Установка котлов пиролизных: Монтаж и установка пиролизного котла: варианты подключений

Содержание

Как установить пиролизные котлы своими руками

В условиях постоянного удорожания энергоносителей, приходится уделять серьёзное внимание выбору отопительных котлов и других устройств, обеспечивающих выработку достаточного количества тепловой энергии с минимальными потерями. Среди используемых источников энергии можно выделить газ, электричество, жидкое и твёрдое топливо.

Чаще всего используются устройства, работающие на газу, однако последнее время пользователи обращают пристальное внимание на пиролизные котлы отопления, или газогенераторные котлы. Основной особенностью этих устройств является высокая эффективность, к тому же можно легко установить пиролизные котлы своими руками. Для этого не обязательно привлекать специалистов, достаточно ознакомиться с основными рекомендациями и тщательно изучить одну из предлагаемых схем подключения.

Устройство и принцип действия пиролизных котлов

Пиролизный котёл промышленного производства

В основе работы газогенераторных котлов лежит принцип пиролиза, который заключается в том, что под воздействием высокой температуры при ограниченном доступе кислорода происходит разложение топлива на пиролизный газ и твёрдый остаток топлива. В основной камере происходит тление твёрдого топлива при температуре, достигающей 800 градусов. В результате этого выделяется тепло, необходимое для нагрева теплоносителя. Однако если в устройствах, имеющих традиционную конструкцию, выделяемый в результате горения газ, сразу удаляется через дымоход, в данных устройствах он смешивается с кислородом, который подаётся принудительно и догорает во второй камере. Здесь же происходит дополнительный нагрев воды, выполняющей чаще всего роль основного теплоносителя.

Учитывая высокую стоимость теплоноситель, приходится обращать внимание на альтернативные источники энергии. К таким устройствам можно отнести пиролизные котлы, которые помимо традиционной древесины и угля могут использовать различные виды твёрдого топлива, которые являются недорогими и доступными.

По сравнению с котлами, работающими по традиционной схеме, газогенераторные котлы имеют целый ряд преимуществ, среди которых можно выделить следующее:

  1. Высокий КПД, а в некоторых устройствах данного типа этот показатель превышает 80%, в то время как в других устройствах это обычно 60-70% и даже меньше.
  2. Минимальное количество вредных отходов, чему способствует взаимодействие пиролизного газа и активного углерода, что на треть сокращает выброс в атмосферу вредного углекислого газа.
  3. Универсальность пиролизных котлов, которая заключается в возможности использования различных видов твёрдого топлива, среди которых древесина, древесные пеллеты и даже опилки.
  4. Лёгкое обслуживание, заключающееся в том, что загрузка топлива во многие газогенераторные котлы происходит не чаще 1 раза в сутки.
  5. Доступная цена – учитывая тот факт, что эффективность котлов, работающих на основе пиролиза, гораздо выше даже традиционных газовых котлов, а стоимость отходов производства деревообрабатывающих предприятий и вовсе незначительна, можно отметить, что использование пиролизных котлов способно приносить ощутимый экономический эффект.
  6. Минимальное количество твёрдых отходов горения – золы и сажи, что облегчает обслуживание котлов.

Несмотря на это стоит отметить, что при работе пиролизных котлов следует учитывать, что не любое топливо подходит для их работы. В частности, чаще всего для работы котлов пиролизного типа, используемых для обогрева дома, используется древесина. Однако не любая древесина будет одинаково пригодной. Суть процесса пиролиза заключается в том, чтобы выделялось как можно больше горючих летучих веществ, а это возможно только в том случае, если влажность древесины имеет небольшие значения – не более 20%. В противном случае эффект пиролиза достигнут не будет и эффективность такого котла будет гораздо ниже. Кроме этого, пиролизные котлы, изготавливаемые промышленным способом, напрямую зависят от электроэнергии, необходимой для организации подачи воздуха. В случаях отключения последней, они могут в лучшем случае работать только на поддержание температуры, нисколько не обогревая помещение.

Можно ли сделать пиролизный котёл самостоятельно

Пиролизный котёл, изготовленный в домашних условиях

Многие считают, что подключение и настройка такого сложного устройства как пиролизный котёл представляет собой сложный процесс, который смогут произвести только специалисты. Однако, как часто показывает практика, установка такого котла производится намного легче, чем газового котла отопления. Кроме того, что существует традиционная схема подключения пиролизного котла, произведённого серийно, существуют различные схемы, позволяющие не только самостоятельно подключить, но и изготовить газогенераторный котёл своими руками.

Прежде чем покупать пиролизный котёл промышленного производства и привлекать к его подключению специалистов, услуги которых стоят не дёшево, стоит просчитать предстоящие расходы. Как правило, устройство отопительного котла своими силами обойдётся на половину дешевле, не говоря уже о тех случаях, когда вы сможете изготовить такой котёл самостоятельно. Сейчас можно найти готовые чертежи пиролизного котла, а можно, проявив некоторую фантазию, изготовить схему котла самостоятельно. Кстати, некоторые устройства, разработанные домашними умельцами, значительно превосходят те модели, которые собираются в условиях производства.

В частности, стоит отметить котлы Blago, разработчиком которых является Ю.П.Благодаров. Основным достижением конструктора стал главный упор на обеспечение естественной тяги, что обеспечивает более длительное горение и максимальный экономический эффект – КПД таких котлов гораздо выше даже самых эффективных котлов, изготавливаемых промышленным способом. Этому же способствуют и некоторые конструктивные элементы (перемычки), позволяющие сохранять тепло.

Схемы подключения пиролизных котлов

Существует большое количество схем подключения пиролизных котлов, среди которых можно выделить простые системы, а также системы, предусматривающие наличие специальных аккумулирующих ёмкостей, которые в экстренном случае способны обогревать помещение на протяжении двух суток. Таких схем не менее сорока, но неизменными всегда являются, помимо самого котла, элементы обвязки котла. К их выбору надо подходить крайне серьёзно.

Для того чтобы обеспечить эффективную работу котла важно правильно подобрать трубы, фитинги, фильтры, отводы и обратные клапаны, представляющие особый интерес в плане безопасности. Немалое значение имеет выбор циркуляционного насоса и бака-расширителя. Что касается насоса, то стоит обратить внимание на устройства немецкого производства. Они стоят несколько дороже, но являются более долговечными и имеют лучшие показатели относительно производительности.

Когда все элементы системы отопления подобраны, можно приступать к монтажу котла по одной из имеющихся схем. Можно для этого привлечь специалистов, но гораздо дешевле выполнить все работы самостоятельно, ведь стоимость монтажных работ часто превышает стоимость котла и элементов обвязки котла вместе взятых. Однако стоит отметить, что для этого надо иметь определённые навыки, и не стоит забывать о той степени опасности, которую таят в себе котлы отопления, даже такие безопасные, как газогенераторные котлы.

Монтаж твердотопливного котла. Интсрукция по установки пиролизных котлов своими руками

Весь процесс заключается в установке твердотопливного котла, настройке и подключении всех частей отопительной системы помещения. Как правило, фирменные котлы монтируются сертифицированными специалистами, прошедшими обучение в специальных центрах. Это гарантирует правильное подключения котла и настройку всей автоматики. Так как твердотопливные или пиролизные котлы имеют малые габариты и небольшой вес, то монтаж не представляет труда. Для котла выбирается специальное хорошо проветриваемое нежилое помещение. Там же помимо отопительного агрегата монтируют аккумулирующие баки, которые позволят котлу работать в полную мощность и использовать образующуюся тепловую энергию не только на нужды отопления, но и горячего водоснабжения.

Монтаж твердотопливного котла в частном доме, дачи проходит с соблюдением определенных правил. Отопительный агрегат рекомендуется устанавливать на бетонный постамент высотой 5 см, чтобы защитить котел от воздействия воды, в случае аварии системы отопления. По сути, помещение, где устанавливают котел, представляет собой котельную, а значит, обязательно создаются безопасные условия. Пиролизный котел должен быть установлен в легкодоступном месте. Нередко в этом же помещении устанавливают вместительные бункеры для топлива. Вентиляционные отверстия в помещении должны обеспечивать постоянный приток свежего воздуха. Запрещается хранить взрывоопасные вещества и предметы бытовой химии.

Монтаж системы отопления твердотопливным котлом украинского производства выполняется в гидравлической системе, где есть все приборы безопасности, предусмотренные проектом и инструкцией по установке котлов. Важно также при монтаже использовать определенные отопительные узлы, которые сделают работу котла эффективной и позволят выявить все его ресурсы, заложенные в конструкцию. В отопительной системе твердотопливных котлов обязательно устанавливают открытый расширительный бак. Дело в том, что повышенные температуры создают очень большое давление на стенки теплообменника котла, что может привести к его взрыву. Также в отопительную систему устанавливают насосную группу, гидравлическую развязку и прочие важные элементы.

Установка пиролизных котлов своими руками обязательно предваряется тщательными расчетами используемых отопительных приборов. Современное жилище немыслимо без горячей воды, подогрева полов и прочих удобств, поэтому обязательно принимают в расчет мощность эксплуатируемых приборов и потребности жильцов. Это позволит безопасно и правильно эксплуатировать твердотопливный котел.


Порядок установки и указания по монтажу

Требования к месту установки

Котел устанавливается в отдельном помещении (котельной, топочной) с достаточным обеспечением воздухом, необходимым для процесса горения, на бетонном фундаменте в соответствии с проектом.

Не допускается установка котла в жилых и служебных помещениях.

Требования к помещению котельной (топочной) согласно «Правил устройства и безопасной эксплуатации паровых и водогрейных котлов» НПАОП 0.00-1.26-96 и СНиП ІІ-35-76.

Котел поступает без упаковки.

Указания по монтажу

Монтаж котла должен производиться специализированной организацией в соответствии с общими правилами техники безопасности, НПАОП, СНиП, требованиями настоящего руководства.

Котёл является полносборным, поэтому его монтаж производится на подготовленный фундамент типа “плита”.

Погрузочно-разгрузочные работы с котлом должны проводиться краном или манипулятором грузоподъёмностью не менее 10 т со строповкой за специальные петли.

Перед монтажом котла необходимо ознакомиться с настоящим руководством.

Смонтировать дымоход в соответствии с проектом котельной, обеспечив соблюдение следующих условий:
— дымоход должен быть подключен к дымовой трубе;
— при невозможности подключить котел непосредственно к дымовой трубе, переход «котел — дымовая труба» должен быть по возможности короче, с подъемом не менее 10% в сторону дымовой трубы и плавными поворотами;
— дымоход должен быть механически прочным и герметичным, для предотвращения проникновения в помещение топочных газов, но с возможностью внутренней очистки;
— площадь сечения дымохода должна быть не менее площади сечения дымоотводящего патрубка котла. Использование колен не желательно;
— дымовая труба должна обеспечивать необходимое разрежение за котлом и выброс продуктов сгорания в атмосферу, при всех возможных режимах работы котла;
— для регулирования тяги и закрывания дымохода предусмотреть установку шибера не уменьшающего сечение дымохода;
— разрежение дымовой трубы определяется ее сечением, высотой и шероховатостью внутренних стенок. Разрежение измеряется тягонапорометром (в комплект поставки не входит).

В качестве крайней меры для улучшения тяги возможно подключения котла к дымовой трубе через дымосос.

Над дверцей загрузочной камеры котла целесообразно оборудовать кожух с вытяжной вентиляцией для удаления дыма, появляющегося при загрузке топливом, при недостаточной тяге в дымовой трубе.

Произвести монтаж трубопроводов согласно проекта котельной (топочной) с установкой запорной и предохранительной арматуры.

Установить контрольно-измерительные приборы (КИП) согласно проекта котельной (топочной).
Произвести подключение котла к системе подпитки и слива котельной (топочной).

Проверка качества монтажа

После окончания монтажа котла необходимо:
— произвести подтяжку всех резьбовых соединений;
— опробовать работу механизмов и элементов управления котла;
— произвести испытание гидросистемы на прочность и плотность;
— промыть гидросистему котла;
— произвести настройку автоматики безопасности котла;
— оформить удостоверение о качестве монтажа (организация, производившая монтаж).

Правильность сборки составных частей и элементов проверять путем сличения с тех. документацией и проектом.
Опробование механизмов и элементов управления необходимо производить согласно указаниям настоящего руководства.

Испытание гидросистемы котла на прочность и плотность соединений проводить в следующем порядке:
— заполнить котел водой;
— осмотреть котел при статическом давлении воды: течи не допускаются;
— устранить обнаруженные неплотности в соединениях;
— нагрузить систему котла гидравлическим давлением, согласно проекта котельной, но не более 0,45МПа (4,5 кгс/см2 ) в течении не менее 10 мин. с температурой воды 50С < tв 0С < 400С.

Примечание: котел в сборе считается выдержавшим гидравлические испытания, если не обнаружено трещин, признаков разрыва, течи, слезок и потения на основном металле и сварных соединениях, остаточных деформаций.

Промыть гидросистему котла, заполнив его водой и через сливной кран производить слив воды до прекращения выхода загрязнений.

Пробный пуск котла

Перед растопкой котла необходимо:
— ознакомиться с назначением органов управления и безопасности котла;
— убедиться, что гидросистема котла полностью заполнена водой и подсоединена к потребителям;
— освободить котел и его составные части от посторонних предметов и мусора, оставшегося после монтажа;
— убедиться в закрытии люков чистки;

Растопить котел согласно рекомендациям настоящего руководства.
Дождаться окончания горения.
После полного остывания котла устранить выявленные неисправности и отклонения от нормы.

Котел после монтажа на месте эксплуатации должен быть принят заказчиком с составлением акта приемки котла в эксплуатацию.


Установка твердотопливного котла – монтаж ТТ-котла своими руками

Из-за приличных размеров и веса отопительные агрегаты, сжигающие твердое топливо, выпускаются только в одном исполнении — напольном. Зато перед монтажом не нужно получать каких-либо разрешений, главное — соблюсти элементарные правила безопасности и удобства обслуживания. Этот вопрос мы и обсудим в данной публикации: рассмотрим, как правильно делается установка твердотопливного котла и подключение к водяной системе отопления частного дома.

Инструкция по монтажу дровяного котла

Независимо от того, какую разновидность ТТ-котла вы купили – прямого горения, пиролизный или пеллетный, порядок установки остается неизменным и состоит из таких этапов:

  1. Выбор конкретного места в частном доме под размещение теплогенератора.
  2. Подготовка помещения к установке.
  3. Устройство приточно-вытяжной вентиляции.
  4. Инсталляция отопительного агрегата и дымохода.
  5. Подключение к системе отопления (обвязка) и проверочный запуск.

Идеальная котельная от нашего эксперта Владимира Сухорукова. Тяжелое оборудование стоит прямо на бетонном полу

Примечание. В зависимости от модели дровяного либо угольного котла может понадобиться присоединение к электрической сети.

Первые 3 пункта списка относятся к подготовительным работам, что вовсе не умаляет их значимости. Если неправильно выбрать месторасположение агрегата и не предусмотреть нормальной вентиляции, то возникающие проблемы вам придется решать в процессе эксплуатации, посреди отопительного сезона. Так что предлагаем разобрать каждый пункт в отдельности.

Для верного подбора источника тепла по мощности рекомендуем сделать расчет тепловой нагрузки на отопление, воспользовавшись подходящей методикой.

Где лучше поставить ТТ-котел

Примечательно, что ни в одной стране бывшего СССР по сей день не разработано конкретного нормативного документа, регламентирующего монтаж котлов на твердом топливе в частных и многоквартирных домах. Основная часть требований изложена в СНиП «Отопление и вентиляция», отдельные нормы встречаются в документе СНиП 31–02-2001 «Одноквартирные дома» (для России) и в прочих разрозненных актах.

Пример установки пиролизного теплогенератора с удобным доступом к расширительному баку и дымоходу

Справка. Многие интернет-ресурсы отсылают нас читать громадный СНиП «Котельные установки», не учитывая, что его действие распространяется на теплогенераторы мощностью свыше 360 кВт (п. 1.2). Другие предлагают нам руководствоваться правилами для газовых отопителей. Оба варианта ошибочны: требования к размещению бытовых ТТ-котлов не столь жесткие.

Мы проанализировали нормативную документацию, касающуюся размещения дровяных водогрейных отопителей, прибавили к ним практический опыт наших экспертов и составили перечень рекомендаций по расположению агрегата:

  1. Использование дров, угля и даже брикет с пеллетами предполагает повышенную запыленность, а в процессе топки внутрь помещения попадает дым в разных количествах. Поэтому ставить котел в дом крайне нежелательно, хоть нормы и дозволяют размещение на кухне, в коридоре и других комнатах, кроме спален.
  2. Лучшие места для твердотопливного теплогенератора: котельная на улице (обособленная либо пристроенная к существующему зданию), техническое помещение внутри дома, подвал или гараж. Крайний вариант – хорошо проветриваемый коридор.

    Удачное решение – пристроить твердотопливную котельную из пеноблоков к стене жилого дома

  3. Агрегат желательно ставить поближе к внешней стене, чтобы не прокладывать длинный горизонтальный участок дымохода или не выводить его наружу сквозь перекрытия.
  4. Чтобы обслуживать и чистить теплообменник ТТ-котла, обеспечьте к нему доступ с нужных сторон. В идеале спереди должно быть не меньше 1 м свободного пространства, а по бокам и сзади – 60 см (минимум — 25 см).

    Схема установки с допустимыми расстояниями до стен и потолка котельной

  5. Не рассчитывайте подключить газоход дровяного отопителя к кирпичным вентиляционным каналам внутри стен, это категорически не допускается.

Совет. Перед тем как приобрести и установить котел длительного горения типа Stropuva, сопоставьте его высоту с помещениями. Обдумайте расположение другого крупногабаритного оборудования – теплоаккумулятора, буферной емкости и бойлера косвенного нагрева.

Когда места в топочной не хватает, котел устанавливается ближе к стене, чтобы обеспечить проход

В топочных малой площади придвигайте котел необслуживаемой стороной к одной из стен (минимальный отступ – 10 см), а сзади оставьте проем шириной не меньше 250 мм, как сделано на фото.

О подготовке помещения

Что необходимо сделать, перед тем как установить ТТ-котел в предназначенное помещение дома:

  • предусмотреть основание и при необходимости отлить бетонный фундамент;
  • пробить в стене отверстия для дымоходной трубы и вентиляции;
  • стены и полы, построенные из горючих материалов, защитить от возгорания листами металла, асбестоцемента, базальтового картона или минерита.

Рекомендация. Если в топочной сделано только освещение, то подведите туда электрическую линию от розеточной сети. Все равно придется запитать циркуляционный насос, а то и автоматику нового теплогенератора.

Пример защиты деревянных перегородок и пола рядом с дровяным котлом

Деревянную обшивку стен и пола отдирать не обязательно. Если котел придвинут к горючей стене ближе, чем на 38 см, закройте последнюю одним из перечисленных выше материалов. Такой же лист уложите на пол снизу и перед ТТ-котлом с выступом на 80 см. Это защита от вылетающих из открытой дверцы частичек жара.

По поводу фундамента, требуемого всеми производителями в инструкции по эксплуатации, дадим такие рекомендации:

  1. Маломощные отопители весом до 200 кг спокойно ставьте на цементную стяжку. Если она устроена правильно, то без проблем выдержит такую нагрузку.

    Пиролизный котел Atmos 90 кВт с чугунным теплообменником нужно ставить на железобетонное основание

  2. Установка твердотопливного котла весом до 300 кг потребует армированной железобетонной стяжки толщиной 10—12 см, а свыше 300 кг – отдельной фундаментной плиты.
  3. Пеллетные теплогенераторы, оборудованные подающим шнеком и электродвигателем, оказывают на основание вибрационную нагрузку. Значит, нужно отливать фундамент, изображенный на схеме.

Схема устройства фундамента под тяжелый дровяной котел

Совет. Небольшие ТТ-котлы допускается размещать на деревянном полу. Но сначала вам придется усилить этот участок своими руками, установив дополнительные лаги из бруса минимальным сечением 100 х 50 мм.

Если в котельной планируется ставить бак – аккумулятор и прочее тяжелое оборудование, нет смысла заливать фундаменты для каждой единицы. Сделайте промышленные полы – бетонную стяжку высотой 12 см с армированием металлическими стержнями диаметром 8—14 мм. Свяжите проволокой сетку с размерами ячеек 20 х 20 см и уложите ее на подушку из утрамбованного щебня, как показано на видео.

Как сделать вентиляцию в котельной

Воздухообмен в топочной организуется с целью:

  • обеспечить твердотопливному котлу нужное количество воздуха на горение;
  • выбросить наружу дымовые газы, случайно попадающие из топливника в помещение;
  • компенсировать удаленный воздух таким же количеством притока.

Для справки. Чтобы полностью сжечь 1 кг древесины, необходимо подать около 4.6 м³ воздуха. Горение 1 кг каменного угля потребует от 8 до 9 м³ в зависимости от сорта и качества.

Организовать приточно-вытяжную вентиляцию в котельной с твердотопливным агрегатом вам помогут следующие рекомендации:

  1. Вытяжное и приточное отверстие располагайте в разных концах топочной. Первое сделайте под потолком, а второе – в нижней зоне, поближе к ТТ-котлу.
  2. Не делайте вытяжку рядом с теплогенератором, оснащенным вентилятором – нагнетателем или дымососом, как показано на фото. Работающая турбина принудительно опрокинет тягу в воздуховоде и превратит вытяжку в приток.

    Здесь вытяжная решетка установлена неудачно, слишком близко к вентилятору. Во время работы турбины вытяжка становится притоком

  3. Если в котельную ведет дверь из дома, то приточную решетку лучше встроить в нижнюю часть ее полотна. Подача нагретого воздуха повысит эффективность сжигания дров.
  4. Поскольку львиная доля притока попадает в камеру сгорания, реагирует с углеродом дров и выходит наружу в виде углекислого газа, вытяжное отверстие надо сделать меньше приточного.

Сечение вытяжки рассчитывайте укрупненно: тепловую мощность отопителя умножьте на 8 и получите площадь проема в см².

Пример. Для котла 25 кВт сечение составит 25 х 8 = 200 см² или 0.02 м². Размеры вытяжного проема определить несложно – 10 х 20 см (0.1 х 0.2 м). Для притока возьмите решетку 15 х 20 см.

Видео: варианты размещения отопительного агрегата

Монтируем теплогенератор и дымоход

Как таковой монтаж котла отопления на пол или фундамент сложности не представляет – агрегат надо выставить в проектное положение и выровнять по вертикали за счет регулируемых ножек либо металлических подкладок. Скрупулезно выдерживать соосность дымоходного патрубка и отверстия в стене необязательно: они без проблем совмещаются за счет поворота колен.

Важный момент. Чтобы во время эксплуатации не возникало проблем с образованием конденсата, дымоход дровяного отопителя настоятельно рекомендуется собирать из утепленных труб – сэндвичей. Второй вариант – изготовить дымоход своими руками: взять обычную трубу и обшить ее базальтовым волокном.

Заводские и самодельные сэндвич-трубы для дымохода

Проще всего смонтировать наружный дымоходный канал приставного типа. То есть, прикрепить трубу вертикально к стене и присоединить газоход от ТТ-котла через тройник. В деревянном доме проход сквозь наружную стену или перекрытие для вывода на кровлю выполняется с соблюдением правил пожарной безопасности по следующей технологии:

  1. Вырежьте в перегородке квадратный проем, чьи размеры больше внутренней дымоходной трубы на 38 см в каждую сторону. Например, если диаметр канала равен 100 мм, а толщина утеплителя сэндвича составляет 5 см, то размер проема выйдет 100 + 380 х 2 = 860 мм.
  2. Установите проходной узел из оцинкованной стали в виде короба.
  3. Пропустите через него сэндвич – трубу, а пустоту заполните базальтовой ватой.
  4. Закрепите наружную крышку узла.

Примечание. Сквозь стену из кирпича или пеноблока дымоход прокладывается с применением стальной гильзы и уплотнения.

Схема сборки и подключения приставного дымоотвода из сэндвича

Дальше перечислим требования, которые необходимо выдержать при монтаже дымоходного канала:

  • число поворотов трубы – не более трех, минимальная высота (считается от колосниковой решетки котла) – 5 м;
  • секции (модули) стыкуются между собой таким образом, чтобы конденсат мог стекать внутри трубы, а дождь – снаружи;
  • горизонтальную часть монтируйте с небольшим уклоном в сторону теплогенератора;
  • в нижней части установите ревизионный люк и сборник для конденсата;
  • чтобы не пришлось пересекать кровельный карниз, обойдите его трубой с использованием двух колен 30°;

    Чертеж газохода, прокладываемого от котла внутри дома с выходом через кровлю

  • стеновые кронштейны не должны совпадать со стыками секций дымохода;
  • на оголовок дымохода поставьте колпак в виде конуса либо вращающегося флюгера.

Правильная установка и сборка модульного дымохода отражена на двух схемах подключения, где показана наружная и внутренняя прокладка сквозь перекрытие.

Минимальная высота оголовка трубы в зависимости от расстояния до конька крыши

Важное замечание. Проследите, чтобы оголовок дымоходного канала не оказался в зоне ветрового подпора крыши вашего или соседнего дома. Чтобы тяга была устойчивой, поднимите трубу до отметки, показанной выше на схеме.

Подключаемся к системе отопления

Когда установка твердотопливного агрегата и монтаж дымохода завершены, переходите к обвязке котла. Здесь действует главное правило: в работающий теплогенератор (особенно с чугунным теплообменником) не должна попадать холодная вода. Тогда на стенках топливника от перепада температур образуется конденсат, превращающийся в вязкую корку после перемешивания с сажей.

Для справки. Липкий налет тяжело счищается, вдобавок он заметно снижает КПД твердотопливной установки.

Выделение конденсата при работе твердотопливного котла сводится к минимуму с помощью типовой схемы обвязки с байпасом и трехходовым клапаном, настроенным на фиксированную температуру теплоносителя 50 или 55 °С. Вода циркулирует по малому кругу до тех пор, пока не нагреется до указанной температуры, потом клапан начинает подмес холодной воды из системы отопления.

Все тонкости подключения котла на твердом топливе изложены в отдельной публикации. Там же приведены схемы обвязки отопителя с буферной емкостью и параллельными источниками тепла – газовым и электрическим.

Совет. Выполняя обвязку пеллетного котла, обратите внимание на присоединение блока управления и горелки. В изделиях европейских производителей встречается система автоматического пожаротушения, запитанная от водопроводной сети. Чтобы не наделать ошибок, перед монтажом пеллетного ТТ-котла стоит проконсультироваться с техническим специалистом данного бренда.

Ваша задача – установить запорную арматуру, расширительный бак для закрытой системы отопления и циркуляционный насос в соответствии со схемами, заполнить трубопроводную сеть и создать в ней давление около 1 Бар. Дальше – пробная растопка и проверка работоспособности. Полный комплекс работ по монтажу котла на дровах отражен в очередном видео:

Заключение

С одной стороны, установка твердотопливного водогрейного котла – процедура довольно простая в исполнении, жестких требований к ней не выдвигается и разрешений от чиновников не требуется. С другой стороны, процесс хлопотный и трудоемкий, связанный с тысячей мелких нюансов. Впрочем, у домовладельца всегда есть выбор: выполнить все работы самостоятельно или отдать какую-то часть (например, обвязку) обученному персоналу специализированной фирмы.

Пиролизные котлы, пиролизные котлы длительного горения, правильная установка.

Доступным и дешевым вариантом появления в частном доме отопительного котла можно назвать устройство пиролизного котла, изготовленного и установленного собственноручно. Доскональное изучение особенностей компоновки, пара отработанных газовых баллонов и вот уже в небольшой уютной котельной пыхтит котел обогрева. Как осуществить многовековую мечту миллионов людей, замерзающих от холода?

Что представляет собой пиролизный котел

Среди разнообразия отопительных котлов повышенным спросом пользуются твердотопливные котлы. Пиролизный котел является разновидностью твердотопливных агрегатов, основным топливом которого являются древесные отходы, щепа и топливные брикеты.

Принцип работы котла основан на принципе сухой перегонки топлива при экзотермическом процессе. Не вдаваясь в подробности и детали газогенераторного процесса добавим, что у котлов пиролизного горения мощный КПД, достигающий 95%.

При качественном топливе такой КПД достижим уровня коэффициента пеллетных котлов. Пиролизные котлы можно назвать находкой для частных домов и коттеджей, обеспечивающих такие преимущества проживания:

•        незначительное потребление дешевого топлива

•        длительный промежуток времени горения при топливной загрузке

•        экологичное и качественное сжигание топлива

•        низкая зольность отходов

•        высокий КПД.

Естественно, эффективность работы котлов зависит от используемой схемы подключения и принципа работы пиролизного котла.

конструкция котла длительного горения: особенности компоновки

Конструктивно котел состоит из следующих элементов:

•        корпуса из стальных листов

•        топочной камеры, оборудованной дверцей очистки и воздушным окном

•        теплообменника с водяным контуром

•        теплоизоляционной прокладки и дымоудалителя

•        автоматики контроля с индикацией управления.

Технические характеристики пиролизных котлов

Основными техническими характеристиками котлов являются:

•        тепловая мощность и  КПД

•        размеры и объем топки

•        вид тяги дымохода

•        предписанный вид топлива.

Поэтому при выборе котла необходимо обращать на данные параметры особое внимание. Кроме того, учитывая сложность нагревательного агрегата, рекомендуется изучить особенности компоновки.

Особенностью компоновки пиролизного котла является наличие в конструкции двух камер сгорания (для сравнения: у твердотопливных агрегатов одна камера сгорания). Кроме того, для создания пиролизных котлов с контуром охлаждения необходимо установить охлаждающий змеевик.

камеры сгорания – расположение и маршрут топлива

Расположение камер сгорания зависит от конструкции подачи воздуха: принудительной подачи или естественной тяги.

По варианту принудительной вентиляции камера газификации расположена внизу, а сверху находятся камеры сгорания и дожигания. Масса воздуха следует по топливному маршруту сверху — вниз.

При естественной тяге камеры сгорания расположены в корпусе котла одна над одной, с верхней камерой газификации. Камеры сгорания изготавливают из жаропрочной легированной стали толщиной 5 мм. Воздушная масса проходит по топливному маршруту снизу – вверх.

Утрированно пиролизный котел представляет собой знаменитую печь-буржуйку. Поэтому важным этапом является организация способа подачи воздуха, поддерживающего горение.

организация способа подачи воздуха

Способ подачи воздуха в камеры пиролизного котла длительного горения осуществляют принудительной подачей и по естественной тяге дымохода.

Принудительный тип воздухоподачи  можно осуществить такими способами:

•        установки вентилятора в режиме нагнетания

•        монтажа дымососа на выходе камеры.

Подскажем, что создание принудительного способа подачи воздуха потребует определенных знаний и навыков.

Принцип работы котла доходчиво показан в этом видео.

Установка пиролизных котлов от производителя

Основными производителями пиролизных котлов являются:

•        Atmos

•        Bosch

•        Buderus

•        Viadrus

•        Verner.

Процесс установки пиролизных котлов от производителя ужасно дорогой, как, впрочем, и стоимость самого котла. Но окоченевшим от холода рукам домашних Мастерам не терпится соорудить печь своими руками.

Водяной бубафоня с ускорителем на опилках

материалы для изготовления

Самодельный пиролизный котел «бубафоня» это уникальное для века предложение, как iPhone, и доступное к исполнению изобретение народных умельцев. Для создания печи потребуется газовый баллон емкостью 50 литров от пропан-бутана, стальной лист, предназначенный для вырезания 2-х кругов, соответствующих диаметру газового баллона.

Потребуются также полосы металлические толщиной до 4 мм и шириной 40 мм для лопастей и арматурные пруты 14 мм для решетки, располагаемой над камерой сгорания.

принцип действия

Принцип работы котла, назовем его так — «Буб iPhone»,  гениально прост. Лопасти, расположенные на нижнем «блине» трубы, являются генератором вихревых потоков поступающего по трубе воздуха. Преграда по маршруту следования воздушных масс препятствует появлению огня под трубой.

Топливо (в большинстве случаев это сухие древесные опилки) лишь тлеет под сопротивлением поршня, получая приток воздушных масс из трубы. Водяные и газовоздушные пары, испарившиеся в процессе тления, конденсируются в приваренной вертикальной трубе котла.

устройство котла

Устройство котла состоит из этапов:

•        изготовление топки

•        изготовление крышки и прижимного круга

•        изготовления дымохода и дверки.

Газовый баллон обрезаем с использованием болгарки по верхней части от начала округления. В дальнейшем верхнюю часть можно использовать в качестве крышки. Для этого разрез шлифуют для создания герметичного соединения. Сверку вырезаем отверстие для установки трубы дымохода (поршня). Зазор должен составлять 2-3 мм. Крышку обвариваем по диаметру стальной полосой. Если предполагается изготовить печь с охлаждением (водяной рубашкой), то для создания пиролизного котла с водяным контуром потребуется дополнительный наружный цилиндр.

Для этих целей можно использовать трубу внушительного диаметра с толстыми стенками.

Необходимо помнить, что разность диаметров труб создает двухступенчатую тягу, а прямой угол дымохода трубы понижает скорость выведения газовоздушной смеси. Поэтому, боковой вывод трубы может достигать 0,15 м, а вертикальный – 0,20 м. Понижение давления смеси поддерживает процесс пиролиза в течение 10 часов.

Затем с использованием сварочного аппарата из арматуры изготавливаем решетку, которая обеспечит разложение истлевшего топлива в низ камеры сгорания. Для очистки зольной камеры в нижней части баллона необходимо предусмотреть дверцу с плотным притвором.

Как изготовить пиролизный котел собственноручно, представлено здесь.

Монтаж пиролизного котла во Львове и Львовской области

Монтаж пиролизных котлов в исполнении нашей компании «Теплософт» — это оптимальный температурный микроклимат в различных помещениях при разумных затратах топлива и труда.

Подключение пиролизного котла стало выгодным в обеспечении обогрева помещений. Для понимания его выгодности  нужно разобраться с тем, что же это такое, называемое пиролизом.

Пиролизные котлы на просторах нашей страны используется совсем недавно, но практика показывает, что оно становится более востребованным. Львов также не отстает, прибегая к нашей услуге — монтаж пиролизных котлов.

Установка пиролизного котла: как проходит горение

Схема, по которой компанией выполняется установка пиролизного котла в частном доме, позволяет понять процесс самого горения, имеющие определенные особенности.

Внутри такого котла температурный показатель достигает 1200 град. Вторым плюсом является длительное горение. Если осуществить полную загрузку, то пользователь избавляется от необходимости следить за процессом на протяжении нескольких часов, порой на протяжении более суток. В отличие от открытого горения в топки дрова не нужно подбрасывать постоянно.

Обязательными также является следование строгим правилам техники безопасности. К тому же, устройство пиролизного типа не всеядно. Топливо требуется невысокой влажности, иначе драгоценная теплоэнергия частично будет уходить на сушку топлива, а не на нагревание носителя.

Вполне закономерным является вопрос относительно того, сколько стоит установка пиролизного котла. Удовольствие не из дешевых, но последующая работа и обеспечиваемый комфорт подтверждает, что затраты оправданы.

В пиролизном оборудовании, благодаря специальным условиям процесса горения, обеспечивается получение максимально возможных объемов тепла. И получают его из дров, которые обычно тепла выделяют немного.

Установка пиролизного котла в частном доме позволяет получать отопление с агрегатами, в которых для сжигания топлива используются закрытые камеры для загрузки твердого топлива, т.е. не только дров, но и пеллет, древесных отходов, опилок. После поджигания такого топлива сокращаются потоки воздуха в камеры.

Окислительные процессы, происходящие при горении, требуют присутствия кислорода в воздухе. Когда его мало, то происходит медленное сгорание топлива, выделяется теплоэнергия, образуется зола и горючий газ. Но это не окончание пиролиза. Газ сгорает при смешивании с воздухом.

Заказав у нас монтаж пиролизного котла, клиент получает отопительную систему, выделяющую больше теплоэнергии, нежели при использовании стандартного генератора тепла. В сравнении с «собратьями» на твердом топливе пиролиз обеспечивает отличный КПД и экономию на обогреве.

Пиролизные котлы: конструкция и функционирование

Установка пиролизного котла подразумевает использование агрегата, разделенного на 2 отделения. Первое используется для сгорания дров, а второе – для вторичного сжигания смеси воздуха и газов.

Между отделениями размещается решетка. На нее укладываются дрова. Нагнетание воздуха выполняется вентилятором принудительно. Может использоваться для этого и дымосос.

Принудительная вентиляция – главное отличие пиролизных котлов от стандартных вариантов оборудования на твердых видах. Корпусы выполняются из двух, встроенных одна в другую, частей. Пространства, имеющиеся между ними, заполняются теплоносителями.

После загрузки первого отделения топливом включается вентилятор и поджигается топливо. Газы, образующиеся при этом, направляются во вторую часть, где происходит их сгорание в смеси с воздухом.

Установка пиролизного котла требует иметь в виду тот факт, что бюджетные маломощные модели могут работать только на дровах. Загрузка должна быть максимальной, что способствует образованию сажи и золы в больших количествах.  Это оказывает негативные воздействия на весь агрегат.

Особенности монтажа пиролизного котла

После подготовки помещения для котельной может выполняться установка пиролизного котла в частном доме. Потребность в отдельном  помещении возникает потому, что должно обеспечиваться  размещение всего оборудования которое обеспечивает оптимальное функционирование отопления.

В таком случае будет легче, и обслуживать котлы и составляющие, к которым обычно относят емкость расширительную, насос циркуляционного типа, различные приборы, датчики. Стоимость подключения пиролизного котла при этом, конечно же, повышается.

Котельная должна также иметь место, в котором будут храниться запас дров. В помещении, где осуществлено подключение пиролизного котла, обязательным является качественная вентиляция, поскольку в противном случае вряд ли будет достигнута максимально эффективная функциональность. Все нюансы лучше учитывать до того, как начинается  монтаж пиролизного котла.

Наши специалисты обеспечивают учет всех нюансов на стадии разработки проекта. Они также определяют, сколько стоит установка пиролизного котла. Компания «Теплософт» — это только обоснованные цены. Никаких накруток в процессе работы никогда не возникает.

Монтаж котла пиролизного типа во Львове и области не составляет для нас никаких трудностей, поскольку у нас есть большой штат квалифицированных работников.

Схема подключения твердотопливного котла отопления (схемы, видео)

Твердотопливный котел является отопительным устройством, которое требует квалифицированного, обдуманного и спроектированного подхода к его монтированию и дальнейшей эксплуатации. В противном случае владельцы такого отопления не смогут добиться от него той экономии и комфорта, которая ими ожидалась.

Схема твердотопливного котла в разрезе.

Чтобы обеспечить максимальный уровень комфорта, необходимо правильно подключить твердотопливный пиролизный котел. При эксплуатации таких установок нужно придерживаться некоторых правил:

  • во избежание возникновения конденсата температура обратной линии подачи воды не должна быть ниже 50°C;
  • температура прямой воды не должна бить выше 110°C;
  • давление в системе не должно превышать 1,3 атм;
  • обязательное использование группы безопасности твердотопливного пиролизного устройства (автоматическая подача холодной воды, когда ее температура достигает значения в 95°C).

Существуют различные варианты подключения пиролизных установок.

Схема подключения пиролизного котла с бойлером для водоснабжения

Такая схема показана на Рис. 1, где:

Современные твердотопливные котлы оснащены системой регулирования температурного режима.

  1. КК – котловой коллектор.
  2. КВ – колпачный вентиль.
  3. РБ – расширительный бачок.
  4. ПК – предохранительный клапан.
  5. ОП – отопительный прибор.
  6. ТВ – термостатический вентиль.
  7. ТС – термостатический смеситель.
  8. ВО – воздухоотводчик.
  9. ВН – бойлер косвенного нагрева.
  10. ЦН – циркуляционный насос.
  11. ОЛ – обратная линия.
  12. ПЛ – прямая линия.

Подмес холодной воды в систему отопления производится с использованием трехходового вентиля с регулятором температуры. В связи с тем, что такая схема не имеет ограничения на гидравлическое сопротивление арматуры и трубопроводов, с ее использованием становится возможным контроль теплоотдачи отопительных приборов с помощью термостатических вентилей. Однако из-за неправильной регулировки существует возможность перегрева котла, что негативно сказывается на его работоспособности. Во избежание такой ситуации твердотопливная установка оснащается аварийным теплообменником, либо в нее устанавливается группа безопасности.

Основной «минус» использования отопительной системы по такому варианту – ограниченные возможности по регулированию его теплоотдачи: загрузить и разжечь установку можно только вручную, а процесс горения можно только несколько приглушить, но не остановить. Данный нюанс устраняется с помощью бака-аккумулятора, который может сохранять выделяемое от сгорания тепло и отдавать его в систему по мере необходимости.

Вернуться к оглавлению

Схема подключения пиролизного котла отопления с баком-аккумулятором

Подключение твердотопливных котлов можно проводить по схеме, которая показана на Рис. 2, где:

Схема классического твердотопливного котла.

  1. КВ – колпачный вентиль.
  2. РБ – расширительный бак.
  3. ПК – предохранительный клапан.
  4. ОП – отопительный прибор.
  5. ЦНО – циркуляционный насос отопления.
  6. КТ – комнатный термостат.
  7. ТВ – термостатический вентиль.
  8. ТС – термостатический смеситель.
  9. ВО – воздухоотводчик.
  10. БА – бак-аккумулятор.
  11. ЦНК – циркуляционный насос.
  12. ОЛ – обратная линия.
  13. ПЛ – прямая линия.

В этом случае комнатный термостат будет регулировать температуру в помещении и при снижении ее до граничного значения открывать термостатический вентиль и освобождать накопленное в баке-аккумуляторе тепло.

Вернуться к оглавлению

Схема подключения пиролизного устройства к существующей системе отопления с газовым агрегатом

Подключить такой агрегат можно по схеме, которая показана на Рис. 3, где:

Схема работы пиролизного (газогенераторного) котла: 1 – Загруженное топливо (дрова), 2 – Первичный воздух, 3 – Вторичный воздух, 4 – Уходящие газы, 5 – Вентилятор, дымосос.

  1. Твердотопливный агрегат.
  2. Газовая двухконтурная установка.
  3. Термостатический смеситель.

При такой установке пиролизный агрегат применяется для генерации тепла в отопительной системе, а газовая установка обеспечивает горячее водоснабжение. Основной особенностью такого подключения является альтернативная последовательность источников тепла. Если в твердотопливной установке заканчивается запас топлива и она гаснет, в работу автоматически вступает газовый агрегат, который будет поддерживать необходимую температуру в системе.

При помощи установленного термостатического смесителя и циркуляционного насоса обеспечивается стабильность температуры теплоносителя на входе пиролизного котла. Когда твердотопливная установка гаснет, циркуляционный насос автоматически отключается, тем самым продлевая срок службы насоса. В теплый период года можно использовать только газовый котел для нагрева воды для хозяйственных нужд.

Такое соединение позволяет применять твердотопливный котел как альтернативный источник тепла, тем самым уменьшая затраты на обогрев помещения.

Вернуться к оглавлению

Подключение пиролизного котла с электрическим агрегатом и бойлером для ГВС

Такое соединение показано на Рис. 4. В данном варианте основным источником тепла является пиролизный агрегат, а электроустановка служит как дополнительный элемент отопления. Нагрев воды для хозяйственных нужд осуществляется с помощью бойлера косвенного нагрева, а в теплую пору года нагрев воды происходит от электрического агрегата.

Используя в системе отопления такие установки, можно существенно снизить расходы на нагрев помещения в холодное время года, а правильное их соединение позволит добиться максимального комфорта и уюта вам и вашей семье.

«Использование пиролизного масла в промышленных котлах» Кайл Д. Редферн

Аннотация

Эффективность пиролизного мазута в крупномасштабной системе сжигания исследуется, чтобы определить возможность замещения мазута или природного газа в существующей инфраструктуре отопления и энергетики. Был установлен и модернизирован коммерческий отопительный котел на 600 кВт для сжигания смесей пиролизного масла и пиролизного масла в контролируемых условиях. Котел был оборудован необходимыми топливными системами и приборами, чтобы обеспечить точное и независимое управление запальным светом, расходом природного газа и параметрами системы жидкого топлива, при сохранении стандартных предохранительных устройств котла.Было установлено оборудование для анализа выхлопных газов, позволяющее проводить измерения твердых частиц (PM), NO, CO и несгоревших углеводородов (HC). Для исследования явлений распыления на нереагирующих топливных распылителях была проведена тенографическая визуализация распылением и фазовый доплеровский анализ частиц (PDPA). Этанол смешивали с пиролизным маслом в различных концентрациях и тестировали, чтобы определить идеальную концентрацию для характеристик распыления и горения. В котле были проведены испытания на горение на мазуте №2, природном газе, пиролизном мазуте и смесях этанола и пиролизного масла.Смеси этанольного масла для пиролиза в первую очередь исследовались при изменении форсунок и условий форсунок, общего коэффициента эквивалентности и содержания этанола в смеси с использованием запальной лампы природного газа и совместного сжигания природного газа для повышения стабильности пламени и расширения диапазона стабильных условий. Результаты сгорания показали очень высокие выбросы при использовании распылительной форсунки под давлением и низкие выбросы при использовании распылительной форсунки, что согласуется с результатами визуализации распыла. Путем оптимизации давления воздуха распыления и коэффициента эквивалентности, PM, CO и HC были снижены до уровней, близких к типичным выбросам при сжигании мазута с содержанием этанола всего 20%.На NO относительно не влияли условия сопла, эквивалентное соотношение и содержание этанола. Эти данные показывают осуществимость, диапазон условий и стратегии впрыска топлива для чистого сжигания биомасла и замещения природного газа или мазута в крупных коммерческих котлах.

Рекомендуемое цитирование

Редферн, Кайл Д., «Использование пиролизного масла в котлах промышленного масштаба» (2013). Дипломные работы и диссертации . 13067.

https: // lib.dr.iastate.edu/etd/13067

Реактор пиролиза

— обзор

3.4 Конструкция лабораторных реакторов пиролиза с неподвижным слоем («горячий стержень»)

В реакторе пиролиза с неподвижным слоем частицы пробы укладываются на желаемую глубину слоя. Тепло обычно диффундирует внутрь от стенок реактора. Выделяемые летучие вещества расширяются, повышая локальное давление небольшими приращениями. Результирующий градиент давления помогает летучим компонентам медленно выходить из слоя и из реактора [ e.грамм. ср. Берк, 1978]. Пропускание потока инертного газа через неподвижный слой поможет сократить время пребывания летучих в зоне реакции. Постоянная скорость газа-носителя требуется для поддержания достаточно стабильного времени пребывания летучих внутри реактора. Сопоставимое время пребывания тогда позволило бы сравнить данные для реакторов разных размеров, но схожей формы [Dryden & Sparham, 1963]. Корпус реактора можно также использовать в качестве резистивного нагревателя, если электроды зажаты на обоих концах трубчатого реактора.Первоначальная конфигурация реактора с «горячим стержнем» [Hiteshue et al., 1957] завершена, когда трубчатый корпус реактора изготовлен из сплава, способного выдерживать высокие давления.

Несмотря на присущие проблемы, связанные с вторичными реакциями между сложенными частицами и выделяющимися летучими веществами, конфигурация реактора «горячий стержень» оказалась полезной. Его относительно легко построить и использовать. Первоначально он был задуман и построен в лабораториях Горного бюро США для изучения гидропиролиза углей.Он использовался в Coal Research Establishment (British Coal) для исследования производства бензола, толуола и ксилолов («БТК») во время гидропиролиза.

Реакторы типа «горячий стержень» наиболее известны из работ Хитешью и его сотрудников из Горного бюро США [1957, 1960, 1962a, 1962b], которые проводили эксперименты по гидропиролизу угля при давлении до 400 бар и почти 900 °. С. Стойки для образцов длиной 25–40 см были смонтированы в трубках из нержавеющей стали с малым диаметром отверстия. Реакторы с различным соотношением сторон (длина / диаметр) были испытаны Graff et al. [1976] и Kershaw & Barras [1979]. Версия, созданная и управляемая Ладнером и его сотрудниками [Finn et al., 1980; Fynes et al., 1984] содержал около 10 г угля в трубках реактора длиной 75 см или более с внутренним диаметром 8 мм.

В Имперском колледже был построен реактор меньшего размера (внутренний диаметр 6 мм, длина 20 см), первоначально для производства большего количества смолы во время экспериментов по гидропиролизу, чем это было возможно с помощью прибора с проволочной сеткой. От 0,5 до 1 г образца угля использовалось во время начальных экспериментов, в которых исследовалось влияние скорости потока газа-носителя и скорости нагрева.Было проведено сравнение с результатами, полученными на более крупном реакторе с «горячим стержнем» на British Coal [O’Brien, 1986; Bolton et al., 1987]. Попытки изучить точную роль высоты слоя привели к использованию более мелких (~ 4 мм) неподвижных слоев, что соответствует примерно 50 мг образца (рис. 3.4a). Использование образцов меньшего размера служило для частичного подавления вторичных реакций внутри слоя, а также на надводном борту реактора [Gonenc et al., 1990]. Уменьшение высоты слоя также улучшило осевую однородность температуры.Этот реактор работал при скоростях нагрева от 10 ° C мин. -1 до 10 ° C с -1 . Были рассчитаны более быстрые скорости нагрева, которые привели к неприемлемо крутым радиальным градиентам температуры в слое образца диаметром 6 мм [O’Brien, 1986].

Рисунок 3.4. Конфигурация реактора «горячий стержень». (а) Обычный однослойный реактор. (b) Две неподвижные кровати в тандеме; нижний слой нагревается отдельной печью и заполнен катализатором гидроочистки летучих веществ, выделяемых при пиролизе образца в верхнем слое.

[Воспроизведено с разрешения: (a) Fuel 1987, 66, 1414; Авторское право Elsevier, 1987; b) Топливо, 1998, 77, 1715; Copyright 1998 Elsevier.]

Как указано выше, конфигурация «горячего стержня» требует, чтобы корпус реактора действовал как резистивный нагреватель, а также как сосуд высокого давления. Поэтому материал трубки должен выдерживать внутренние напряжения из-за работы под высоким давлением при температурах реакции — в зависимости от конкретного эксперимента — до, возможно, 1000 ° C. Это предъявляет довольно жесткие требования к материалу НКТ.Первоначальные реакторы Горнодобывающего управления США состояли из толстостенных труб из нержавеющей стали малого диаметра, которые выбрасывались после каждого или нескольких экспериментов. В компании British Coal стандартной практикой было сделать корпуса реакторов из нержавеющей стали и утилизировать их после нескольких запусков. Похоже, что это был компромисс, достигнутый после того, как было принято решение использовать реакторы диаметром 8 мм, которые были длинными (> 75 см) и требовали бурения с обоих концов. Более прочные реакторы можно было бы изготавливать из специализированных сплавов.Хотя серия Nimonic представляет собой крайний случай, многие из этих сплавов труднее обрабатывать, чем нержавеющая сталь. Однако изготовление каждого такого реактора требует значительных затрат времени и средств.

Из различных специальных сплавов изготовлены более прочные корпуса для более коротких (20 см) реакторов, используемых в Имперском колледже. Сплавы Нимоник 80 и Нимоник 105 (сплавы Генри Виггина) первоначально использовались для экспериментов, проводимых при температуре 850 ° C и давлении до 100 бар. Однако эти сплавы требуют термообработки для размягчения материала перед механической обработкой, а затем для упрочнения реактора после стадии механической обработки.Incolloy 800 HT намного легче обрабатывать и использовался для изготовления корпусов реакторов для CO 2 и экспериментов по паровой газификации до 1000 ° C и 40 бар. При температуре выше 700 ° C необходимо учитывать тепловое расширение корпуса реактора. Использование жестких электродов может вызвать деформацию реакторных труб. В данной конструкции питание подается на один из электродов через плетеные медные кабели, и оба электрода охлаждаются водой, чтобы избежать больших изменений удельного сопротивления [Pindoria et al., 1998a; Collot et al., 1999].

В другом применении конфигурации реактора с «горячим стержнем» были измерены выбросы микроэлементов из различных видов твердого топлива во время совместной газификации и совместного сжигания угля и биомассы. Чтобы предотвратить загрязнение металлических стенок, реактор с внутренним диаметром большего размера (13,8 мм), изготовленный из Incolloy 800 HT, был облицован кварцевой гильзой и работал при давлении до 40 бар и 1000 ° C [Collot et al., 1998]. Тот же реактор также использовался для исследования, дает ли совместный пиролиз и совместная газификация угля и биомассы значительные синергетические эффекты.

В литературе описано относительно немного двухэтапных экспериментов с реактором типа «горячий стержень». Болтон и др. [1988] прикрепил второй слой, заполненный водными оксидами титана для каталитического крекинга смол гидропиролиза. Эксперименты в основном проводились при 150 бар, при этом секция гидропиролиза увеличивалась до 500 ° C, в то время как стадия катализатора поддерживалась при максимальной температуре 400 ° C. Выход гудрона на первой стадии составил около 25% от исходной массы угля.Авторы сообщили о превращении смол в «бесцветные жидкости с низким содержанием гетероатомов» с температурой кипения около 40 процентов ниже 140 ° C. На рис. 3.4b показан двухступенчатый реактор с неподвижным слоем, построенный в Имперском колледже. В верхней секции (укороченная «горячая штанга») пары смолы / масла производились мягким гидропиролизом (давление h3 до 40 бар). Газ проходил через неподвижный слой и уносил выделяющиеся летучие вещества на вторую стадию, заполненную катализатором, расположенную под образцом и независимо нагреваемую небольшой печью [Pindoria et al., 1998b].

В следующем разделе мы представим третий крупный тип реактора, лабораторный реактор с псевдоожиженным слоем, успешно используемый в экспериментах по пиролизу угля. В разделе 3.6 мы сравним тенденции продуктов из экспериментов по пиролизу угля при атмосферном давлении в реакторе с «горячим стержнем» с результатами, полученными на аппарате с проволочной сеткой. Результаты экспериментов высокого давления в реакторе «горячий стержень» будут представлены в главе 4.

(PDF) Качество мазута и сжигание биомасла быстрого пиролиза

Название серии

и номер

VTT Technology 87

Название Качество мазута и сжигание при быстром пиролизе

биомасла

Автор (ы) Яни Лехто, Аня Оасмаа, Юрьё Солантауста, Матти Кито и Дэвид Кьярамонти

Аннотация Биомасла быстрого пиролиза должны заменить жидкое топливо во многих стационарные установки, в том числе

котлов и печей.Однако эти биомасла полностью отличаются от нефтяного топлива и других биомаслей, представленных на рынке, таких как биодизельное топливо, как по своим физическим свойствам, так и по химическому составу

. Если тщательно принять во внимание необычные свойства этих биомасел, их сгорание

без запального пламени или вспомогательного топлива возможно в промышленных масштабах. Даже смешивание

этих масел со спиртами для улучшения сгорания не обязательно.

В ходе недавних испытаний сжигания биотоплива в промышленном масштабе было установлено, что биомасло технически

подходит для замены тяжелого мазута в системах централизованного теплоснабжения. Однако такая замена,

, требует внесения некоторых изменений в существующие блоки, которые необходимо тщательно спроектировать. Например, все детали, контактирующие с биомаслом, следует заменить деталями, изготовленными из нержавеющей стали

или лучше, и необходимо проверить пригодность всех прокладок и инструментов.

В целом, выбросы при сжигании биотоплива очень сильно зависят от исходных уровней

твердых частиц, воды и азота в сжигаемом масле. Обычно уровни выбросов составляют от

до

выбросов легкого жидкого топлива и самого легкого тяжелого жидкого топлива, но выбросы твердых частиц могут быть выше. С другой стороны,

практически не производит выбросов SOx при сжигании биотоплива. Выбросы NOx-

при сжигании биотоплива в основном происходят из азота, связанного с топливом.Поэтапное сжигание для

снижения NOx может быть рекомендовано, так как успешное ступенчатое сжигание природного газа, тяжелого и легкого

мазута уже выполнено.

Недавние испытания сжигания биомасла также показали, что технология сжигания биомасла

работает хорошо, и существует не так много возможностей для дальнейшего снижения выбросов твердых частиц, поскольку

большинство твердых частиц, как правило, являются негорючими веществами. Поэтому рекомендуется

снизить содержание твердых веществ в бионефти до <0.1 мас.%, Если возможно, и чтобы гарантировать, что неорганические вещества в форме золы и песка

присутствуют в как можно более низкой концентрации.

Современные конструкции горелок весьма чувствительны к изменениям качества биомасла, которое

может вызвать проблемы с зажиганием, обнаружением пламени и стабилизацией пламени. Следовательно, чтобы

мог создавать надежные системы сжигания биомасла, работающие с высокой эффективностью, биомасло марок

должно быть стандартизировано для приложений сжигания.Следовательно, необходимо срочно определить и создать международные стандарты, нормы, спецификации и руководства

. Стандартизация ASTM

уже выполняется, и стандартизация CEN должна быть начата в 2013 году.

Тщательный контроль качества в сочетании со стандартами и спецификациями на всем протяжении от заготовки сырья

до производства и конечного использования рекомендуется для того, чтобы убедиться, что выбросы

цели и ограничения в приложениях сжигания достигнуты.

Авторы хотели бы указать, что есть возможности для всех технологий горелок и моделей

, описанных в этой публикации, для дальнейшего развития для решения проблем, как правило,

, вызванных природой, качеством и характеристиками биомасла. На данный момент относительно небольшое число производителей горелок

разработали коммерчески доступные модели горелок для биомасла быстрого пиролиза.

Экологические требования влияют на коммерциализацию технологий горелок и качество масла

, необходимого для сжигания.Естественно, что конечный пользователь нефти

заинтересован в общих затратах на концепцию сжигания по сравнению с затратами на ископаемое топливо. Таким образом, рентабельность всего пакета чрезвычайно важна.

Авторы участвуют в разработке новых экономичных приложений для сжигания биотоплива при быстром пиролизе

и обращения с дымовыми газами в будущем.

ISBN, ISSN ISBN 978-951-38-7929-7 (ред. С мягкой обложкой)

ISBN 978-951-38-7930-3 (URL: http: // www.vtt.fi/publications/index.jsp)

ISSN-L 2242-1211

ISSN 2242-1211 (печатный)

ISSN 2242-122X (онлайн)

Дата апреля 2013 г.

Язык Английский

Страницы 79 стр. .

Ключевые слова Быстрый пиролиз, биомасло, пиролизное масло, физические свойства, химические свойства, мазут,

свойства мазута, сгорание, спецификации

Издательство VTT Technical Research Center of Finland

P.O. Box 1000, FI-02044 VTT, Финляндия, тел.020 722 111

Что такое пиролиз? : USDA ARS

Что такое пиролиз?

Введение Наши исследования Что такое пиролиз? Исследователи бионефти

Объекты Наши партнеры Публикации в новостях Ссылки

Что такое пиролиз?

Пиролиз — это нагревание органического материала, такого как биомасса , в отсутствие кислорода.Из-за отсутствия кислорода материал не воспламеняется, но химические соединения (например, целлюлоза, гемицеллюлоза и лигнин), составляющие этот материал, термически разлагаются на горючие газы и древесный уголь. Большинство этих горючих газов может конденсироваться в горючую жидкость, называемую пиролизным маслом (бионефть), хотя есть некоторые постоянные газы (CO 2 , CO, H 2 , легкие углеводороды). Таким образом, пиролиз биомассы дает три продукта: один жидкий, био-масло , один твердый продукт, биоуглерод и один газообразный (синтез-газ).Доля этих продуктов зависит от нескольких факторов, включая состав сырья и параметры процесса. Однако при прочих равных условиях выход биомасла оптимизируется, когда температура пиролиза составляет около 500 ° C и скорость нагрева высока (т.е. 1000 ° C / с), то есть в условиях быстрого пиролиза. В этих условиях выход бионефти 60-70 мас.% Может быть достигнут из типичного исходного сырья биомассы с выходом биоуглерода 15-25 мас.%. Остальные 10-15 мас.% Составляют синтез-газ.Процессы, в которых используется более низкая скорость нагрева, называются медленным пиролизом, и биоуглерод обычно является основным продуктом таких процессов. Процесс пиролиза может быть самоподдерживающимся, поскольку сгорание синтез-газа и части бионефти или биоуглерода может обеспечить всю необходимую энергию для запуска реакции.

Схема процесса быстрого пиролиза.

Био-масло представляет собой плотную сложную смесь кислородсодержащих органических соединений.Его топливная ценность обычно составляет 50-70% от стоимости топлива на нефтяной основе, и его можно использовать в качестве котельного топлива или преобразовать в возобновляемые виды топлива для транспорта. Его плотность составляет> 1 кг. L -1 , что намного больше, чем у исходного сырья биомассы, что делает его более экономичным для транспортировки, чем биомасса. Поэтому мы представляем себе модель распределенной обработки, в которой многие мелкомасштабные пиролизеры (например, в масштабе фермы) скрывают биомассу в бионефть, которая затем транспортируется в централизованное место для переработки. Наши исследования показывают, что при использовании в распределенных системах «в масштабе фермы», питающих центральную газификационную установку (для производства жидкостей Fisher Tropsh), одной экономии транспортных расходов достаточно, чтобы компенсировать более высокие эксплуатационные расходы и затраты на биомассу.

Распределенная переработка биомассы быстрым пиролизом.

Кроме того, произведенный биоуглерод можно использовать на ферме в качестве отличного средства для улучшения почвы, которое может связывать углерод.Биоуголь обладает высокой абсорбирующей способностью и, следовательно, увеличивает способность почвы удерживать воду, питательные вещества и сельскохозяйственные химикаты, предотвращая загрязнение воды и эрозию почвы. Внесение биоуголь в почву может улучшить как качество почвы, так и стать эффективным средством связывания большого количества углерода, тем самым помогая смягчить последствия глобального изменения климата за счет связывания углерода. Использование биогольца в качестве улучшения почвы устранит многие проблемы, связанные с удалением растительных остатков с земли.

Изоляция углерода путем внесения в почву биоуглерода.

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie.Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались.
    Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г.,
    браузер автоматически забудет файл cookie.Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie.
    Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie
потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт
не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к
остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Bio oil

Благодаря интегрированной технологии пиролиза котел с псевдоожиженным слоем на электростанции представляет собой
потенциальный биоочистительный завод, обеспечивающий новый бизнес-потенциал. Биомассы на основе древесины хорошо подходят в качестве сырья для бионефти. Это может заменить ископаемое топливо и сократить выбросы парниковых газов. Другие будущие возможности включают использование бионефти в качестве сырья для различных химических продуктов и транспортного топлива.

Экономически выгодная концепция

Пиролиз — это термическое разложение органического материала в бескислородной среде.Газ, который образуется при пиролизе биомассы, конденсируется в бионефть, которая является альтернативой жидкому ископаемому топливу, например, в производство тепла и пара.

Концепция

Valmet объединяет процесс пиролиза с существующим котлом. Требуется лишь незначительное дополнение к существующему оборудованию котельной по сравнению с автономной установкой по производству биомасла. Еще одно преимущество — отличная энергоэффективность процесса. Он может использовать побочные продукты, которые электростанция не использовала бы иначе, например.g., тепло в процессе сушки биомассы, а также при производстве электроэнергии и централизованного теплоснабжения. Поставщики централизованного теплоснабжения являются одной из основных целевых групп.

Valmet — ваш универсальный магазин

Valmet имеет ноу-хау и опыт всего процесса производства биомасла. Сюда входят как поточные, так и автономные анализаторы, а также анализаторы влажности мгновенного сырья. Valmet также предлагает полную цепочку конечного использования от резервуара до штабеля, включая специально разработанные и оптимизированные типы горелок.Мы — ваш универсальный магазин для комплексного пиролиза и биомасла.

Первый в мире комплексный завод по производству биомасла

Valmet поставила первый в мире завод по производству биомасла на коммерческой основе. Он расположен в Йоэнсуу, Финляндия, и был передан Fortum в июне 2015 года. Производство биомасла было интегрировано с котлом ТЭЦ, и завод имеет годовую производственную мощность 50 000 тонн биомасла.

Биомасса для производства электроэнергии | WBDG

Введение

На этой странице

ЭТА СТРАНИЦА ПОДДЕРЖИВАЕТСЯ

Биомасса используется для отопления помещений, производства электроэнергии и комбинированного производства тепла и электроэнергии.Термин «биомасса» охватывает большое количество разнообразных материалов, включая древесину из различных источников, сельскохозяйственные остатки, а также отходы животноводства и жизнедеятельности человека.

Биомассу можно преобразовать в электроэнергию несколькими способами. Наиболее распространенным является прямое сжигание биомассы, такой как сельскохозяйственные отходы или древесные материалы. Другие варианты включают газификацию, пиролиз и анаэробное сбраживание. Газификация производит синтез-газ с полезным содержанием энергии за счет нагрева биомассы меньшим количеством кислорода, чем необходимо для полного сгорания.Пиролиз дает бионефть за счет быстрого нагревания биомассы в отсутствие кислорода. Анаэробное сбраживание производит возобновляемый природный газ, когда органическое вещество разлагается бактериями в отсутствие кислорода.

Различные методы работают с разными типами биомассы. Обычно древесная биомасса, такая как древесная щепа, пеллеты и опилки, сжигается или газифицируется для выработки электроэнергии. Остатки кукурузной соломы и пшеничной соломы упаковываются в тюки для сжигания или превращаются в газ с помощью анаэробного варочного котла.Очень влажные отходы, такие как отходы животных и человека, превращаются в газ со средним содержанием энергии в анаэробном варочном котле. Кроме того, большинство других типов биомассы можно превратить в бионефть путем пиролиза, которое затем можно использовать в котлах и печах.

В Вудленде, штат Калифорния, электростанция использует древесину, полученную в сельском хозяйстве.
Источник: NREL

В этом обзоре основное внимание уделяется древесной биомассе, используемой для выработки электроэнергии на промышленных предприятиях, а не в проектах коммунальных предприятий.Тепло биомассы и биогаз, включая анаэробное сбраживание и свалочный газ, рассматриваются на других страницах технологических ресурсов в этом руководстве:

По сравнению со многими другими вариантами возобновляемых источников энергии, биомасса имеет преимущество диспетчеризации, что означает, что она управляема и доступна при необходимости, подобно системам выработки электроэнергии на ископаемом топливе. Однако недостатком биомассы для производства электроэнергии является то, что топливо необходимо закупать, доставлять, хранить и оплачивать. Кроме того, при сжигании биомассы образуются выбросы, которые необходимо тщательно контролировать и контролировать в соответствии с нормативными требованиями.

В этом обзоре представлены конкретные детали для тех, кто рассматривает системы производства электроэнергии на биомассе как часть крупного строительного проекта. Дополнительную общую информацию можно получить в Управлении энергоэффективности и возобновляемых источников энергии (EERE) Министерства энергетики США (DOE). Основы технологии биомассы. Подробную информацию об использовании биомассы для комбинированного производства тепла и электроэнергии можно получить в Партнерстве по комбинированному производству тепла и энергии Агентства по охране окружающей среды США (EPA).

Описание

Большинство биоэлектростанций используют системы сжигания с прямым сжиганием топлива.Они сжигают биомассу напрямую, чтобы произвести пар высокого давления, который приводит в действие турбогенератор для производства электроэнергии. В некоторых отраслях промышленности, связанных с биомассой, отводимый или отработанный пар электростанции также используется для производственных процессов или для обогрева зданий. Эти комбинированные системы производства тепла и электроэнергии (ТЭЦ) значительно повышают общую энергоэффективность примерно до 80% по сравнению со стандартными системами, работающими только на биомассе, с эффективностью примерно 20%. Сезонные потребности в отоплении повлияют на эффективность системы ТЭЦ.

Простая система выработки электроэнергии на биомассе состоит из нескольких ключевых компонентов. Для парового цикла это включает комбинацию следующих элементов:

  • Оборудование для хранения и транспортировки топлива
  • Камера сгорания / печь
  • Котел
  • Насосы
  • Вентиляторы
  • Турбина паровая
  • Генератор
  • Конденсатор
  • Градирня
  • Контроль выхлопа / выбросов
  • Система управления (автоматизированная).

Системы прямого сжигания подают сырье биомассы в камеру сгорания или печь, где биомасса сжигается с избытком воздуха для нагрева воды в бойлере и образования пара. Вместо прямого сжигания некоторые развивающиеся технологии газифицируют биомассу для получения горючего газа, а другие производят пиролизные масла, которые можно использовать для замены жидкого топлива. Котельное топливо может включать древесную щепу, пеллеты, опилки или биомасло. Затем пар из котла расширяется через паровую турбину, которая вращается, чтобы запустить генератор и произвести электричество.

В целом, все системы, работающие на биомассе, требуют места для хранения топлива и некоторого типа оборудования для обработки топлива и средств управления. Система, использующая древесную щепу, опилки или гранулы, обычно использует бункер или силос для краткосрочного хранения и внешний склад для хранения топлива для более крупных хранилищ. Автоматизированная система управления транспортирует топливо из внешнего хранилища с использованием некоторой комбинации кранов, штабелеукладчиков, регенераторов, фронтальных погрузчиков, ремней, шнеков и пневмотранспорта. Ручное оборудование, такое как фронтальные погрузчики, можно использовать для переноса биомассы из штабелей в бункеры, но этот метод потребует значительных затрат на рабочую силу и эксплуатацию оборудования и техническое обслуживание (O&M).Менее трудоемким вариантом является использование автоматических штабелеукладчиков для создания штабелей и регенераторов для перемещения щепы из штабелей в бункер для щепы или бункер.

В электроэнергетических системах, работающих на древесной стружке, обычно используется одна сухая тонна на мегаватт-час производства электроэнергии. Это приближение типично для систем с влажной древесиной и полезно для первого приближения требований к потреблению и хранению топлива, но фактическое значение будет варьироваться в зависимости от эффективности системы. Для сравнения, это эквивалентно 20% эффективности HHV с 17 MMBtu / т древесины.

Большая часть древесной щепы, производимой из сырых пиломатериалов, будет иметь влажность от 40% до 55% на влажной основе, что означает, что тонна зеленого топлива будет содержать от 800 до 1100 фунтов воды. Эта вода снизит извлекаемую энергию материала и снизит эффективность котла, так как вода должна испаряться на первых этапах сгорания.

Самые большие проблемы с установками, работающими на биомассе, связаны с обработкой и предварительной обработкой топлива. Это относится как к небольшим установкам с колосниковым обогревом, так и к большим установкам с подвесным обогревом.Сушка биомассы перед сжиганием или газификацией повышает общую эффективность процесса, но во многих случаях может быть экономически невыгодной.

Выхлопные системы используются для вывода побочных продуктов сгорания в окружающую среду. Средства контроля выбросов могут включать в себя циклон или мультициклон, рукавный фильтр или электрофильтр. Основная функция всего перечисленного оборудования — это контроль твердых частиц, и она указана в порядке увеличения капитальных затрат и эффективности. Циклоны и мультициклоны могут использоваться в качестве предварительных коллекторов для удаления более крупных частиц перед рукавным фильтром (тканевым фильтром) или электростатическим фильтром.

Кроме того, может потребоваться контроль выбросов несгоревших углеводородов, оксидов азота и серы в зависимости от свойств топлива и местных, государственных и федеральных правил.

Как это работает?

В системе прямого сгорания биомасса сжигается в камере сгорания или печи для получения горячего газа, который подается в котел для выработки пара, который расширяется через паровую турбину или паровой двигатель для производства механической или электрической энергии.

В системе прямого сжигания переработанная биомасса является котельным топливом, который производит пар для работы паровой турбины и генератора для производства электроэнергии.

Типы и стоимость технологий

Есть множество компаний, в основном в Европе, которые продают маломасштабные двигатели и комбинированные теплоэнергетические системы, которые могут работать на биогазе, природном газе или пропане. Некоторые из этих систем доступны в Соединенных Штатах с мощностью от примерно 2 киловатт (кВт) и примерно 20 000 британских тепловых единиц (БТЕ) ​​в час тепла до нескольких мегаватт (МВт). Кроме того, в настоящее время в Европе доступны маломасштабные (от 100 до 1500 кВт) паровые двигатели / генераторные установки и паровые турбины (от 100 до 5000 кВт), работающие на твердой биомассе.

В Соединенных Штатах прямое сжигание является наиболее распространенным методом производства тепла из биомассы. Установленная стоимость малых электростанций, работающих на биомассе, составляет от 3000 до 4000 долларов за кВт, а приведенная стоимость энергии — от 0,8 до 0,15 доллара за киловатт-час (кВтч).

Двумя основными типами систем прямого сжигания щепы являются камеры сгорания со стационарной и подвижной решеткой, также известные как топки с неподвижным слоем и камеры сгорания с атмосферным псевдоожиженным слоем.

Стационарные системы

Существуют различные конфигурации систем с неподвижным слоем, но общей характеристикой является то, что топливо тем или иным образом доставляется на решетку, где оно вступает в реакцию с кислородом воздуха.Это экзотермическая реакция, при которой образуются очень горячие газы и пар в секции теплообменника котла.

Системы с псевдоожиженным слоем

В системе с циркулирующим псевдоожиженным слоем или с барботажным псевдоожиженным слоем биомасса сжигается в горячем слое взвешенных негорючих частиц, таких как песок. По сравнению с колосниковыми камерами сгорания системы с псевдоожиженным слоем обычно производят более полное преобразование углерода, что приводит к снижению выбросов и повышению эффективности системы.Кроме того, котлы с псевдоожиженным слоем могут использовать более широкий спектр исходного сырья. Кроме того, системы с псевдоожиженным слоем имеют более высокую паразитную электрическую нагрузку, чем системы с неподвижным слоем, из-за повышенных требований к мощности вентилятора.

Системы газификации биомассы

Небольшая модульная система биоэнергетики от Community Power Corporation

Хотя системы газификации биомассы встречаются реже, они аналогичны системам сжигания, за исключением того, что количество воздуха ограничено, и, таким образом, вырабатывается чистый топливный газ с полезной теплотворной способностью в отличие от сжигания, в котором отходящий газ не имеет полезной теплотворной способности. теплотворная способность.Чистый топливный газ обеспечивает возможность приводить в действие множество различных типов газовых первичных двигателей, таких как двигатели внутреннего сгорания, двигатели Стирлинга, термоэлектрические генераторы, твердооксидные топливные элементы и микротурбины.

На эффективность системы прямого сжигания или газификации биомассы влияет ряд факторов, включая содержание влаги в биомассе, распределение и количество воздуха для горения (избыток воздуха), рабочую температуру и давление, а также температуру дымовых газов (выхлопных газов).

Приложение

Тип системы, наиболее подходящей для конкретного применения, зависит от многих факторов, включая доступность и стоимость каждого типа биомассы (например, щепа, пеллеты или бревна), стоимость конкурирующего топлива (например, мазут и природный газ), пиковые и годовые электрические нагрузки и затраты, размер и тип здания, доступность площадей, наличие рабочего и обслуживающего персонала, а также местные нормы выбросов.

Проекты, которые могут использовать как производство электроэнергии, так и тепловую энергию из энергетических систем, работающих на биомассе, часто являются наиболее рентабельными.Если место имеет предсказуемый доступ к круглогодичным доступным ресурсам биомассы, то некоторое сочетание производства тепла и электроэнергии из биомассы может быть хорошим вариантом. Транспортировка топлива составляет значительную часть его стоимости, поэтому в идеале ресурсы должны быть доступны из местных источников. Кроме того, на предприятии обычно необходимо хранить сырье для биомассы на месте, поэтому доступ на площадку и хранение являются факторами, которые следует учитывать.

Как и в случае с любыми другими технологиями производства электроэнергии на объекте, система производства электроэнергии должна быть подключена к коммунальной сети.Правила присоединения могут быть другими, если система является комбинированной теплоэнергетической системой, а не только для производства электроэнергии. Возможность использовать чистые измерения также может иметь решающее значение для экономики системы.

Руководство Федеральной программы энергоменеджмента (FEMP) по интеграции возобновляемых источников энергии в федеральное строительство содержит дополнительную информацию о требованиях к межсетевым соединениям и чистому учету.

Экономика

Основные статьи капитальных затрат для энергосистемы, работающей на биомассе, включают хранение топлива и оборудование для обращения с топливом, камеру сгорания, котел, первичный двигатель (например,грамм. турбина или двигатель), генератор, элементы управления, дымовая труба и оборудование для контроля выбросов.

Стоимость системы имеет тенденцию к снижению по мере увеличения размера системы. Для паровой системы, работающей только на электроэнергии (не комбинированной), мощностью от 5 до 25 МВт, затраты обычно составляют от 3000 до 5000 долларов за киловатт электроэнергии. Нормированная стоимость энергии для этой системы будет составлять от 0,08 до 0,15 доллара за кВтч, но она может значительно возрасти с расходами на топливо. Для больших систем требуется значительное количество материала, что приводит к увеличению расстояний транспортировки и затрат на материалы.Небольшие системы имеют более высокие затраты на эксплуатацию и техническое обслуживание на единицу произведенной энергии и более низкую эффективность, чем большие системы. Следовательно, определение оптимального размера системы для конкретного приложения — это итеративный процесс.

Существует множество стимулов для производства энергии из биомассы, но они различаются в зависимости от политики федерального законодательства и законодательства штата. База данных государственных стимулов для возобновляемых источников энергии и эффективности® перечисляет стимулы для биомассы. Сроки программ стимулирования часто позволяют меньше времени на строительство, чем необходимо для проектов, связанных с биомассой.Кроме того, федеральные агентства часто не могут напрямую воспользоваться финансовыми стимулами для возобновляемых источников энергии, если они не используют другую структуру собственности.

Руководство

FEMP по интеграции возобновляемых источников энергии в федеральное строительство содержит дополнительную информацию о финансировании проектов в области возобновляемых источников энергии.

Интересно, что штат Массачусетс недавно исключил электричество, работающее на биомассе, из своего Стандарта портфеля возобновляемых источников энергии, поскольку государственные чиновники не верили, что биомасса обеспечивает явное сокращение выбросов парниковых газов.Таким образом, проекты, связанные с использованием биомассы, больше не имеют права на получение сертификатов возобновляемой энергии, которые засчитываются для целей или финансирования возобновляемых источников энергии штата Массачусетс.

Оценка доступности ресурсов

Наиболее важными факторами при планировании энергетической системы на биомассе являются оценка ресурсов, планирование и закупки. В рамках процессов отбора и анализа осуществимости критически важно определить потенциальные источники биомассы и оценить необходимое количество топлива.

Если возможно, подробно определите способность потенциальных поставщиков производить и поставлять топливо, отвечающее требованиям оборудования, работающего на биомассе.Это может быть немного интенсивный процесс, поскольку он включает в себя определение нагрузки, которая будет обслуживаться, определение возможных производителей или поставщиков оборудования, работу с этими поставщиками для определения спецификации топлива и контакт с поставщиками, чтобы узнать, могут ли они соответствовать спецификации — и какая цена. Также необходимо оценить ежемесячные и годовые потребности в топливе, а также пиковое потребление топлива, чтобы помочь при обращении с топливом и выборе размеров оборудования для хранения топлива.

Поскольку на большей части территории Соединенных Штатов нет установленной системы распределения древесной щепы, иногда бывает трудно найти поставщиков.Одно из предложений — связаться с региональной лесной службой США и государственной лесной службой. К другим ресурсам, к которым можно обратиться, относятся ландшафтные компании, лесопилки и другие переработчики древесины, свалки, лесоводы и производители деревянной мебели.

Оценки ресурсов биомассы на уровне округа также доступны в Интернете с помощью интерактивного инструмента картографии и анализа. Инструмент оценки биомассы был разработан Национальной лабораторией возобновляемых источников энергии (NREL) при финансовой поддержке EPA. Раньше оценка ресурсов обычно была статичной и не позволяла пользователям анализировать данные или манипулировать ими.Этот новый инструмент позволяет пользователям выбрать местоположение на карте, количественно оценить ресурсы биомассы, доступные в пределах определенного пользователем радиуса, и оценить общую тепловую энергию или мощность, которые могут быть произведены путем восстановления части этой биомассы. Инструмент действует как предварительный источник информации о сырье биомассы; однако он не может заменить оценку сырья на месте.

Доступные ресурсы биомассы в США.
Источник: NREL

Необходимо разработать процесс приема поставок биомассы и оценки свойств топлива.По состоянию на июль 2011 года национальные спецификации по древесной щепе отсутствуют, но разрабатываются региональные спецификации. Наличие спецификации помогает сообщать и обеспечивать соблюдение требований к микросхеме. Спецификация должна включать физические размеры, диапазон содержания влаги в топливе, энергосодержание, содержание золы и минералов, а также другие факторы, влияющие на обращение с топливом или его сгорание. Для обеспечения справедливой стоимости контракты на поставку топлива должны масштабировать закупочную цену обратно пропорционально содержанию влаги, поскольку более высокое содержание влаги значительно снижает эффективность сгорания и увеличивает вес транспортируемого материала.

Рекомендации по закупкам

Следующие ниже рекомендации имеют решающее значение для успеха любого проекта по производству энергии из биомассы.

  • Полностью вовлекайте лиц, принимающих решения, и широкую общественность на этапах планирования и по мере достижения прогресса, особенно если система будет установлена ​​в общественном здании.
  • Тесно сотрудничать с производителем или поставщиком оборудования, работающего на биомассе, для совместной работы над проектированием зданий и требованиями к оборудованию.
  • Согласовать календарное планирование строительства с поставкой оборудования.Например, легче доставить и установить оборудование, если кран имеет доступ к месту установки.
  • Определите маршрут доставки топлива, чтобы грузовики могли легко добраться до места хранения и при необходимости развернуться.

Эксплуатация и обслуживание

Затраты на эксплуатацию и техническое обслуживание энергетических систем, работающих на биомассе, в основном состоят из затрат на топливо и рабочую силу. В остальном эти системы аналогичны другим системам производства электроэнергии на базе котлов. Эксплуатация ведется непрерывно, поэтому затраты на эксплуатацию, а также на покупку и хранение топлива необходимо оценивать вместе с общими затратами по проекту.

Особые соображения

Ниже приведены важные особенности электрических систем, работающих на биомассе.

Экологическая экспертиза / разрешение

Основной проблемой NEPA и выдачей разрешений для энергетической системы, работающей на биомассе, являются выбросы от сжигания. Следовательно, следует пересмотреть местные требования. Выбросы в атмосферу из системы биомассы зависят от конструкции системы и характеристик топлива. При необходимости можно использовать системы контроля выбросов для уменьшения выбросов твердых частиц и оксидов азота.Выбросы серы полностью зависят от содержания серы в биомассе, которое обычно очень низкое.

Хранение щепы требует внимательности, подготовки и внимательности. Когда стружка хранится в здании, существует вероятность скопления пыли от стружки на горизонтальных поверхностях и попадания внутрь оборудования. Обеспокоенность вызывает способность древесной щепы самовоспламеняться или самовоспламеняться при хранении в течение длительного времени, хотя встречается редко. Для получения дополнительной информации см. Информационный бюллетень OSHA по безопасности и охране здоровья «Горючая пыль в промышленности: предотвращение и смягчение последствий пожара и взрывов».

Это происходит из-за цепочки событий, которая начинается с биологического разложения органического вещества и может привести к тлению кучи. Критический диапазон влажности, поддерживающий самовозгорание, составляет примерно от 20% до 45%. Вероятность самовозгорания также увеличивается с увеличением размера кучи из-за увеличения глубины.

Чтобы помочь с этой проблемой, Управление пожарной охраны в Онтарио, Канада предоставляет следующие рекомендации:

  • Место хранения должно быть хорошо дренированным и ровным, с твердым грунтом или вымощенным асфальтом, бетоном или другим твердым покрытием.На поверхности грунта между сваями не должно быть горючих материалов. Во дворе должны быть удалены сорняки, трава и подобная растительность. Переносные горелки с открытым пламенем для сорняков нельзя использовать на площадках для хранения щепы. Сваи не должны превышать 18 м (59 футов) в высоту, 90 м (295 футов) в ширину и 150 м (492 футов) в длину, если временные водопроводные трубы со шланговыми соединениями не проложены на верхней поверхности сваи.

  • Между штабелями щепы и открытыми конструкциями, дворовым оборудованием или инвентарём должно поддерживаться пространство, равное (а) двойной высоте сваи для горючего материала или зданий или (b) высоте сваи для негорючих зданий и оборудования.

  • В местах скопления щепок курение запрещено.

Пожары из древесной стружки могут быть вызваны другими факторами, такими как удары молнии, тепло от оборудования, искры от сварочных работ, лесные пожары и поджоги. Эти пожары иногда называют поверхностными пожарами, потому что они возникают и распространяются по внешней стороне сваи.

При хранении крайне важно поддерживать чистоту щепы. Когда щепа хранится на земле или гравии, часть этого материала часто собирается вместе со щепой и попадает в камеру сгорания.

21 февраля 2011 года EPA установило нормы выбросов Закона о чистом воздухе для больших и малых котлов и мусоросжигательных заводов, сжигающих твердые отходы и осадок сточных вод. Эти стандарты охватывают более 200 000 котлов и мусоросжигательных заводов, которые выбрасывают опасные загрязнители воздуха (HAP), также известные как токсичные вещества. Новые стандарты EPA должны соблюдаться при планировании проекта любого котла для сжигания топлива.

EPA также приняло Закон о чистом воздухе, разрешающий выбросы парниковых газов 2 января 2011 года.Этот процесс, также называемый «правилом адаптации», требует разрешения на производство парниковых газов, но не распространяется на более мелкие предприятия. Ожидается, что окончательные правила будут разработаны в течение трехлетнего исследовательского периода, но федеральные предприятия, использующие производство электроэнергии из биомассы в рамках нового строительного проекта, могут захотеть убедиться, что размер объекта, работающего на биомассе, не вызывает эти требования.

В 2009 году штат Массачусетс выпустил документ под названием «Нормы безопасности и выбросов котлов и печей на биомассе в северо-восточных штатах