Программа для проектирования теплого водяного пола: Инструкция по расчету и проектированию теплого пола

Содержание

Программа для расчета теплого пола

Улитка – быстрая и простая раскладка

петель тёплого пола


Легкая и простая программа для расчётов при укладке тёплых полов.

Полезна как профессионалам так и самостоятельным строителям.

Позволяет существенно ускорить планирование и сэкономить на материале


Программа позволяет быстро и удобно рисовать петли теплого пола, при этом рисование происходит по
сетке, которая задается при создании нового проекта –
и после этого проектирование происходит с привязкой к этой сетке, что позволяет избежать
произвольных изгибов, невозможных при выполнении работ.


Выходит достаточно быстро и точно – ведь всегда попадаешь в нужный узел и не нужно целиться.

Кроме петель в программе есть возможность рисования комнат
это сделано для того, чтобы можно было быстро посчитать площадь помещения в котором будет производится укладка,
а также для того, чтобы знать количество подложки, которое будет использоваться.


Подложки бывают разных видов: либо металлическая сетка, либо пластик либо специальные варианты.
Улитка позволяет с достаточной точностью оценить предстоящие финансовые затраты.

В течении получаса специалист, находясь прямо на объекте, произведёт замеры и строит план помещения,
набросывет петли теплых полов и получает предварительную смету — то есть все очень оперативно.


Нет необходимости изучать какие-то специализированные CAD-ы, которые хотя и позволяют многое, но
требуют длительного обучения — для того чтобы в ней начать отрисовывать хотя бы примитивные теплые полы в ванной комнате
нужно не один год осваивать эту систему!

При создании петли указывается цвет, толщина линии — важные трассы делаются легко различимыми.

В программе придусмотрена динамическая смета — при расчете сметы можно ввести стоимость метра трубы и сразу видеть итоговую сумму.

Важная функция программы — вывод проекта на печать на любое количества страниц.
Проект можно распечатать с любой детализацией, после чего будет произведена печать на нескольких страницах
которые можно склеить и получить большую схему.

Проекты могут храниться как локально на компьютере пользователя, так и в облачном сервисе:
каждому пользователю выделяется собственное защищенное файловое хранилище под хранения его проектов.


После получения регистрационного ключа пользователь будет иметь доступ к своим проектам
с любого компьютера где установлена данная программа и где есть выход в интернет.
В перспективе планируется реализация простого просмотрщика прямо из интернета через браузер пользователя либо через андроид-приложение.


ЗАГРУЗИТЬ (Win)

Проект, схема теплого водяного пола. Расчет водяного теплого пола. Новосибирск.

      Проект водяного теплого пола или всей системы отопления необходим для того, что бы осуществить монтаж водяного пола.  Он же является паспортом системы, в т.ч. для последующего сервиса.


Стоимость проектных работ:

  • Проект с водяным теплым полом (и радиаторами если они необходимы) — 70 р/м2
  • Монтажная схема водяного пола (без расчета теплопотерь) — 40 р/м2
  • Монтажная схема фольгированной системы водяного пола (без расчета теплопотерь) — 50 р/м2

 Закажите бесплатную оценку водяного пола для Вашего дома 

 


          Проектные работы включают расчет теплопотерь здания с учетом климатической зоны в которой находится дом. Учитываются материалы, толщина и конструкция стен, перекрытий, утепление фундамента и кровли, заполнение дверных и оконных проемов. При проектировании производится гидравлический расчет теплого водяного пола, учитываются все особенности здания, поэтажные планировки и индивидуальные пожелания заказчиков. Законченный проект напольной системы отопления включает следующие основные разделы:

  • результаты теплотехнического расчета;
  • паспорт системы;
  • монтажные схемы укладки труб теплого пола (схема теплого пола водяного), магистралей, демпферной ленты, расстановки термостатов;
  • таблицы балансировки коллекторов теплого водяного пола;
  • спецификация материалов и комплектующих.

       В наших проектах раскладку контуров теплого пола выполняют опытные проектировщики с большим стажем проектирования напольных систем отопления для объектов с широкой географией. Укладка труб теплого пола производится «меандром» («улиткой») и с переменным шагом с выделение краевых (рантовых) зон. В отличие от некоторых фирм, работающих под «зонтиком» именитых брендов, где раскладку труб водяного пола автоматически выполняет «фирменная» компьютерная программа, использующая примитивную «змейку» с одинаковым шагом. В теплой Европе «змейка» применяется для зданий с очень низкими теплопотерями (до 30 Вт/м2), а при увеличении теплопотерь проектировщики вынуждены переходить на «улитку» и применяют рантовые зоны вдоль наружных стен для компенсации повышенных тепло-потерь. Программы пока так не делают.

        В российских климатических условиях, когда в индивидуальном строительстве не соблюдаются даже существующие нормы утепления ограждающих конструкций с теплопотерями домов все обстоит намного хуже чем в Европе. Пренебрежение теплоизоляцией особенно характерно для жителей теплых регионов и средней полосы. Если теплопотери дома укладываются в значение 75-80 Вт/м2 пола — это хорошо, но в частной застройке цифры могут превышать и 100 Вт/м2, например, в популярных домах из дерева (из бревна, бруса). В таких случаях, что бы не превышать санитарные ограничения по температуре поверхности пола требуются дополнительные отопительные приборы.

        Наши специалисты давно занимаются проектированием и реализацией систем водяной теплый пол в Новосибирске и в СФО и обладают огромным опытом применения систем напольного отопления в суровом климате Сибири. Это позволяет нам выполнять проекты максимально соответствующие как самым тяжелым климатическим условиям, так и индивидуальным особенностям конкретного объекта. Поэтому, проектирование систем отопления для любого региона не является для нас проблемой.

Монтажная схема водяного пола.

   Запросите бесплатный расчет водяного тёплого пола 

        Проект системы напольного отопления выполняется с учетом особенностей здания и пожеланий заказчика. Если стоит задача спроектировать водяной теплый пол в деревянном или каркасном доме по слабым перекрытиям в проекте могут быть применены легкие системы теплого пола с алюминиевыми теплораспределительными пластинами или универсальная фольгированная система.

        Выполненный расчет водяного теплого пола и проект позволяют полностью скомплектовать систему оборудованием, комплектующими и материалами согласно прилагаемой спецификации и произвести монтаж водяного теплого пола и пуско-наладку работоспособной системы напольного отопления силами любого квалифицированного монтажника на месте (или даже своими руками, что некоторые наши клиенты и делают).

        В некоторых случаях возможно ограничиться только монтажной схемой укладки труб контуров водяного теплого пола со спецификацией материалов без расчета теплопотерь и формального оформления проекта.

      Наша компания осуществляет профессиональное проектирование систем напольного отопления (водяного теплого пола) для зданий различного назначения и конструкции (коттедж, ТЦ, БЦ, СТО, цех и т. п.), и любыми источниками тепла в соответствии с европейскими и российскими стандартами и нормами. Для разработки проекта водяного теплого пола в идеальном случае нужен проект здания или, хотя бы, поэтажные планировки, желательно формате в AutoCad. При их отсутствии нужны поэтажные планировки со всеми размерами начерченные ручным способом. Кроме того составляется и согласовывается техническое задание на проектирование.

 Скачайте техническое задание на проектирование водяного пола 

Проект, комплектация и монтаж водяного теплого пола в Новосибирске и по территории РФ

 Закажите расчет цены тёплого водяного пола 

Ниже приведены примеры монтажных схем тёплого водяного пола из проектов. Для увеличения необходимо кликнуть на изображение, для последующего увеличения кликнуть на кнопку «Увеличить» в правом верхнем углу открывшейся формы.

Расчет водяного теплого пола , онлайн калькулятор теплопотери

Желаемая температура воздуха

Температура воздуха в помещении, которая является комфортной
для жильцов. Этот показатель весьма индивидуален – кто-то любит чтобы в комнате
было очень тепло, а кто-то не переносит жару и предпочитает прохладу.

В среднем можно принять 20⁰С. По европейским нормам в
спальнях, гостиных, кабинетах, кухнях, столовых принимается 20-24⁰С; в
туалетах, гардеробных, кладовых – 17-23⁰С; в ванных 24-26⁰С.

Чем выше желаемая температура воздуха, тем больше энергии
нужно затратить на ее достижение и поддержание.

Вверх

Температура подачи и обратки

Температура подачи – температура теплоносителя на входе в
теплый пол (в подающем коллекторе).

Температура обратки – температура теплоносителя на выходе из
контура теплого пола (в обратном коллекторе).

Температура подачи должна быть выше температуры обратки, иначе
теплый пол не будет отдавать тепло в помещение. Оптимальным является
поддержание разницы температур подачи и обратки в 10⁰С.

Температура подачи должна быть выше желаемой температуры
воздуха в помещении.

Вверх

Температура в нижнем помещении

Этот показатель используется для учета теплового потока
вниз.

Если рассчитывается водяной теплый пол в двух- или
многоэтажном доме, то в расчете используется температура воздуха в
расположенной ниже комнате. Например, 22⁰С.

Если теплый пол располагается над подвалом, то используется
температура, поддерживаемая в подвале. В случае, если дом не имеет подвала, а
пол располагается над грунтом или на грунте, то следует использовать
температуру воздуха в самую холодную пятидневку для конкретного города.
Например, для Москвы это -26⁰С.

Вверх

Шаг укладки трубы теплого пола

Шаг укладки трубы – расстояние между трубами в стяжке
теплого пола. Он влияет на теплоотдачу пола – чем меньше шаг, тем выше тепловой
поток с каждого квадратного метра пола. И наоборот – чем больше шаг, тем меньше
тепловой поток. Только Европейские трубы для теплых водяных полов.

Оптимальным является шаг укладки труб в пределах 100-300 мм.
При меньшем шаге возможна отдача тепла из трубы подачи в трубу обратки, а не в
помещение. При большем шаге может образоваться «полосатое тепло» — участки, где
нога отчетливо чувствует тепло над трубами и холод между ними.

Влияние шага укладки трубы теплого пола на равномерность прогрева можно посмотреть на
рисунке. 

Вверх

Длина подводящих труб от коллектора

Это длина трубы от коллектора до начала контура теплого
пола, т.е. точки, где трубы укладываются выбранным рисунком с заданным
шагом.  Плюс длина от конца контура до
обратного коллектора.

Если коллектор установлен в том же помещении, где
монтируется теплый пол, то длина подводящей магистрали минимальна и практически
не оказывает влияния на гидравлическое сопротивление петли. Если же коллектор
устанавливается в другом помещении, то длина подводящей магистрали может оказаться
большой. При этом гидравлические потери на подводящей магистрали могут
составлять до половины гидропотерь петли.

Вверх

Толщина стяжки над трубой теплого пола

Стяжка над трубой выполняет 2 функции – воспринимает нагрузку
от предметов и людей, защищая трубу от повреждений, и распределяет тепло по
поверхности пола.

Если стяжка над трубой армируется, то ее минимальная толщина
должна быть не меньше 30 мм. При меньшей толщине стяжка не будет обеспечивать
необходимую прочность и будет ощущаться эффект «полосатого тепла» —
неравномерный нагрев поверхности пола.

Также, стяжку не стоит делать толще 100 мм, т.к. это
приведет к тому, что пол будет прогреваться очень долго. При этом регулирование
температуры становится практически невозможным – изменение температуры
теплоносителя будет ощутимо спустя несколько часов, а то и сутки.

Оптимальная толщина стяжки без добавления пластификатора и фибры — 60-70 мм. Добавление фибры и пластификатора позволяет заливать стяжку толщиной 30-40 мм.

Влияние толщины стяжки на равномерность прогрева можно посмотреть на рисунке. 

Вверх

Максимальная температура поверхности пола

Максимальная температура поверхности пола – температура поверхности пола
над трубой контура в стяжке. Согласно СНиПу не должна превышать 35⁰С.

Вверх

Минимальная температура поверхности пола

Минимальная температура поверхности пола – температура поверхности пола
на равном расстоянии от соседних труб контура. Чем больше шаг укладки трубы,
тем больше разница между максимальной и минимальной температурой пола.

Вверх

Средняя температура поверхности пола

Средняя температура поверхности пола – среднее значение между
максимальной и минимальной температурой поверхности пола.

Согласно СНиПу, в помещениях с постоянным нахождением людей эта
температура не должна превышать 26⁰С. В помещениях с непостоянным пребыванием
людей и с повышенной влажностью (ванные, бассейны) средняя температура
поверхности пола не должна превышать 31⁰С.

На практике такие значения являются заниженными – ощущения тепла
для ног нет, поскольку температура ступни человека 26-27⁰С. Оптимальной
является температура 29⁰С – при этом обеспечивается комфорт. Поднимать
температуру выше 31⁰С не стоит, т.к. это приводит к высушиванию воздуха.

Вверх

Тепловой поток вверх

Количество тепла, которое теплый пол отдает на обогрев
помещения.

Если планируется использовать водяной теплый пол в качестве
основной системы отопления, то этот показатель должен немного превышать
максимальные теплопотери помещения.

Если основным видом отопления являются радиаторы, то
тепловой поток вверх компенсирует лишь незначительную часть тепловых потерь, а
первоочередным показателем является температура пола.

Вверх

Тепловой поток вниз

Количество тепла, уходящее от труб водяного теплого пола
вниз. Поскольку эта энергия расходуется не на обогрев помещения, то тепловой
поток вниз является потерей тепла. Для повышения энергоэффективности системы
этот показатель должен быть как можно ниже. Добиться этого можно увеличением
толщины утеплителя.

Вверх

Суммарный тепловой поток

Общее количество выделяемого теплым полом тепла – вверх (полезного)
и вниз (потери).

Вверх

Удельный тепловой поток вверх

Тепловой поток вверх (полезный) с каждого квадратного метра
теплого пола.

Вверх

Удельный тепловой поток вниз

Тепловой поток вниз (теплопотери) с каждого квадратного
метра теплого пола.

Вверх

Суммарный удельный тепловой поток

Общее количество тепла, выделяемого каждым квадратным метром
теплого пола.

Вверх

Расход теплоносителя

Этот параметр необходим для гидравлической балансировки
нескольких контуров, подключенных к одному коллектору теплого пола. Полученное
значение необходимо выставить на шкале расходомера.

Вверх

Скорость теплоносителя

Скорость движения теплоносителя по трубе контура влияет на
акустический комфорт в помещении. Если скорость превысит 0,5 м/с, то возможны
посторонние звуки от циркуляции теплоносителя по контуру.

Повлиять на это значение можно диаметром или длиной трубы.

Вверх

Перепад давления

По этому параметру подбирается циркуляционный насос. Перепад
давления в контуре (между подающим и обратным коллектором) указывает какой напор должен обеспечивать насос. Если насос
не обеспечивает требуемый напор, то можно выбрать более мощную модель, или
уменьшить длину трубы.

Вверх

Расчет теплого пола

Правильный расчет водяного теплого пола, программа для домашнего мастера. Программа для укладки теплого водяного пола онлайн

ПолПрограмма для укладки теплого водяного пола онлайн

Улитка – быстрая и простая раскладкапетель тёплого пола

Легкая и простая программа для расчётов при укладке тёплых полов. Полезна как профессионалам так и самостоятельным строителям. Позволяет существенно ускорить планирование и сэкономить на материале

Программа позволяет быстро и удобно рисовать петли теплого пола, при этом рисование происходит по сетке, которая задается при создании нового проекта – и после этого проектирование происходит с привязкой к этой сетке, что позволяет избежать произвольных изгибов, невозможных при выполнении работ. Выходит достаточно быстро и точно – ведь всегда попадаешь в нужный узел и не нужно целиться.

Кроме петель в программе есть возможность рисования комнат – это сделано для того, чтобы можно было быстро посчитать площадь помещения в котором будет производится укладка, а также для того, чтобы знать количество подложки, которое будет использоваться. Подложки бывают разных видов: либо металлическая сетка, либо пластик либо специальные варианты. Улитка позволяет с достаточной точностью оценить предстоящие финансовые затраты.

Нет необходимости изучать какие-то специализированные CAD-ы, которые хотя и позволяют многое, но требуют длительного обучения – для того чтобы в ней начать отрисовывать хотя бы примитивные теплые полы в ванной комнате нужно не один год осваивать эту систему! При создании петли указывается цвет, толщина линии – важные трассы делаются легко различимыми. В программе придусмотрена динамическая смета – при расчете сметы можно ввести стоимость метра трубы и сразу видеть итоговую сумму.

Важная функция программы – вывод проекта на печать на любое количества страниц. Проект можно распечатать с любой детализацией, после чего будет произведена печать на нескольких страницах которые можно склеить и получить большую схему.

Проекты могут храниться как локально на компьютере пользователя, так и в облачном сервисе: каждому пользователю выделяется собственное защищенное файловое хранилище под хранения его проектов. После получения регистрационного ключа пользователь будет иметь доступ к своим проектам с любого компьютера где установлена данная программа и где есть выход в интернет.

В перспективе планируется реализация простого просмотрщика прямо из интернета через браузер пользователя либо через андроид-приложение.

xn—–8kcrdunc0agdpocn2fwc.xn--p1ai

Расчет водяного теплого пола, программа онлайн – ваш надежный помощник

Перед тем как прокладывать низкотемпературную систему обогрева, вначале нужно узнать, как рассчитать теплый водяной пол, чтобы заранее приобрести все необходимое оборудование. Целесообразнее было бы поручить это специалистам. Но если у вас нет на это средств, то можно сделать это и самостоятельно, главное правильно к этому подойти.

Сегодня в интернете, можно найти различные сервисы, предлагающие онлайн-расчет труб, или специальные программки-калькуляторы, но все же, не имея инженерного образования, многим будет сложно разобраться с этим. Между тем, от правильного подхода, целиком и полностью зависит конечный итог, а также безопасность жилья.

Программа улитка для теплого пола скачать бесплатно

Проект водяного теплого пола

Проект водяного теплого пола. Бетонная система.

Профессиональное проектирование систем напольного отопления (водяного теплого пола) для зданий различного назначения и конструкции (коттедж, ТЦ, БЦ, СТО, цех и т.п.), и любыми источниками тепла в соответствии с европейскими и российскими стандартами и нормами.

Проект необходим для монтажа водяного теплого пола и является паспортом системы, в т.ч. для последующего обслуживания системы.

Проект включает расчет тепло-потерь здания с учетом климатической зоны. Учитывается материалы, толщина и конструкция стен, перекрытий, утепление фундамента и кровли, заполнение дверных и оконных проемов, поэтажные планировки. При проектировании учитываются все особенности здания и индивидуальные по желания заказчиков. Законченный проект напольной системы отопления включает следующие основные разделы:

  • результаты теплотехнического расчета,
  • паспорт системы,
  • монтажные схемы укладки труб теплого пола, магистралей, демпферной ленты, расстановки термостатов,
  • таблицы балансировки коллекторов теплого водяного пола,
  • спецификация материалов и комплектующих.

В наших проектах раскладку труб выполняет опытный проектировщик, причем трубы укладываются в соответствии с методикой Thermotech «меандром» («улиткой») и с переменным шагом с выделение краевых (рантовых) зон. В отличие от некоторых фирм, работающих под «зонтиком» именитых брендов, где раскладку труб автоматически выполняет «фирменная» компьютерная программа, использующая примитивную «змейку» с одинаковым шагом. В теплой Европе «змейка» применяется для зданий с очень низкими теплопотерями (до 30 Вт/м2), при увеличенных теплопотерях проектировщики вынуждены переходить на «улитку» и применяют рантовые зоны вдоль наружных стен для компенсации повышенных теплопотерь. Программы пока так не делают.

Проект водяного теплого пола в купольном доме

Но, как правило, в наших климатических условиях, и с отстающими требованиями стандартов к утеплению ограждающих конструкций, а так же массово практикуемом отсутствием наружной теплоизоляции в индивидуальном строительстве с теплопотерями все обстоит намного хуже. Хорошо если теплопотери дома укладываются в значение 75-80 Вт/м2 пола, но больше тоже не редкость, а скорее наоборот в частной застройке. Но наши специалисты давно и успешно занимаются проектированием и реализацией систем напольного отопления в суровых условиях Сибири и обладают колоссальным опытом в этой сфере. Это позволяет нам выполнять проекты максимально соответствующие нашим (да и любым) климатическим условиям и индивидуальным особенностям конкретного объекта.

Проект водяного теплого пола для дома из бревна. Монтажная схема. Бетонная система.

Для разработки проекта водяного теплого пола в идеальном случае нужен проект здания или, хотя бы, поэтажные планировки, желательно формате в AutoCad. При их отсутствии нужны поэтажные планировки со всеми размерами начерченные ручным способом. Кроме того составляется и согласовывается техническое задание на проектирование.

Проект системы напольного отопления выполняется с учетом особенностей здания и пожеланий заказчика. Для слабых перекрытий или тонких систем в проекте могут быть использованы легкие системы теплого пола с алюминиевыми теплораспределительными пластинами или фольгированная система.

Монтажная схема теплого водяного пола. Фольгированная система.

Результатом проектирования является пакет технической документации, содержащий паспорт системы с результатом теплотехнических расчетов, монтажные схемы укладки труб водяного теплого пола и расстановки комнатных термостатов, таблицы балансировки коллекторов и спецификацию материалов, оборудования и комплектующих.

Выполненный проект позволяет полностью закомплектовать систему оборудованием, комплектующими и матералами согласно прилагаемой спецификации и произвести монтаж и пуско-наладку работоспособной системы.

Тэги: пол схема, расчет пол, теплый пол схема, теплый пол расчет, теплый пол расчет, водяной пол схема, водяной теплый пол схема, водяной пол расчет, теплый пол водяной расчет, проектирование теплый водяной пол

Сделать запрос:

позвонить по тел.: +7(383)2486390

МТС / WhatsApp / Viber : +79833216510

Откройте данную ссылку, чтобы написать в WhatsApp: https://wa.me/79833216510

Отправьте сообщение через любой из доступных мессенджеров кликнув на форму диалога в левом нижнем углу страницы

Воспользуйтесь чатом online на сайте в правом нижнем углу страницы

Расклад простой

экономим материал – экономим время – получаем точный расклад

. программой сам воспользовался и благодаря ей сам выполнил все расчёты, всё закупил и не разочаровался – даже в демо версии, распечатывал результаты, через снимок экрана, всё намотал и всё работает – очень доволен. Спасибо.

Из общения на интернет-форуме

Нам задают вопросы

Добрый день! Будет ли програмка дальше жить? Народ на форумхаусе волнуется. Можно было отрисовать все пелтли, пусть в приближении, но без изучения всяких компасов, автокадов и т.д. Сам себе прорисовал 300 кв.метров 3-х уровневый дом, сделал закупку, все смонтировал, сам просто в в восторге от программы

Из письма пользователя

Строители ищут

Нужна простейшая програмка, в которой можно посчитать длину петель ТП. Расчет теплопотерь мне не нужен. Надо просто определиться, сколько петель делать и сколько трубы брать. То, что советует в интернете, либо не скачивается, либо не запускается у меня. Огромная просьба, скинуть на мыло или дать ссылку на рабочую программку!

Во многих квартирах сегодня устанавливают водяные теплые полы по соображениям экономии. Температура подачи подогрева в этих системах намного ниже, чем при использовании радиаторов. Перед тем, как спроектировать и спланировать систему отопления, необходимо определить потребность в теплоэнергии, мощности и нагрузку для обогрева каждой комнаты в здании. Чтобы провести расчет водяного теплого пола по программе, нужно определиться с параметрами будущего покрытия.

Программа «Multiplaner» — Водяные теплые полы Multibeton

В целях наиболее эффективного проектирования систем поверхностного отопления, фирма Multibeton GmbH разработала собственное ПО Multiplaner ® CAD, которое даёт возможность индивидуально рассчитывать тепловые нагрузки и схемы монтажа труб систем водяного теплого пола MULTIBETON ®.

Расчет системы напольного отопления

Видео-презентацию расчета водяного теплого пола, а также дополнительную информацию, Вы можете посмотреть по ссылке.

Коллектив сотрудников фирмы MULTIBETON GmbH во главе с ее основателем и бессменным лидером Артусом Файстом самостоятельно провел комплексную разработку концепции, дизайна интерфейса и программирования. Основной частью программного обеспечения являются планы монтажа систем, выполненный в формате САD и выполненные внутри программы расчеты тепловых нагрузок, потерь, общей энергоемкости, а также расхода материалов и комплектующих. С помощью таких планов специалист может пояснить заказчику технологию монтажа систем обогрева MULTIBETON ® .

Программное обеспечение в свете решения подобных технических и коммерческих задач является уникальным, что обеспечивает еще одну ступень лидерства наших германских партнеров в своей области. Опишем кратко основные принципы работы программы и особенности ее пользовательского интерфейса на примере версии Multiplaner 3.1.

Первым делом при запуске появляется диалоговое окно, приглашающее вас выбрать вариант начала работы, что  соответствует пункту главного меню «Управление проектами» (Project Administration). На первой закладке — «Проекты» вы можете создать новый проект или выбрать уже имеющийся из списка для редактирования. Также здесь задаются или редактируются основные выходные данные проекта: сведения о заказчике, сведения об исполнителе проекта, сведения о подрядной организации, дата начала и окончания работ и т. д.

На второй вкладке — «Организация проекта» можно выбрать язык проекта (в новой версии программы уже присутствует и русский), выполнить экспорт/импорт проекта или сделать его копию. Отсюда также проект можно распечатать.

Переходим ко второму пункту главного меню «Строительные данные» (Building Data). Здесь также имеются две закладки. Первая — «Структура здания» посвящена общим параметрам строения: количеству этажей, наличию подвальных или цокольных помещений, высоте потолков.

Вторая — «Климатические параметры» посвящена климатическим условиям, в которых находится данное строение (средние температуры окружающей среды, ландшафтная открытость здания, направление и скорость ветра, наличие и глубина залегания грунтовых вод), а также режимам временной работы котлов для обогрева помещений.

Третий пункт главного меню носит название «Строительные элементы» (Building Units). Здесь закладок уже четыре. На первой закладке — «Стандартные помещения» мы задаем теплотехнические характеристики крыши здания, стен (в зависимости от их толщины) и окон. Учитываются также внутренние межкомнатные перегородки.

На второй закладке — «Конструкция полов» подробно анализируются полы здания: конструкция пола, типы напольных покрытий, параметры бетонной стяжки, а также гидро- и теплоизолирующего слоя. В зависимости от заданных величин программа сама подбирает тип стяжки теплого пола (MB Screed System) и толщину трубы.

На третьей закладке — «Стены, перекрытия, крыши» увязываются конструктивные особенности и коэффициенты теплопроводности перекрытий, стен и крыши. На четвертой закладке — «Окна и двери» выбираются конструкции окон и дверей, задается теплопроводность, толщина, площадь остекления и пр.

Четвертый пункт главного меню «Эскиз помещения» (Room Capture) позволяет проектировщику нарисовать схематическое описание (эскиз) каждой жилой комнаты или хозяйственного/подсобного помещения. При этом задается форма и площадь помещения, а затем по часовой стрелке совершается «обход» комнаты с добавлением в соответствующих местах окон, дверей или служебных зон (например, для размещения распределительного шкафа или комнатных регуляторов — сервоприводов и термостатов). При этом программа самостоятельно отрисовывает подходящую схему укладки трубы MULTIBETON ®, учитывая заданные теплотехнические параметры. Такой эскиз можно сразу же распечатать отдельно для ознакомления с ним непосредственных исполнителей. Вышеуказанные действия проводятся для каждого помещения в здании, после чего программа самостоятельно сводит их воедино.

Наконец, переход к пятому пункту главного меню «Расчет» (Calculation) открывает нам еще три закладки, которые являются ядром вычислительной системы программы Multiplaner. Это закладка первая — «Параметры нагревательных поверхностей», на которой рассчитаны для каждого помещения, соответственно, площадь, теплоемкость, шаг укладки, необходимое количество распределителей, требуемая мощность нагрева, расход воды и пр.

Также это закладка вторая — «Расчет нагревательных поверхностей», на которой рассчитаны общий расход трубы, общее энергопотребление системы в каждом помещении, а также изменение вышеуказанных параметров при увеличении либо уменьшении температуры в комнате (с шагом в один градус), остаточное тепловыделение и т. п.

На закладке третьей — «План инсталляции (укладки)» показывается окончательная схема расположения в каждом помещении нагревательных элементов (труб) с соответствующим шагом укладки и количеством контуров ТП, точками подачи и выхода горячего теплоносителя, местами размещения в комнате распределительных элементов.

Для удобства пользователя все стадии проекта иллюстрируются простыми и понятными наглядными изображениями зданий в разрезе и схем рабочих этапов проекта.

Последний, шестой пункт главного меню носит название «Результаты» (Results) и здесь формируется готовый законченный проект обогрева или охлаждения данного здания, пример которого можно увидеть здесь. Проект является обязательной частью выполненных работ и выдается заказчику вместе с другими необходимыми документами.

Планирование водяного теплого пола – расчет отопительных контуров и объема труб по программе

Во многих квартирах сегодня устанавливают водяные теплые полы по соображениям экономии. Температура подачи подогрева в этих системах намного ниже, чем при использовании радиаторов. Перед тем, как спроектировать и спланировать систему отопления, необходимо определить потребность в теплоэнергии, мощности и нагрузку для обогрева каждой комнаты в здании. Чтобы провести расчет водяного теплого пола по программе, нужно определиться с параметрами будущего покрытия.

Расчет с помощью программы

В программах расчета используется упрощенный метод для определения тепловой нагрузки на жилые здания в соответствии со стандартными нормативами. На этапе планирования возникают следующие вопросы:

  1. Каковы требования к материалам для такой системы отопления.
  2. Сколько нагревательных контуров должно быть установлено.
  3. Какое количество труб нужно для рекомендуемой мощности обогрева.

Одним из решений является программа расчета теплого пола Valtec. Чтобы использовать ее правильно, требуется достаточно обширная информация. Первый шаг – выбор расстояния между трубами, если это не задано выбранной системой подогрева. В Валтек программе расчета теплого пола вы также должны отметить употребляемый теплогенератор для обогрева помещения:

  1. При применении насоса нужно выбрать расстояние установки немного меньше, чтобы поддерживать температуру потока в трубах как можно ниже. Рекомендуется шаг в 10 см.
  2. При использовании другого источника обогрева помещения, который работает с более высокой температурой подачи, следует выбрать шаг в 15 см.

Как только программа для расчета теплого пола определит правильное расстояние, вторым шагом будет проектирование отопительных контуров в помещении. Убедитесь, что размер трубы на них не слишком длинный. Трубы в системе не должны превышать 100 м плюс соединительный контур, иначе потеря давления будет слишком высокой, и отопительный контур будет слабо реагировать или вообще не прогреваться.

В программе расчета теплого пола для разных расстояний требуются использовать следующие количества труб в помещении:

РасстояниеТруб на квадратный метр
15 см5,8 м
12,5 см6,8 м
10 см8,8 м

 

Теперь вы можете легко вычислить число требуемых отопительных контуров в каждой комнате на основе стандартных значений программы для расчета теплого водяного пола.

Пример расчета количества труб в помещении площадью 24 кв. м (6 м х 4 м):

Расстояние укладки 15 см – 24 кв. м х 5,8 м = 139,2 м труб

Принимая во внимание максимальную длину в 100 м, согласно программе для раскладки теплого пола, должны быть запланированы 2 отопительных контура для напольной системы в помещении. Для них круги обычно устанавливаются одинаковой длины, так они прогреются равномерно, быстро достигнув нужной мощности и температуры.

Таким образом, с помощью программы для раскладки теплого водяного пола можно легко оценить потребность в материалах, определить стоимость работ и количество нужных шагов для выполнения работы. Тип установки системы труб, будь то «улитка» или «змейка», не имеет значения.

Расчет системы напольного отопления в интернете

Сегодня можно использовать программы для теплого пола, существует много вариантов на различных сайтах. Применение таких калькуляторов освобождают от сложных вычислений. Для правильного подсчета раскладки теплого пола в программу нужно вводить все требуемые данные.

Полностью полагаться на онлайн-калькулятор не стоит, все предоставленные рекомендации приблизительны. Однако с помощью полученной информации можно проводить раскладку труб теплого пола, программа оценит объемы будущей работы в помещениях.

Мы с удовольствием определим требуемые количества для вас. Просто отправьте запрос с вашим планом или сведениями о размерах комнаты по электронной почте или через форму запроса на сайте. Мы рассчитаем мощность системы напольного отопления, рекомендуемое количество труб и вышлем предложение по установке системы.

как рассчитать мощность и длину контура

Во избежание ненужных расходов и технологических ошибок, которые могут привести к частичной или полной переделке системы своими руками, расчет водяного теплого пола производится заранее, перед началом укладки. Необходимы следующие вводные данные:

  • Материалы, из которых построено жилье;
  • Наличие других источников отопления;
  • Площадь помещения;
  • Наличие наружного утепления и качество остекления;
  • Региональное расположение дома.

Также нужно определить, какая максимальная температура воздуха в комнате требуется для комфорта жильцов. В среднем рекомендуется делать проектирование контура водяного пола из расчета 30-33 °С. Однако такие высокие показатели в процессе эксплуатации могут и не понадобиться, человек максимально комфортно себя чувствует при температуре до 25 градусов.

В случае, когда в доме используются дополнительные источники тепла (кондиционер, центральное или автономное отопление и т.д.), расчет теплого пола можно ориентировать на средние максимальные показатели 25-28 °С.

Совет! Настоятельно не рекомендуется подключать теплые водяные полы своими руками напрямую через центральную систему отопления. Желательно использовать теплообменник. Идеальный вариант – полностью автономное отопление и подключение теплых полов через коллектор к котлу.

Расчет мощности

КПД системы напрямую зависит от материала труб, по которым будет двигаться теплоноситель. Используют 3 разновидности:

  • Медные;
  • Полиэтиленовые или из сшитого полипропилена;
  • Металлопластиковые.

У медных труб максимальная теплоотдача, но довольно высокая стоимость. Полиэтиленовые и полипропиленовые трубы обладают низкой теплопроводностью, но стоят относительно дешево. Оптимальный вариант в соотношении цены и качества – металлопластиковые трубы. У них низкий расход теплоотдачи и приемлемая цена.

Опытные специалисты в первую очередь принимают во внимание следующие параметры:

  1. Определение значения желаемой t в помещении.
  2. Правильно посчитать теплопотери дома. Для этого можно использовать программы-калькуляторы либо пригласить специалиста, но возможно произвести и приблизительный подсчёт теплопотерь самостоятельно. Простой способ, как рассчитать теплый водяной пол и теплопотери в помещении — усредненное значение теплопотерь в помещении — 100 Вт на 1 кв. метр, с учетом высоты потолка не более 3х метров и отсутствия прилегающих неотапливаемых помещений. Для угловых комнат и тех, в которых есть два или более окон – теплопотери рассчитываются исходя из значения 150 Вт на 1 кв. метр.
  3. Вычисление сколько будет теплопотерь контура на каждый м2 отапливаемой водяной системой площади.
  4. Определение расхода тепла на м2, исходя из декоративного материала покрытия (например, у керамики теплоотдача выше, чем у ламината).
  5. Вычисление температуры поверхности с учетом теплопотерь, теплоотдачи, желаемой температуры.

В среднем, требуемая мощность на каждые 10 м2 площади укладки должна быть около 1,5 кВт. При этом нужно учесть пункт 4 в вышеперечисленном списке. Если дом хорошо утеплен, окна из качественного профиля, то на теплоотдачу можно выделить 20% мощности.

Соответственно, при площади помещения 20 м2, расчет будет происходить по следующей формуле: Q = q*x*S.

3кВт*1,2=3,6кВт, где

Q – требуемая мощность обогрева,

q = 1,5 кВт = 0,15 кВт — это константа на каждые 10м2,

x = 1,2 — это усредненный коэффициент теплопотери,

S – площадь помещения.

Внимание! Вышеуказанная формула как рассчитать теплый пол – максимально упрощенная, так как не принимаются во внимание, что давление в системе тоже может снижаться.

Перед началом монтажа системы своими руками, рекомендуется составить план-схему, точно указать расстояние между стенами и наличие других источников тепла в доме. Это позволит максимально точно рассчитать мощность водяного пола. Если площадь помещения не позволяет использовать один контур, то правильно планировать систему с учетом установки коллектора. Кроме того, потребуется монтировать своими руками шкаф для устройства и определить его местоположение, расстояние до стен и т.д.

Сколько метров оптимальная длина контура

h3_2

Часто встречается информация, что максимальная длина одного контура – 120 м. Это не вполне соответствует истине, так как параметр напрямую зависит от диаметра трубы:

  • 16 мм – max L 90 метр.
  • 17 мм – max L 100 метр.
  • 20 мм – max L 120 метр.

Соответственно, чем больше диаметр трубопровода, тем меньше гидравлическое сопротивление и давление. А значит – длиннее контур. Однако опытные мастера рекомендуют не «гнаться» за максимальной длиной и выбирать трубы D 16 мм.

Также нужно учесть, что толстые трубы D 20 мм проблематично гнуть, соответственно петли укладки будут больше рекомендуемого параметра. А это означает низкий уровень КПД системы, т.к. расстояние между витками будет большое, в любом случае придется делать квадратный контур улитки.

Если одного контура не достаточно на обогрев большого помещения, то лучше монтировать своими руками двухконтурный пол. При этом настоятельно рекомендуется делать одинаковую длину контуров, чтобы прогрев площади поверхности был равномерным. Но если разницы в размерах все-таки не избежать – допускается погрешность в 10 метров. Расстояние между контурами равно рекомендуемому шагу.

Гидравлический шаг между витками

От величины шага витка зависит равномерность прогревания поверхности. Обычно используют 2 вида укладки трубы: змейкой или улиткой.

Змейку предпочтительно делать в помещениях с минимальными теплопотерями и небольшой площадью. Например, в ванной или коридоре (так как они находятся в частном доме или квартире внутри без контакта с наружной средой). Оптимальный шаг петли для змейки – 15-20 см. При таком виде укладки потери давления составляют примерно 2500 Па.

Петли улитки применяют в просторных комнатах. Такой способ экономит длину контура и дает возможность равномерно обогреть комнату, как посередине, так и ближе к наружным стенам. Шаг петли рекомендуется в пределах 15-30 см. Специалисты утверждают, что идеальное расстояние шага – 15 см. Потери давления в улитке – 1600 Па. Соответственно, такой вариант укладки своими руками выгоднее в плане экономичности мощности системы (можно покрыть меньшую полезную площадь). Вывод: улитка эффективнее, в ней меньше падает давление, соответственно выше КПД.

Общее правило для обеих схем — ближе к стенам шаг нужно уменьшать до 10 см. Соответственно, от середины помещения петли контура постепенно уплотняют. Минимальное расстояние укладки до наружной стены 10-15 см.

Еще один важный момент — нельзя укладывать трубу сверху швов бетонных плит. Нужно так составить схему, чтобы соблюдалось одинаковое расположение петли между стыками плиты по обе стороны. Для монтажа своими руками можно начертить схему предварительно на черновой стяжке мелом.

Сколько градусов допускается при перепадах температуры

Проектирование системы кроме потерь тепла и давления подразумевает температурные перепады. Максимальный перепад – 10 градусов. Но рекомендуется ориентироваться на 5 °С для равномерной работы системы. Если заданная комфортная температура поверхности пола – 30 °С, то прямой трубопровод должен подавать около 35 °С.

Давление и температура, а также их потери, проверяются при опрессовке (проверке системы перед финишной заливкой чистовой стяжки). Если проектирование произведено верно, то заданные параметры будут точны с погрешностью не более 3-5%. Чем выше будет перепад t, тем выше расход мощности пола.

LoopCAD — Программное обеспечение для лучистого отопления

LoopCAD — это первоклассное программное обеспечение для быстрого создания схем профессионального качества.
компоновочные чертежи систем лучистого отопления. Совершенно новый LoopCAD
2021 г.
предлагает продвинутые
конструктивные особенности, включая комплексные расчеты тепловой и охлаждающей нагрузки, подробные
гидронные расчеты, проектирование снеготаяния, трехмерные изображения в САПР и совместимость с OEM
методы проектирования и материалы.И теперь MJ8 Edition обеспечивает
ACCA и reg — Утвержденное руководство по расчетам J и reg (8-е издание)
для отопления и охлаждения жилых помещений
грузы (подробнее
в Руководстве J …).
LoopCAD — это самый простой и мощный инструмент для проектирования лучистого отопления.

LoopCAD доступен в трех различных редакциях, чтобы наилучшим образом соответствовать вашим потребностям, а
доступные OEM-версии без проблем работают со всеми тремя версиями функций.Для списка
функциональные возможности и новые функции в каждом выпуске см. в PDF-файле «Сравнение функций». В
Видео-демонстрация содержит краткое введение, а
Обучающие уроки дают гораздо более глубокий взгляд на вещи.

Стандарт
Версия
  • Чертеж и импорт плана этажа (PDF, AutoCAD, JPG)
  • Автоматизированная генерация цепей (шлейфов)
  • Рисунок схемы (петли) от руки
  • Гидравлические расчеты на основе ручного ввода тепловых нагрузок (без автоматизированных тепловых потерь
    расчеты)
  • 3D-вид на чертеж
  • OEM-надстройки для подробных списков материалов / предложений
Профессиональный
Версия
  • Все функции Standard Edition, плюс…
  • Автоматический расчет потерь тепла при рисовании
  • Расчет потерь тепла в жилых домах по ASHRAE и CSA
Издание MJ8
  • Все функции в Professional Edition, плюс…
  • ACCA-Approved Manual J (8-е издание) расчет отопительной и холодильной нагрузки жилых помещений
    (больше информации…)
Чертеж плана этажа

Создание чертежей плана этажа происходит очень быстро, используя заранее определенные комнаты, двери, окна.
и другие объекты.Размер комнат можно изменять, перетаскивая стены или углы, и они
легко стыковаться для создания сложных планов этажей. Формы комнаты могут быть
быстро редактируется для создания очень сложных форм, вы также можете использовать произвольные
инструменты рисования для создания более сложных форм. LoopCAD также позволяет импортировать
существующие AutoCAD *, PDF ** или отсканированные чертежи для использования в качестве шаблона.

Автоматизированный чертеж схемы

LoopCAD автоматически генерирует схемы для комнат в вашем проекте.Просто брось
объект Circuit Entry, где вы хотите, чтобы схемы запускались, и LoopCAD позаботится
остального. Он автоматически проектирует препятствия, такие как лестницы, шкафы.
или кухонные острова. Легко редактируйте настройки, чтобы изменить тип рисунка, поворот,
количество контуров или варианты расстояния между трубками. И используйте мощную галерею макетов
инструмент, чтобы быстро выбрать лучший узор для вашего дизайна.Также для геометрии помещения
комплекс для автоматизированных схем, инструменты для создания схем от руки позволяют быстро рисовать
именно те схемы, которые вам нужны.

Расчет тепловых потерь

LoopCAD позволяет автоматически рассчитывать тепловые потери для каждой комнаты.
когда вы рисуете план этажа.Вы можете выбрать метод расчета жилого фонда, который
наилучшим образом подходит для вашего проекта — ASHRAE, CSA или Manual J. LoopCAD автоматически определяет
комнат выше или ниже, и даже поддерживает расчет холодных перегородок между комнатами.

Расчет охлаждающей нагрузки

Версия MJ8 обеспечивает расчет как тепловой, так и охлаждающей нагрузки.
для жилых помещений.Полная поддержка Manual J 8th Edition, включая блокировку
нагрузки, нагрузки по комнатам, инфильтрационные и вентиляционные нагрузки, подробные данные о воздействии
анализ разнообразия и оценки ОВЛХ помещений.

ACCA

и reg — утвержденное руководство J и reg

LoopCAD MJ8 одобрен ACCA для использования в жилых помещениях с Руководством J (8-е издание).
расчет тепловой и охлаждающей нагрузки.Это упрощает прием ваших заявок.
местными властями, требующими программных расчетов, одобренных ACCA. Нажмите здесь, чтобы узнать больше
подробности.

Гидронные расчеты

Гидравлические расчеты, которые имеют решающее значение для проектирования вашей системы обогрева, включают:
выполняется автоматически.А представление Radiant Design обеспечивает простой способ
анализируйте и оптимизируйте свой дизайн.

  • Тепловая мощность панели
  • Температура поверхности
  • Температура панели
  • Температура воды — подача и дифференциал
  • Расходы и потери напора
  • Управляемость / Проблемы
Коммерческий режим

Коммерческий режим предоставляет новые мощные инструменты для проектирования вашего коммерческого излучателя.
обогрев
проекты, включая области нестандартных схем, библиотеку нестандартных конструкций и важные
представление
улучшения.Легко разделяйте большие площади на несколько меньших участков контура, делая
автогенерация
схем лучше и быстрее.

Дизайн Снеготаяния

Проектирование системы снеготаяния теперь напрямую поддерживается в LoopCAD.Нарисуйте участки снеготаяния,
генерировать схемы, рассчитывать нагрузки и температуры почти так же, как вы
сделать для систем лучистого отопления. Расчеты основаны на методах ASHRAE.

3D-виды САПР

LoopCAD генерирует 3D-виды вашего здания, которые вы рисуете в 2D.Новый 3D
представления являются мощным помощником для обеспечения точных расчетов тепловой нагрузки и являются
также очень эффективен для передачи вашей дизайнерской работы. Проверка размещения
а определение размеров окон, дверей и стен стало намного быстрее и точнее с
3D-виды.

OEM совместимость

LoopCAD
2021 г.
доступен в специальных OEM-версиях, которые интегрируют системы и компоненты
от ведущих производителей Северной Америки.Вы можете не только разрабатывать схемы схем, но и выполнять
расчет нагрузки,
и генерировать все гидронные данные, вы также можете создать полный список материалов
от выбранного вами OEM. Также созданы рекомендации и данные производителя по дизайну.
в OEM-версию для вас.

Системные требования
Операционная система: Microsoft Windows 10, 8 или 7 (SP1), с Internet Explorer 9 или выше, а также с
Microsoft и регистр
.NET Framework 4.7
Процессор: Рекомендуется 1,5 ГГц или выше
ОЗУ: Минимум 2 ГБ, рекомендуется 8 ГБ или более
Дисковое пространство: 70 — 150 МБ (Microsoft & reg .NET Framework может потребоваться до 4,5 ГБ)
Видео: SVGA или выше (рекомендуется разрешение 1920×1080 или выше)
Мышь: Внешняя мышь с колесом прокрутки (не рекомендуется использовать встроенные коврики для мыши)

Avenir Software Inc.- Покупка товаров через Интернет

Сначала выберите свое местоположение, чтобы цены отображались в соответствующей валюте.
Затем нажмите кнопку «Добавить в корзину» рядом с желаемым продуктом. Обратите внимание, что все продукты
являются только загружаемыми версиями.

Валюта:
СШАКанадаДругоеUSD

MJ8, издание

ACCA-Approved Manual J8 расчет обогрева / охлаждения

АМЕРИКАНСКИЙ ДОЛЛАР $
1295


Добавить в корзину

Профессиональная версия

Расчет тепловых потерь по ASHRAE и CSA

АМЕРИКАНСКИЙ ДОЛЛАР $
995


Добавить в корзину

Стандартное издание

Без автоматизированного расчета теплопотерь

АМЕРИКАНСКИЙ ДОЛЛАР $
650


Добавить в корзину

MJ8, издание

ACCA-Approved Manual J8 расчет обогрева / охлаждения

АМЕРИКАНСКИЙ ДОЛЛАР $
750


Добавить в корзину

Профессиональная версия

Расчет тепловых потерь по ASHRAE и CSA

АМЕРИКАНСКИЙ ДОЛЛАР $
450


Добавить в корзину

Условия продажи

  • Продажа программного обеспечения является окончательной после выдачи кода активации.Бесплатные пробные версии
    доступны для тестирования и оценки перед покупкой.

  • Валюта транзакции — доллары США или канадские доллары, как показано на рисунке.
    выше. Для кредитных карт, выпущенных в других валютах, компания вашей кредитной карты определяет
    обменный курс, использованный для транзакции.

  • Обратитесь к
    Лицензионное соглашение конечного пользователя
    для ознакомления с полными условиями.

LoopCAD — Онлайн-учебные пособия

Онлайн-руководства LoopCAD

Выберите из видеоуроков, представленных здесь, чтобы изучить функции и узнать
шаги проектирования, рекомендованные для LoopCAD.

Основы
  1. Введение в LoopCAD

    7:07 минут

  2. Создание нового проекта

    9:22 мин.

  3. Составление плана этажа

    12:56 минут

  4. Режим быстрого дизайна

    4:39 минут

  5. Коллекторы и автосхемы

    8:50 минут

  6. Контуры противотока

    5:13 минут

  7. Схемы от руки

    6:38 минут

  8. Балочные перекрытия

    8:49 минут

  9. Пользовательские области схемы

    7:02 минут

  10. Инструменты обзора и анализа

    8:50 минут

  11. Печать и экспорт

    9:00 минут

AutoCAD, PDF и отсканированные файлы
  1. Импорт чертежа AutoCAD

    4:33 мин.

  2. Импорт PDF и отсканированных чертежей

    3:38 минут

  3. Рисование на импортированном чертеже

    7:40 минут

  4. Экспорт в файл AutoCAD

    1:12 минут

Проектирование и расчет системы отопления, вентиляции и кондиционирования воздуха
  1. Расчет тепловой нагрузки

    23:00 минут

  2. Расчет охлаждающей нагрузки

    14:14 минут

  3. Инфильтрационные и вентиляционные нагрузки

    6:39 минут

  4. Ввод тепловых нагрузок вручную

    4:39 минут

  5. Холодные / теплые перегородки

    3:27 минут

  6. Прогулочные подвалы

    4:37 минут

  7. Сводчатые или соборные потолки

    3:00 минут

  8. Распределительный трубопровод подачи / возврата

    4:37 минут

  9. Плинтус Отопление

    4:06 минут

  10. Стены и потолок тепла

    3:22 минуты

  11. Добавление температуры подачи воды

    1:24 минуты

Системы растапливания снега
  1. Создание нового проекта снеготаяния

    2:45 минут

  2. Конструкция системы снеготаяния

    3:53 минуты

Надстройки OEM
  1. Списки материалов и OEM-надстройки

    5:28 минут

  2. Расписание катушки

    3:11 минут

  3. Режим разработки электронных таблиц — Основные сведения

    5:39 минут

  4. Режим разработки электронных таблиц — Расширенный

    10:04 минут

  5. Ценовое предложение вручную

    4:31 мин.

Дополнительные темы
  1. Пользовательское редактирование схем

    7:41 минут

  2. Изогнутые стены и выступы

    2:50 минут

  3. Настраиваемые таблицы

    4:10 минут

  4. Размеры и текст

    4:54 минуты

  5. Относительные координаты

    1:30 минут

  6. Многоэтажные коллекторы

    4:22 минуты

  7. Вставка изображений

    1:54 минуты

  8. Клересторные стены и окна

    2:37 минут

  9. Вращение чертежей

    2:37 минут

  10. Объединение комнат

    1:42 минуты

  • Хром 4.0 или выше, Internet Explorer / Microsoft Edge 9.0 или выше, Firefox 3.5 или выше, Safari 4.0 или выше, Opera 10.5 или выше.
  • Громкоговорители с увеличенной громкостью.

Программы для проектирования и расчета

Пакет программ KAN предназначен для автоматизированного проектирования систем центрального отопления в Системе KAN-therm. Предлагаем следующие программы:

Новая обновленная версия — KAN SET 7.2

Скачать пробную версию

Программа проектирования систем холодного и горячего водоснабжения с циркуляцией, а также установок центрального отопления и охлаждения. Программа KAN SET, созданная на ее основе индивидуализированная версия компании, содержащая продукты из нашего ассортимента, позволит донести информацию о компании и ее продуктах до многих потенциальных получателей.


Скачать пробную версию сейчас >>

Заказать полную бесплатную версию >>

Узнать больше >>

Программа используется для поддержки расчета тепловой нагрузки помещений.Программа определяет сезонную потребность в тепловой энергии. Он также выдает энергетические сертификаты и определяет тепловлажностный анализ зданий.

Программа используется для поддержки графического дизайна новых систем радиаторного и напольного центрального отопления. Он также поддерживает регулирование уже существующих установок (например, в утепленных зданиях) в жилых и общественных зданиях. Программа также позволяет проектировать трубопроводные сети в установках с ледяной водой.


Программа используется для графического проектирования систем холодного, горячего и оборотного водоснабжения в традиционных, серийных, тройниковых и коллекторных системах в жилых и общественных зданиях. Это также позволяет выбирать термостатические клапаны в циркуляционных системах.

Программа выполняет быстрый подбор радиаторов отопления и теплых полов в жилых и общественных зданиях.Это дает возможность ознакомиться с техническими данными выбранного оборудования. Программа особенно рекомендуется для быстрого выбора оборудования с целью его оценки.

Проектирование, макеты и расчеты излучающих петель качества CAD

Right-Radiant ® — это простая в использовании программа, которая сочетает в себе стандартные отраслевые методы расчета ASHRAE и проверенные на практике методы проектирования, чтобы обеспечить комплексный инструмент проектирования и расчета излучения, используемый для компоновки, размера и расчета в полу системы лучистого отопления.Посмотреть обзорное видео.

Характеристики:

В сочетании с Right-Draw ® , Right-Radiant ® представляет собой комплексный инструмент для проектирования и расчета лучистого качества с качеством САПР. Он содержит полный список значений R для напольных покрытий ASHRAE и поддерживает переменное покрытие контуров. Благодаря нашей эксклюзивной технологии Hotlink , Right-Radiant ® мгновенно адаптирует чертеж излучающего дизайна при вводе или изменении параметров.

Используйте Right-Radiant

® для:

Перетаскивайте излучающие панели в свои комнаты в Right-Draw ® . Интерактивный по своему дизайну, когда вы перетаскиваете излучающую панель в комнату, выбираете макет и подключаете его к коллектору, Right-Radiant ® раскладывает pex в различных узорах (1,2 и 3-сторонний змеевик, периметр, внешняя стенка, плотно разделенная змеевиком, противоточная спираль и т. д.). Это также замедлит обратное переключение в компоновке для одинаковой длины, вычислит расход, напор, длину контура, температуру поверхности, дельта-t и обратные потери, а также вычислит мощность и сообщит вам, где может потребоваться дополнительное тепло.

Автоматическое проектирование и компоновка излучающих петель одним щелчком мыши. Right-Radiant ® опирается на стандартные отраслевые условные обозначения для интервалов, соединений коллектора, расчета нагрузки и ведомости материалов, чтобы мгновенно создать для вас конструкцию контура.

Рассчитайте скорость потока, длину контура, расположение контуров и давление напора, даже если требуется дополнительное тепло. Каждую панель и петлю также можно настроить в соответствии с любыми конкретными параметрами проекта.

Создавайте лучистые конструкции для снега и таяния льда. Разработанный в сотрудничестве с консорциумом производителей излучающих панелей, Right-Radiant® предлагает больше, чем просто возможности обогрева помещений, включая тротуары, проезды и многое другое.

Оцените затраты с помощью функции «Быстрое предложение» в Right-Radiant® без рисования плана помещения. Режим Quick Quote был разработан для оценки с первого прохода, это способ оценки проекта без предварительного проектирования со спецификацией материалов.Просмотрите образец отчета Right-Radiant ® .

Мгновенное создание ведомости материалов. Используйте Right-Radiant ® в сочетании с Right-Proposal ® для создания разноса деталей.

Сохраните предпочтения для будущих вакансий. Right-Radiant ® , как и большинство других продуктов Right-Suite Universal, имеет возможность сохранять общие свойства в библиотеке настроек для использования в будущих проектах.

Запишите схему лучистого света в файл САПР. Вы можете использовать эту функцию, если вы сначала импортировали файл САПР.

  • Связанные вычисления обеспечивают большую точность и экономию времени для проектировщика. Фактически, им никогда не нужно выходить из программы со всеми вычислениями, связанными с чертежом, данные никогда не нужно извлекать для изменения.
  • Простой в использовании модуль интегрируется с другими модулями Right-Suite® Universal.
  • Создание точной схемы расположения трубопроводов от коллектора до контуров с точным перечнем материалов.
  • Возможности Snow Melt.
  • Просто добавьте панели и соедините коллекторы, все остальные расчеты основаны на предварительно заданных предпочтениях и расчетах нагрузки из вашего плана этажа.
  • Рассчитывает расход, длину контура, расположение контуров и давление напора, даже если требуется дополнительное тепло.
  • Настраиваемые параметры для каждой панели и петли.
  • Любое изменение настроек одновременно обновляет сам чертеж с помощью технологии Hotlink Technology ™. Эти мгновенные настройки позволяют подрядчику проигрывать «а что, если?». игры и быстро адаптироваться к изменениям в зависимости от предпочтений клиентов.
  • Сохраните общие свойства в своей библиотеке предпочтений для будущих заданий.
  • Оцените затраты с помощью «Quick Quote» без рисования плана этажа. Режим Quick Quote был разработан для оценки с первого прохода, это способ оценки проекта без разработки дизайна со спецификацией материалов.
  • Нам доверяют ведущие производители, включая Uponor (Wirsbo), Roth и Zurn.

Преимущества:

Устраните необходимость в дополнительных изделиях для рисования с излучением, сэкономьте время и улучшите качество макета с помощью этой универсальной программы.Связанные расчеты от нагрузок до типов материалов гарантируют большую точность и позволяют дизайнеру играть «а что, если?». игры и быстро адаптироваться к изменениям в зависимости от предпочтений клиентов.

Смесительные шунты для водяного теплого пола

Руководство по применению Проектирование водяного теплого пола — оптимальные результаты Польский Польша 06 октября, 2015

5.1 МБ

.pdf
Руководство по применению Проектирование водяного теплого пола — оптимальные результаты китайский (CN) Китай 04 декабря 2015

5.2 МБ

.pdf
Руководство по применению Проектирование водяного теплого пола — оптимальные результаты Финский Финляндия 06 октября, 2015

5.1 МБ

.pdf
Руководство по применению Проектирование водяного теплого пола — оптимальные результаты Немецкий Несколько 19 мая, 2017

2.7 МБ

.pdf
Руководство по применению Проектирование водяного теплого пола — оптимальные результаты Турецкий Турция 04 декабря 2015

3.6 МБ

.pdf
Руководство по применению Проектирование водяного теплого пола — оптимальные результаты Литовский Литва 04 декабря 2015

5.0 МБ

.pdf
Руководство по применению Проектирование водяного теплого пола — оптимальные результаты Датский Дания 19 сен, 2019

2.8 МБ

.pdf
Руководство по применению Проектирование водяного теплого пола — оптимальные результаты Русский Россия 04 декабря 2015

5.2 МБ

.pdf
Руководство по применению Проектирование водяного теплого пола (Руководство по применению) Английский Несколько 06 июл, 2021

8.1 МБ

.pdf
Каталог Гидравлический теплый пол — просто, проверено и выгодно Немецкий Австрия 29 октября 2014 г.

4.2 МБ

.pdf
Каталог Гидравлический теплый пол — просто, проверено и выгодно китайский (CN) Китай 01 декабря, 2015

5.9 МБ

.pdf
Каталог Гидравлический теплый пол — просто, проверено и выгодно Чешский Чешская Республика 24 октября 2014 г.

5.8 МБ

.pdf
Каталог Гидравлический теплый пол — просто, проверено и выгодно Литовский Литва 04 декабря 2015

5.6 МБ

.pdf
Каталог Гидравлический теплый пол — просто, проверено и выгодно Французский Франция 19 октября 2015 г.

7.5 МБ

.pdf
Каталог Гидравлический теплый пол — просто, проверено и выгодно Шведский Швеция 10 марта, 2015

5.8 МБ

.pdf
Каталог Гидравлический теплый пол — просто, проверено и выгодно Турецкий Турция 01 декабря, 2015

5.4 МБ

.pdf
Каталог Гидравлический теплый пол — просто, проверено и выгодно Русский Россия 01 декабря, 2015

5.8 МБ

.pdf
Каталог Гидравлический теплый пол — просто, проверено и выгодно Польский Польша 16 марта, 2016

5.7 МБ

.pdf
Каталог Гидравлический теплый пол — гид по продукции Датский Дания 14 августа 2017

5.0 МБ

.pdf
Каталог Водяной теплый пол (руководство по продукту) Английский Несколько 12 ноя, 2020

29.9 МБ

.pdf

Дизайн лучистого пола | Дизайн теплого пола

Проектирование эффективной и рентабельной системы лучистого теплого пола требует тщательного планирования и размышлений. Такие системы не производятся заранее и не проектируются заранее. Вместо этого каждая установка является индивидуальной и состоит из разных параметров и переменных.Факторы, которые необходимо измерить в процессе проектирования, включают: размер площади, площадь теплоотдачи и теплопотери. На основе этих данных производятся расчеты и составляется проект, в котором указываются требуемый размер и расстояние между трубами PEX, длина контуров, расход воды и температура системы. Рекомендуется использовать специальные программы проектирования, чтобы обеспечить точность и сэкономить время при разработке плана.

Хотя трубы потенциально могут быть проложены под всей поверхностью пола, их эффективное размещение может принести значительные выгоды.Например, нет необходимости прокладывать трубы PEX под кухонными шкафами. Принятие во внимание этого фактора не только сэкономит на стоимости труб во время установки, но, что наиболее важно, приведет к постоянной экономии за счет уменьшения размера петли и высвобождения тепловой энергии в тех областях, где она действительно эффективна. Для достижения наилучшего результата площадь, которая не будет отапливаться, не следует учитывать в плане; ее следует вычесть из общей площади, в результате чего получится скорректированная площадь этажа.

Следующим шагом является определение требуемой минимальной выходной мощности.Это может быть достигнуто путем деления общей потери тепла в зоне на скорректированную площадь пола. Как только величина требуемой мощности пола установлена, ее можно использовать для определения требуемой температуры поверхности пола.

После выбора подходящего размера трубки PEX, необходимая мощность пола используется для определения расстояния и максимальной длины контура (чем выше показатель btuh / sq.ft., Тем короче расстояние между трубками).

На этом этапе можно вычислить общее количество трубок, необходимых для установки.Это делается путем умножения доступной площади пола на коэффициент расстояния между трубками (который коррелирует с расстоянием между трубами).

Длину каждого контура и количество необходимых контуров можно также рассчитать, сначала разделив общую необходимую длину трубы на максимальную длину трубы (после округления результат будет представлять, сколько контуров необходимо), а затем разделив общее количество необходимых контуров на число. (округлено) необходимых контуров (это позволит установить фактическую длину контура). Следует отметить, что, хотя это и рекомендуется, цепи не обязательно должны иметь одинаковую длину.

При расчете идеальной температуры подачи в систему очень важным фактором являются материалы, которые используются для полов. Для материалов с высокой теплопроводностью потребуется более низкая температура, а для материалов с низкой проводимостью потребуется более высокая температура подаваемой воды. Как правило, чем выше значение R (термическое сопротивление) поверхности, тем выше требуется температура подаваемой воды).

Последней частью проектирования системы является определение расхода системы, потери напора в контуре и, наконец, что не менее важно, размера насоса.

Минимальная скорость системы измеряется галлонами в минуту (GPM) и обычно рассчитывается путем деления BTU на 10 000. GPM дополнительно делится на количество контуров, чтобы установить расход на контур.

Расход и размер трубки используются для расчета правильной потери напора в контуре. Что касается насоса, эффективный циркуляционный насос должен работать при требуемых потерях напора и расходах.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *