, прибор должен правильно отображать сопротивление в омах:
Рисунок 1.21
При измерении сопротивления следует помнить, что это нужно делать только на обесточенных компонентах ! Когда измеритель находится в режиме «сопротивления», он использует небольшую внутреннюю батарею для генерации крошечного тока через измеряемый компонент. Путем определения того, насколько сложно пропустить этот ток через компонент, можно определить и отобразить сопротивление этого компонента. Если в контуре измерителя-вывод-компонент-вывод-измеритель имеется дополнительный источник напряжения, который либо помогает, либо противодействует току измерения сопротивления, производимому измерителем, это приведет к ошибочным показаниям.В худшем случае счетчик может даже выйти из строя из-за внешнего напряжения.
Режим «Сопротивление» мультиметра
Режим «сопротивления» мультиметра очень полезен для определения целостности проводов, а также для точных измерений сопротивления. Когда между наконечниками пробников имеется хорошее, прочное соединение (моделируется путем их соприкосновения), измеритель показывает почти нулевое сопротивление. Если бы измерительные провода не имели сопротивления, он показывал бы ровно ноль:
.
Рисунок 1.22
Если выводы не контактируют друг с другом или не касаются противоположных концов разорванного провода, измеритель покажет бесконечное сопротивление (обычно путем отображения пунктирных линий или сокращения «O.L.», что означает «разомкнутый контур»):
Рисунок 1.23
Измерение тока с помощью мультиметра
Безусловно, наиболее опасным и сложным применением мультиметра является измерение тока. Причина этого довольно проста: для того, чтобы измеритель мог измерять ток, измеряемый ток должен проходить с по счетчика.Это означает, что измеритель должен быть частью цепи тока, а не просто подключаться к какой-либо стороне, как в случае измерения напряжения. Чтобы сделать измеритель частью пути тока цепи, исходная цепь должна быть «разорвана», а измеритель должен быть подключен к двум точкам разомкнутого разрыва. Чтобы настроить измеритель на это, переключатель должен указывать на переменный или постоянный ток «A», а красный измерительный провод должен быть вставлен в красную розетку с меткой «A». На следующем рисунке показан измеритель, полностью готовый к измерению тока, и проверяемая цепь:
Рисунок 1.24
Сейчас цепь разомкнута при подготовке к подключению счетчика:
Рисунок 1.25
Следующий шаг — вставить измеритель в линию со схемой, подключив два наконечника щупа к разомкнутым концам цепи, черный щуп к отрицательной (-) клемме 9-вольтовой батареи и красный щуп к свободному концу провода, ведущему к лампе:
Рисунок 1.26
Этот пример показывает очень безопасную схему для работы. 9 вольт вряд ли представляют опасность поражения электрическим током, поэтому не стоит бояться разомкнуть эту цепь (не менее, голыми руками!) И подключить счетчик параллельно с током.Однако для цепей более высокой мощности это действительно может быть опасным занятием. Даже если напряжение в цепи было низким, нормальный ток мог быть достаточно высоким, чтобы возникла опасная искра в момент установления последнего подключения датчика измерителя.
Другая потенциальная опасность использования мультиметра в режиме измерения тока («амперметр») заключается в том, что он не может правильно вернуть его в конфигурацию измерения напряжения перед измерением напряжения с его помощью. Причины этого зависят от конструкции и работы амперметра.При измерении тока в цепи путем размещения измерителя непосредственно на пути тока, лучше всего, чтобы измеритель оказывал небольшое сопротивление току или не оказывал никакого сопротивления. В противном случае дополнительное сопротивление изменит работу схемы. Таким образом, мультиметр спроектирован так, чтобы сопротивление между наконечниками измерительного щупа было практически нулевым, когда красный щуп был вставлен в красное гнездо «А» (для измерения тока). В режиме измерения напряжения (красный провод вставлен в красное гнездо «V») между наконечниками измерительных щупов имеется большое количество мегаомов сопротивления, поскольку вольтметры рассчитаны на сопротивление, близкое к бесконечному (так что они не имеют сопротивления ). t потребляет значительный ток из проверяемой цепи).
При переключении мультиметра из режима измерения тока в режим измерения напряжения легко повернуть селекторный переключатель из положения «A» в положение «V» и забыть, соответственно, переключить положение разъема красного измерительного провода с «A» на положение «V». «V». В результате — если счетчик затем подключить к источнику значительного напряжения — произойдет короткое замыкание счетчика!
Рисунок 1.27
Чтобы предотвратить это, большинство мультиметров имеют функцию предупреждения, которая издает звуковой сигнал, если когда-либо в гнездо «A» вставлен провод, а селекторный переключатель установлен в положение «V».Однако какими бы удобными ни были эти функции, они по-прежнему не заменяют ясного мышления и осторожности при использовании мультиметра.
Все качественные мультиметры содержат внутри предохранители, которые спроектированы так, чтобы «перегорать» в случае чрезмерного тока через них, как в случае, показанном на последнем изображении. Как и все устройства максимальной токовой защиты, эти предохранители в первую очередь предназначены для защиты оборудования (в данном случае, самого счетчика) от чрезмерного повреждения и только во вторую очередь для защиты пользователя от повреждений.Мультиметр можно использовать для проверки собственного предохранителя, установив селекторный переключатель в положение сопротивления и создав соединение между двумя красными гнездами следующим образом:
Рисунок 1.28.
. Исправный предохранитель будет указывать на очень маленькое сопротивление, в то время как перегоревший предохранитель всегда показывает «O.L.» (или любое другое указание, которое используется в этой модели мультиметра для обозначения отсутствия непрерывности). Фактическое количество Ом, отображаемое для исправного предохранителя, не имеет большого значения, пока оно является произвольно низким.
Итак, теперь, когда мы увидели, как использовать мультиметр для измерения напряжения, сопротивления и тока, что еще нужно знать? Множество! Ценность и возможности этого универсального испытательного прибора станут более очевидными по мере того, как вы приобретете навыки и познакомитесь с ним.Ничто не заменит регулярных занятий со сложными инструментами, такими как эти, поэтому не стесняйтесь экспериментировать с безопасными схемами с батарейным питанием.
- Измеритель, способный проверять напряжение, ток и сопротивление, называется мультиметром .
- Поскольку напряжение между двумя точками всегда относительное, измеритель напряжения («вольтметр») должен быть подключен к двум точкам в цепи, чтобы получить хорошие показания. Будьте осторожны, не касайтесь оголенных наконечников щупов вместе при измерении напряжения, так как это приведет к короткому замыканию!
- Не забывайте всегда проверять напряжение переменного и постоянного тока при использовании мультиметра для проверки наличия опасного напряжения в цепи.Убедитесь, что вы проверяете напряжение между всеми комбинациями пар проводников, в том числе между отдельными проводниками и землей!
- В режиме измерения напряжения («вольтметр») мультиметры имеют очень высокое сопротивление между выводами.
- Никогда не пытайтесь измерить сопротивление или обрыв цепи с помощью мультиметра в цепи, которая находится под напряжением. В лучшем случае показания сопротивления, которые вы получаете от измерителя, будут неточными, а в худшем случае измеритель может быть поврежден, а вы можете получить травму.
- Измерители тока («амперметры») всегда включены в цепь, поэтому электроны должны проходить через через счетчик .
- В режиме измерения тока («амперметр») мультиметры практически не имеют сопротивления между выводами. Это сделано для того, чтобы электроны могли проходить через счетчик с наименьшими трудностями. Если бы это было не так, измеритель добавлял бы дополнительное сопротивление в цепи, тем самым влияя на ток.
Как мы видели ранее, энергосистема без надежного заземления непредсказуема с точки зрения безопасности.Невозможно гарантировать, сколько или как мало напряжения будет существовать между любой точкой цепи и землей. Заземлив одну сторону источника напряжения энергосистемы, по крайней мере, одна точка в цепи может быть электрически соединена с землей и, следовательно, не представляет опасности поражения электрическим током. В простой двухпроводной системе электропитания проводник, соединенный с землей, называется нейтраль , а другой провод — горячий , также известный как под напряжением или активный :
Рисунок 1.29 Двухпроводная система электропитания
Что касается источника напряжения и нагрузки, заземление не имеет никакого значения. Он существует исключительно ради личной безопасности, гарантируя, что по крайней мере одна точка в цепи будет безопасна для прикосновения (нулевое напряжение относительно земли). «Горячая» сторона схемы, названная так из-за ее потенциальной опасности поражения электрическим током, будет опасна прикасаться, если напряжение не будет обеспечено путем надлежащего отключения от источника (в идеале, с использованием процедуры систематической блокировки / маркировки).
Этот дисбаланс опасностей между двумя проводниками в простой силовой цепи важно понимать. Следующая серия иллюстраций основана на распространенных бытовых системах электропроводки (для простоты с использованием источников постоянного напряжения, а не переменного тока).
Если мы посмотрим на простой бытовой электроприбор, такой как тостер с проводящим металлическим корпусом, мы увидим, что при правильной работе не должно быть опасности поражения электрическим током. Провода, передающие питание на нагревательные элементы тостера, изолированы от соприкосновения с металлическим корпусом (и друг с другом) резиной или пластиком.
Рисунок 1.30 Отсутствие напряжения между корпусом и землей
Однако, если один из проводов внутри тостера случайно войдет в контакт с металлическим корпусом, корпус станет электрически общим для провода, и прикосновение к корпусу будет столь же опасным, как прикосновение к оголенному проводу. Представляет ли это опасность поражения электрическим током, зависит от номера , к которому случайно задевает провод :
Рисунок 1.31 случайное контактное напряжение между корпусом и землей
Если «горячий» провод касается корпуса, это подвергает опасности пользователя тостера.С другой стороны, если нейтральный провод касается корпуса, опасность поражения электрическим током отсутствует:
Рисунок 1.32 Случайное отсутствие напряжения между корпусом и землей
Чтобы гарантировать, что первый отказ менее вероятен, чем второй, инженеры стараются проектировать устройства таким образом, чтобы свести к минимуму контакт горячего проводника с корпусом. В идеале, конечно, вы не хотите, чтобы какой-либо из проводов случайно соприкасался с проводящим корпусом устройства, но обычно есть способы спроектировать расположение частей, чтобы сделать случайный контакт менее вероятным для одного провода, чем для другого.
Однако эта профилактическая мера эффективна только в том случае, если может быть гарантирована полярность вилки питания. Если вилку можно перевернуть, то проводник с большей вероятностью соприкоснется с корпусом вполне может быть «горячим»:
Рисунок 1.33 Напряжение между корпусом и землей
Устройства, разработанные таким образом, обычно поставляются с «поляризованными» вилками, причем один контакт вилки немного уже, чем другой. Розетки питания также имеют такую же конструкцию, причем один слот уже другой.Следовательно, вилку нельзя вставить «задом наперед», и можно гарантировать идентичность проводника внутри устройства. Помните, что это никак не влияет на основные функции устройства: это делается исключительно ради безопасности пользователя.
Некоторые инженеры решают проблему безопасности, просто делая внешний корпус прибора непроводящим. Такие устройства называются с двойной изоляцией, , поскольку изолирующий кожух служит вторым слоем изоляции над и за пределами самих проводов.Если провод внутри устройства случайно войдет в контакт с корпусом, это не представляет опасности для пользователя устройства.
Другие инженеры решают проблему безопасности, поддерживая проводящий корпус, но используя третий провод для надежного соединения этого корпуса с землей:
Рис. 1.34. Нулевое напряжение корпуса заземления между корпусом и землей
Третий контакт на шнуре питания обеспечивает прямое электрическое соединение корпуса устройства с землей, делая две точки электрически общими друг с другом.Если они электрически общие, то между ними не может быть падения напряжения. По крайней мере, так оно и должно работать. Если горячий провод случайно коснется металлического корпуса прибора, он вызовет прямое короткое замыкание обратно на источник напряжения через заземляющий провод, сработав любые устройства защиты от перегрузки по току. Пользователь устройства останется в безопасности.
Вот почему так важно никогда не отрезать третий контакт вилки питания, когда пытаетесь вставить его в розетку с двумя контактами.Если это будет сделано, не будет заземления корпуса прибора для обеспечения безопасности пользователя (ей). Прибор по-прежнему будет функционировать должным образом, но в случае внутренней неисправности, приводящей к контакту горячей проволоки с корпусом, результаты могут быть смертельными. Если необходимо использовать двухконтактную розетку , можно установить двухконтактный переходник с заземляющим проводом, прикрепленным к винту заземляющей крышки. Это обеспечит безопасность заземленного прибора, подключенного к розетке этого типа.
Однако электрически безопасное проектирование не обязательно заканчивается нагрузкой. Последнюю защиту от поражения электрическим током можно установить на стороне источника питания цепи, а не на самом приборе. Эта мера защиты называется , обнаружение замыкания на землю , и работает она следующим образом:
В правильно функционирующем приборе (показанном выше) ток, измеренный через провод под напряжением, должен быть точно равен току через нейтральный проводник, потому что существует только один путь для прохождения электронов в цепи.Если внутри прибора нет неисправности, нет соединения между проводниками цепи и человеком, касающимся корпуса, и, следовательно, нет удара.
Если, однако, горячая проволока случайно коснется металлического корпуса, через человека, касающегося корпуса, пройдет ток. Наличие электрического тока будет проявляться как разница тока между двумя силовыми проводниками в розетке:
Рисунок 1.35 Разница в токе между двумя силовыми проводниками в розетке
Эта разница в токе между «горячим» и «нейтральным» проводниками будет существовать только в том случае, если есть ток через заземление, что означает, что в системе есть неисправность.Следовательно, такая разница тока может использоваться как способ обнаружения неисправного состояния. Если устройство настроено для измерения этой разницы в токах между двумя силовыми проводниками, обнаружение дисбаланса токов можно использовать для запуска размыкания выключателя, тем самым отключая питание и предотвращая серьезный удар:
Рисунок 1.36 Прерыватели тока замыкания на землю
Такие устройства называются прерывателями тока замыкания на землю , или сокращенно GFCI. За пределами Северной Америки GFCI также известен как предохранительный выключатель, устройство защитного отключения (RCD), RCBO или RCD / MCB в сочетании с миниатюрным автоматическим выключателем или выключателем утечки на землю (ELCB).Они достаточно компактны, чтобы их можно было встроить в розетку. Эти розетки легко идентифицировать по их характерным кнопкам «Тест» и «Сброс». Большим преимуществом использования этого подхода для обеспечения безопасности является то, что он работает независимо от конструкции устройства. Конечно, использование прибора с двойной изоляцией или заземлением в дополнение к розетке GFCI было бы еще лучше, но приятно знать, что что-то может быть сделано для повышения безопасности помимо конструкции и состояния прибора.
Прерыватель цепи дугового замыкания (AFCI) , автоматический выключатель, предназначенный для предотвращения пожаров, предназначен для размыкания при прерывистых резистивных коротких замыканиях. Например, обычный выключатель на 15 А спроектирован так, чтобы быстро размыкать цепь, если нагрузка намного превышает номинальную 15 А, то есть медленнее, немного превышая номинальную. Хотя это защищает от прямого короткого замыкания и нескольких секунд перегрузки, соответственно, он не защищает от дуги — аналогично дуговой сварке. Дуга — это сильно изменяющаяся нагрузка, периодически достигающая максимума более 70 А, разомкнутая цепь с переходами через ноль переменного тока.Хотя среднего тока недостаточно для срабатывания стандартного выключателя, его достаточно, чтобы разжечь пожар. Эта дуга может быть создана из-за металлического короткого замыкания, которое сжигает металл, оставляя резистивную распыляющую плазму ионизированных газов.
AFCI содержит электронную схему для определения этого прерывистого резистивного короткого замыкания. Он защищает как от дуги от горячего к нейтральному, так и от горячего к заземлению. AFCI не защищает от опасности поражения электрическим током, как GFCI. Таким образом, GFCI по-прежнему необходимо устанавливать на кухне, в ванной и на открытом воздухе.Поскольку AFCI часто срабатывает при запуске больших двигателей и, в более общем смысле, щеточных двигателей, его установка ограничена электрическими цепями в спальнях согласно Национальному электротехническому кодексу США. Использование AFCI должно уменьшить количество электрических пожаров. Однако неприятные срабатывания при работе приборов с двигателями в цепях AFCI представляют собой проблему.
- В энергосистемах одна сторона источника напряжения часто подсоединяется к заземлению для обеспечения безопасности в этой точке.
- «Заземленный» провод в энергосистеме называется нейтральным проводом , а незаземленный провод — горячим проводом .
- Заземление в энергосистемах существует ради личной безопасности, а не для работы нагрузки (ей).
- Электробезопасность прибора или других нагрузок может быть улучшена за счет хорошей инженерии: поляризованные вилки, двойная изоляция и трехконтактные вилки с «заземлением» — все это способы повышения безопасности на стороне нагрузки.
- Прерыватели тока замыкания на землю (GFCI) работают, считывая разницу в токе между двумя проводниками, подающими питание на нагрузку.Никакой разницы в токе быть не должно. Любая разница означает, что ток должен входить в нагрузку или выходить из нее каким-либо образом, кроме двух основных проводов, что нехорошо. Значительная разница в токе автоматически откроет механизм размыкающего переключателя, полностью отключив питание.
Обычно допустимая токовая нагрузка проводника — это предел конструкции схемы, который нельзя намеренно превышать, но есть приложение, в котором ожидается превышение допустимой токовой нагрузки: в случае предохранителей .
Что такое предохранитель?
A предохранитель представляет собой устройство электробезопасности, построенное вокруг токопроводящей полосы, которая предназначена для плавления и разделения в случае чрезмерного тока. Предохранители всегда подключаются последовательно с компонентом (ами), который должен быть защищен от перегрузки по току, так что, когда плавкий предохранитель перегорает (размыкается), он размыкает всю цепь и останавливает ток через компонент (ы). Плавкий предохранитель, включенный в одну ветвь параллельной цепи, конечно, не повлияет на ток, протекающий через любую из других ветвей.
Обычно тонкий кусок плавкой проволоки помещается в защитную оболочку, чтобы свести к минимуму опасность возникновения дугового разряда в случае прорыва проволоки с большой силой, что может произойти в случае сильных перегрузок по току. В случае небольших автомобильных предохранителей оболочка прозрачна, так что плавкий элемент может быть визуально осмотрен. В жилых помещениях обычно используются ввинчиваемые предохранители со стеклянным корпусом и тонкой узкой полосой из металлической фольги посередине. Фотография, на которой показаны оба типа предохранителей, представлена здесь:
Рисунок 1.37 Типы предохранителей
Предохранители картриджного типа популярны в автомобилях и в промышленности, если они изготовлены из материалов оболочки, отличных от стекла. Поскольку предохранители рассчитаны на «отказ» срабатывания при превышении их номинального тока, они обычно предназначены для легкой замены в цепи. Это означает, что они будут вставлены в какой-либо тип держателя, а не припаиваться или прикрепляться болтами к проводникам цепи. Ниже приведена фотография, на которой изображена пара предохранителей со стеклянным картриджем в держателе с несколькими предохранителями:
Рисунок 1.38 Стеклянный патрон с предохранителями Держатель нескольких предохранителей
Предохранители удерживаются пружинными металлическими зажимами, причем сами зажимы постоянно соединены с проводниками цепи. Основной материал держателя предохранителя (или блока предохранителей , как их иногда называют) выбран как хороший изолятор.
Другой тип держателя предохранителей патронного типа обычно используется для установки в панелях управления оборудованием, где желательно скрыть все точки электрического контакта от контакта с человеком.В отличие от только что показанного блока предохранителей, где все металлические зажимы открыты, этот тип держателя предохранителя полностью закрывает предохранитель в изоляционном корпусе:
Рисунок 1.39 Патрон предохранителя закрывает изолирующий кожух
Наиболее распространенным устройством защиты от перегрузки по току в сильноточных цепях сегодня является автоматический выключатель .
Что такое автоматический выключатель?
Автоматические выключатели — это специально разработанные переключатели, которые автоматически размыкаются для отключения тока в случае перегрузки по току.Малые автоматические выключатели, например, используемые в жилых, коммерческих и легких промышленных предприятиях, имеют термическое управление. Они содержат биметаллическую полосу (тонкую полосу из двух металлов, соединенных спиной к спине), по которой проходит ток цепи, которая изгибается при нагревании. Когда биметаллическая полоса создает достаточную силу (из-за чрезмерного нагрева полосы), срабатывает механизм отключения, и прерыватель размыкается. Автоматические выключатели большего размера автоматически активируются силой магнитного поля, создаваемого токонесущими проводниками внутри выключателя, или могут срабатывать для отключения от внешних устройств, контролирующих ток цепи (эти устройства называются защитными реле , ).
Поскольку автоматические выключатели не выходят из строя в условиях перегрузки по току — скорее, они просто размыкаются и могут быть повторно включены путем перемещения рычага — они с большей вероятностью будут обнаружены подключенными к цепи более прочным образом, чем предохранители. Фотография маленького автоматического выключателя представлена здесь:
Рисунок 1.40. Малый автоматический выключатель
Снаружи он выглядит не более чем выключателем. В самом деле, его можно было использовать как таковое. Однако его истинная функция — работать как устройство защиты от перегрузки по току.
Следует отметить, что в некоторых автомобилях используются недорогие устройства, известные как плавкие вставки , для защиты от перегрузки по току в цепи зарядки аккумулятора из-за стоимости предохранителя и держателя соответствующего номинала. Плавкая вставка — это примитивный предохранитель, представляющий собой не что иное, как короткий кусок провода с резиновой изоляцией, предназначенный для плавления в случае перегрузки по току, без какой-либо твердой оболочки. Такие грубые и потенциально опасные устройства никогда не используются в промышленности или даже в жилых помещениях, в основном из-за встречающихся более высоких уровней напряжения и тока.По мнению автора, их применение даже в автомобильных схемах вызывает сомнения.
Обозначение на электрической схеме для предохранителя представляет собой S-образную кривую:
Рисунок 1.41 S-образная кривая
Номинальные характеристики предохранителя
Предохранители
, как и следовало ожидать, в основном рассчитаны на ток: ампер. Хотя их работа зависит от самовыделения тепла в условиях чрезмерного тока за счет собственного электрического сопротивления предохранителя, они спроектированы так, чтобы вносить незначительное дополнительное сопротивление в цепи, которые они защищают.В основном это достигается за счет того, что плавкий провод делается как можно короче. Точно так же, как допустимая нагрузка на обычный провод не связана с его длиной (сплошной медный провод 10 калибра выдерживает ток 40 ампер на открытом воздухе, независимо от длины или короткого отрезка), плавкий провод из определенного материала и калибра будет дуть при определенном токе независимо от того, как долго он длится. Поскольку длина не является фактором в текущем рейтинге, чем короче она может быть сделана, тем меньшее сопротивление будет между концом и концом.
Однако разработчик предохранителя также должен учитывать, что происходит после сгорания предохранителя: оплавленные концы сплошного провода будут разделены воздушным зазором с полным напряжением питания между концами.Если предохранитель недостаточно длинный в цепи высокого напряжения, искра может перескочить с одного из концов расплавленного провода на другой, снова замкнув цепь:
Рисунок 1.42 Принципиальная схема конструктора предохранителей Рисунок 1.43 Принципиальная схема конструктора предохранителей
Следовательно, предохранители рассчитываются с учетом их допустимого напряжения, а также уровня тока, при котором они сработают.
Некоторые большие промышленные предохранители имеют сменные проволочные элементы для снижения затрат. Корпус предохранителя представляет собой непрозрачный картридж многоразового использования, который защищает провод предохранителя от воздействия и защищает окружающие предметы от провода предохранителя.
Номинальный ток предохранителя — это нечто большее, чем просто цифра. Если через предохранитель на 30 ампер пропускается ток в 35 ампер, он может внезапно перегореть или с задержкой перед перегоранием, в зависимости от других аспектов его конструкции. Некоторые предохранители предназначены для очень быстрого срабатывания, в то время как другие рассчитаны на более скромное время «срабатывания» или даже на замедленное срабатывание в зависимости от области применения. Последние предохранители иногда называют плавкими предохранителями с задержкой срабатывания из-за их преднамеренной выдержки времени.
Классическим примером применения плавкого предохранителя с задержкой срабатывания является защита электродвигателя, где пусковые токи , в десять раз превышающие нормальный рабочий ток, обычно возникают каждый раз, когда двигатель запускается с полной остановки. Если бы в таком приложении использовались быстродействующие предохранители, двигатель никогда бы не запустился, потому что при нормальных уровнях пускового тока плавкий предохранитель (и) немедленно перегорел бы! Конструкция плавкого предохранителя такова, что элемент плавкого предохранителя имеет большую массу (но не большую допустимую нагрузку), чем эквивалентный быстродействующий плавкий предохранитель, что означает, что он будет нагреваться медленнее (но до той же конечной температуры) для любого заданного количества. тока.
На другом конце спектра действия предохранителей находятся так называемые полупроводниковые предохранители , предназначенные для очень быстрого размыкания в случае перегрузки по току. Полупроводниковые устройства, такие как транзисторы, как правило, особенно нетерпимы к условиям перегрузки по току и, как таковые, требуют быстродействующей защиты от сверхтоков в мощных приложениях.
Предохранители всегда должны размещаться на «горячей» стороне нагрузки в заземленных системах. Это сделано для того, чтобы нагрузка была полностью обесточена во всех отношениях после срабатывания предохранителя.Чтобы увидеть разницу между плавлением «горячей» стороны и «нейтральной» стороны нагрузки, сравните эти две схемы:
Рисунок 1.44 Принципиальная схема конструктора предохранителей Рисунок 1.45 Принципиальная схема конструктора предохранителей
В любом случае предохранитель успешно прервал ток в нагрузке, но нижняя цепь не может прервать потенциально опасное напряжение с обеих сторон нагрузки на землю, где может стоять человек . Первая схема намного безопаснее.
Как было сказано ранее, предохранители — не единственный используемый тип устройства защиты от сверхтоков.Устройства, похожие на выключатели, называемые автоматическими выключателями , , , часто (и чаще) используются для размыкания цепей с чрезмерным током, их популярность связана с тем, что они не разрушают себя в процессе размыкания цепи, как предохранители. В любом случае, размещение устройства защиты от сверхтоков в цепи будет соответствовать тем же общим рекомендациям, перечисленным выше: а именно, «предохранить» сторону источника , а не , подключенную к земле.
Хотя размещение защиты от перегрузки по току в цепи может определять относительную опасность поражения электрическим током в этой цепи при различных условиях, следует понимать, что такие устройства никогда не предназначались для защиты от поражения электрическим током.Ни предохранители, ни автоматические выключатели не предназначены для отключения в случае поражения электрическим током; скорее, они предназначены для открытия только в условиях потенциального перегрева проводника. Устройства максимального тока в первую очередь защищают проводники цепи от повреждения из-за перегрева (и опасности возгорания, связанной с чрезмерно горячими проводниками), и, во вторую очередь, защищают определенные части оборудования, такие как нагрузки и генераторы (некоторые быстродействующие предохранители предназначены для защиты особенно чувствительных электронных устройств. к скачкам тока).Поскольку уровни тока, необходимые для поражения электрическим током или поражения электрическим током, намного ниже, чем нормальные уровни тока обычных силовых нагрузок, состояние перегрузки по току не указывает на возникновение удара током. Существуют и другие устройства, предназначенные для обнаружения определенных условий удара (детекторы замыкания на землю являются наиболее популярными), но эти устройства строго служат этой единственной цели и не связаны с защитой проводов от перегрева.
- A Предохранитель представляет собой небольшой тонкий проводник, предназначенный для плавления и разделения на две части с целью размыкания цепи в случае чрезмерного тока.
- Автоматический выключатель — это специально разработанный переключатель, который автоматически размыкается для прерывания тока цепи в случае перегрузки по току. Они могут срабатывать (размыкаться) термически, магнитными полями или внешними устройствами, называемыми «реле защиты», в зависимости от конструкции выключателя, его размера и области применения.
- в первую очередь рассчитаны на максимальный ток, но также рассчитаны на то, какое падение напряжения они будут безопасно выдерживать после прерывания цепи.
- могут быть сконструированы так, чтобы срабатывать быстро, медленно или где-то посередине при одинаковом максимальном уровне тока.
- Лучшее место для установки предохранителя в заземленной электросети — на пути незаземленного проводника к нагрузке. Таким образом, при сгорании предохранителя к нагрузке останется только заземленный (безопасный) провод, что сделает безопаснее для людей находиться рядом.
Предохранители
Предохранители