Схема электроснабжения дома 380в: схема, примеры как распределить три фазы

Содержание

схема три фазы в одну

Большинство однофазных электроприборов подключаются к сети 220В, но к многоквартирным домам, гаражным кооперативам и дачным посёлкам подводится трехфазное напряжение 380В. Для питания бытовых потребителей такое напряжение не годиться, поэтому при монтаже электропроводки возникает вопрос — как из 380 сделать 220 Вольт.

В чем отличие трехфазного напряжения от однофазного

Питание всех бытовых потребителей осуществляется по четырём проводам от трёхфазной сети — три фазных (линейных) L1, L2 и L3 и один нейтральный (нулевой) проводник N, а в квартиры подводится однофазное напряжение, для которого необходимы только два проводника — нулевой и фазный.

Переменное напряжение в разных фазах сдвинуто относительно друг друга на 120° для получения вращающегося магнитного поля в электродвигателях и уменьшения тока в нейтральном проводе.

Кроме количества проводников у трёхфазной сети имеются и другие особенности:

  • Напряжение в сети. В однофазной схеме есть только одна величина напряжения — между фазой L и нейтралью N, а в трёхфазной сети имеется два напряжения, отличающиеся по своему значению. Это фазное L-N, равное 220 Вольт, и линейное, между любыми двумя фазными проводами L1-L2, L2-L3 или L1-L3, равное 380 Вольт. Поэтому один из способов, как из 380 сделать 220 Вольт, это просто подключить электроприбор к нулю и фазе.
  • Различное сечение проводов. В однофазной электропроводке все провода имеют одинаковое сечение и рассчитываются на полный ток потребителя, а в трёхфазной сети по нейтральному проводнику протекает только уравнительный ток. Из-за этого нейтральная жила имеет меньшее сечение по сравнению с фазными, но при этом нагрузку по фазам необходимо распределять максимально равномерно.
  • Разное количество полюсов у автоматических выключателей. В однофазной сети достаточно отключать только фазный проводник, поэтому допускается установка однополюсного автомата (кроме вводного). В трёхфазной нужно отключать все фазы одновременно, из-за чего необходима установка трёхполюсного выключателя.

Схемы подключения «звезда» и «треугольник» в трехфазной сети

Передавать электроэнергию выгоднее по высоковольтным ЛЭП, поэтому питание всех жилых районов и большинства промышленных предприятий осуществляется через понижающие трансформаторы, начала вторичных обмоток, которых соединены между собой, а концам обмоток подключаются отходящие фазные провода.

Точка соединения катушек заземляется и к ней подключается нейтральный проводник. Такая схема электроснабжения называется TN и описана в ПУЭ гл.1.7.

Существует две схемы подключения электроприборов к такой сети, отличающихся подаваемым напряжением.

Самая распространенная схема соединения это «звезда». Используется при включении электроприборов, напряжение питания которых составляет 220В. При этом один из проводов каждого из аппаратов присоединяется к одной из фаз, а оставшиеся соединяются вместе и подключаются к нейтрали.

При этом мощность аппаратов может быть различной, что вызовет появление в нейтральном проводнике уравнительного тока, но напряжение на каждом из электроприборов будет постоянным (за исключением потерь в питающих кабелях).

При соединении в «звезду» трёх одинаковых электроприборов ток в нейтральном проводе отсутствует, поэтому его допускается не подключать, но при поломке одного из аппарата напряжение питания каждого из оставшихся составит 190 Вольт.

Поэтому звезда без нейтрали используется, в основном, при подключении трёхфазного электродвигателя.

Менее распространённой является схема соединения «треугольник». При этом каждый из электроприборов подключается к двум из трёх линейных проводников. Напряжение питания всех электроприборов составит 380В.

Такая схема используется в электроустановках, в которых отсутствует возможность подключения нейтрали или заземления, например, в подвижных аппаратах, питание которых осуществляется не кабелями, а при помощи токосъёмных пластин.

Плюсы и минусы трехфазной и однофазной сети

Использование для питания частного дома трёхфазного напряжения 380 В имеет ряд отличий от однофазного 220 В, поэтому при принятии решения о подключении к такой сети следует изучить все достоинства и недостатки такой схемы электроснабжения.

У трёхфазной сети есть ряд преимуществ перед однофазной:

  • Меньшее сечение подходящего кабеля. При равномерном распределении нагрузки по фазам имеется возможность повышения общей мощности электроприборов.
  • Подключение трёхфазных электродвигателей без дополнительных устройств и потери мощности. Обычные асинхронные электродвигатели при включении в однофазную сеть теряют значительную часть момента или необходимо приобрести специальный преобразователь.
  • Дополнительные возможности модернизации и ремонта электропроводки. Зная, как из 380 получается 220, можно изменять подключение электроприборов в зависимости от конкретной ситуации.

Кроме того, в некоторых случаях подвод к зданию трёхфазного питания позволяет получить в электрокомпании разрешение на повышение потребляемой мощности.

Кроме достоинств трёхфазная схема электроснабжения имеет и недостатки:

  • необходимо получить разрешение на изменение схемы в электрокомпании;
  • дополнительные затраты на замену питающего кабеля;
  • увеличенные размеры и стоимость аппаратуры во вводном щитке.

Где взять 220 Вольт, если в щите три фазы

Чаще всего вопрос, как из 380 сделать 220 Вольт, задают жители многоквартирных домов. В этих зданиях в подъезде на каждом этаже установлен электрощиток, к которому подходит три фазы, нейтраль, а в некоторых случаях ещё и заземление.

В таком электрощите имеется два напряжения — линейное 380В, между двумя разными фазами, и фазное 220В, между любой из фаз и нейтралью.

Фактически, для получения однофазного напряжения в трёхфазном щите необходимо двухжильный кабель присоединить к одной из фаз и нейтральной шиной. При наличии в схеме заземления желательно использовать не двухжильный, а трёхжильный кабель и подключить его следующим образом, согласно правилам цветовой маркировки кабелей:

  • коричневая жила — фаза;
  • синяя или голубая — нейтраль;
  • жёлто-зелёная — заземление.


Важно! Для уменьшения тока в подходящем к зданию кабеле подключение разных квартир необходимо производить равномерно по всем трём фазам.

Схема как из 380 сделать 220 Вольт

Существует несколько вариантов, как из 380 сделать 220 Вольт. Схемы таких соединений должны быть известны любому опытному электромонтёру:

  • Подключить однофазную нагрузку к фазному и нулевому проводам. Нейтральный проводник обычно имеет меньшее сечение, или для их поиска в четырёхжильном кабеле можно использовать мультиметр. Напряжение между фазными проводами составит 380В, а между фазой и нулём 220В.
  • Использовать трансформатор 380/220. Мощность этого устройства должна быть равна или больше мощности подключаемого электроприбора. Достоинство этой схемы в меньшей опасности поражения электрическим током. Вместо обычного трансформатора можно взять автотрансформатор. Этот прибор имеет меньшие габариты, но не защищает от поражения электрическим током.

Куда подключать заземление

Кроме нейтрали и фазы в современной электропроводке используется ещё один проводник — защитное заземление. К нему присоединяются корпуса электроприборов и светильников.

При нарушении изоляции между этими деталями и элементами, находящимися под напряжением, возникает короткое замыкание или появляется ток утечки. В результате этого явления происходит отключение автоматического выключателя или дифференциальной защиты, соответственно.

В современной системе электроснабжения жилых домов используются три схемы заземления:

  • TN-C. Старая система заземления, при которой заземление линий электропередач осуществляется только в подстанции, на нейтрали вторичной обмотки трансформатора, после чего к потребителю подводится совмещённый проводник PEN, выполняющий одновременно функцию заземления и нейтрали. В этом случае вместо защитного заземления имеет место защитное зануление и подключать к нему корпуса электроприборов запрещено ПУЭ 1. 7.132. Для защиты людей от поражения электрическим током в такой системе необходимо использовать УЗО или дифавтомат.
  • TN-C-S. Это более современная система, при которой во вводном щитке совмещённый провод PEN разделяется на нейтраль N и заземление РЕ. Место разделения при этом подключается к контуру заземления здания. Согласно ПУЭ п.1.7.135 после разделения соединение этих проводников запрещено. Заземляющий провод в квартирной электропроводке в данной системе необходимо присоединять именно к проводнику РЕ.
  • TN-S. Самая современная схема, при которой электроснабжение осуществляется при помощи пяти проводов — три фазных L1, L2 и L3 , нейтраль N и заземление РЕ. В этом случае заземление присоединяется только к заземляющему проводнику.

В крайнем случае, допускается подключать защитное заземление к отдельному контуру, изготовленному согласно нормам ПУЭ п.п.1.7.100-118. В этом случае получится система заземления ТТ.


Важно! Использовать в качестве заземлителя водопроводные, канализационные или отопительные трубы запрещено.

Вывод

В обычной электропроводке есть только два варианта, где взять 220 Вольт. Это подключить линию к фазному и нейтральному проводникам, кроме заземления, или использовать понижающий трансформатор. Последний метод применим не только в сети 380В, но и при любом другом напряжении.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

 

Трехфазная система электроснабжения по однолинейной схеме

Очень много вопросов возникает у собственников недвижимости, которые задались целью обеспечить бесперебойное электроснабжение частного дома от внешних линий электропередачи. Один из этих вопросов касается правильности составления схем электроснабжения при различных условиях подключения и при различных характеристиках энергопринимающих установок. В настоящей статье будет рассмотрена однолинейная схема электроснабжения для трехфазных электроустановок – ее характеристики, сфера применения и особенности проектирования.

Начнем с того, что характер построения системы электроснабжения полностью зависит от того, сколько фаз имеет линия, подводящая электричество к вашему дому. Дело в том, что структурная составляющая схемы, ее пропускная способность и даже процесс выполнения электромонтажных работ кардинально отличаются для однофазных и трехфазных сетей.

Замена однофазной системы электроснабжения на трехфазную

Рассмотрим частный случай, при котором однофазную систему электроснабжения необходимо переделать в трехфазную. Самое первое, что понадобится сделать собственнику домовладения в этом случае – это разработать проект однолинейной исполнительной схемы для трехфазного питания. Это будет новая схема электроснабжения частного дома, демонстрирующая характер построения электроустановки.

Составление новой однолинейной схемы

Если речь идет о подключении к трехфазному питанию домовладения, которое никогда не было в эксплуатации, то для такого помещения понадобится составить соответствующую расчетную схему. Конечно, некоторые домовладельцы изначально стараются разработать схему для однофазной системы электроснабжения. Но в современных условиях, когда большинство мощных потребителей электроэнергии имеют трехфазное питание, подобный подход выглядит, как минимум, непрактично. К тому же ощутимый объем потребления электроэнергии, связанный с наличием большого количества самых разнообразных потребителей (системы наружного освещения, системы электрического отопления и т. д.), требует того, чтобы проект электроснабжения частного дома подразумевал подключение к мощной сети – 380 В, а не к привычной однофазной – 220 В.  

В многоквартирных домах такая схема, конечно же, может быть использована (нагрузка на электросеть в них сравнительно невелика), но для частных домов она уже неактуальна.

Построение принципиальной схемы

Однолинейные схемы электроснабжения домов, подключаемых к трехфазным подводящим сетям, создаются из такого расчета, что на них будут изображены четырехжильные силовые проводники (четыре фазных провода и один провод – нулевой). Принципиальная однолинейная схема имеет довольно упрощенный графический вид. При этом она предельно проста для понимания и имеет четкую логическую структуру с обозначением всех составляющих элементов.

Принципиальная схема являет собой основу, без которой осуществление электромонтажных работ становится практически невозможным. Во время ее составления производятся все необходимые расчеты, имеющие первостепенную важность:

  • сечения проводников;
  • количество расходных материалов;
  • количество и параметры устройств защиты, определяемые потребляемой мощностью системы электроснабжения и многое другое.

Построение исполнительной схемы

Как мы уже говорили, исполнительная схема призвана помочь изменить подключение электричества с однофазной подводящей сети на трехфазную. Поэтому в ней должны быть отражены все изменения, которые необходимо произвести с целью модернизации и исправления ошибок.

Любая электрическая схема должна составляться специалистами, полностью отдающими себе отчет в том, какие задачи должна решать разрабатываемая ими документация. Поэтому ответ на вопрос: следует ли доверять составление подобных схем специалистам профильных организация или не следует – является вполне очевидным.

назначение, виды, принципы проектирования, требования к оформлению

При строительстве частного дома на первое место выходит строительство инженерных сетей и коммуникаций, электроснабжение в частном доме. И здесь основная роль отводится электроснабжению. В создании домашнего уюта большое значение имеют электробытовые приборы, их мощность и количество.

В первую очередь, для электроснабжения, необходимо выполнить проект, он создаётся на основе технических условий. Потом на основании проекта выполняются электромонтажные работы. Всё это должна выполнять специализированная организация, имеющая соответствующую лицензию.

Пример проекта электроснабжения частного жилого дома

Технические условия на электроснабжение

ТУ выдает энергоснабжающая организация. В основном, это местные электрические сети или та организация или фирма, которой принадлежат электросети, от которых будет произведено подключение. Электрические сети могут принадлежать как предприятию электросетей, так и, к примеру, водоканалу, ТСЖ, дачному кооперативу или другой организации.

Подключение электричества к частному дому: мощность

В заявлении на выдачу ТУ необходимо указать, какую мощность вы хотите подключить и на какое напряжение (230/400 В). Предварительно необходимо рассчитать, какую мощность будут потреблять ваши электроприборы. На основании вашего заявления и технической возможности линии электропередач, энергоснабжающая организация выдает ТУ.

Подключение частного дома к электричеству: что важно принять к сведению

Многие просят мощность больше, чем им надо. И это правильно. Заново делать проект на электроснабжение в случае увеличения мощности дело не из дешёвых. Поэтому в заявлении на выдачу ТУ пишут большую мощность, при этом перечень документации аналогичен.

Как провести электричество в частный дом: внешнее электроснабжение

После того, как вам выдали ТУ, вы идёте в проектную организацию, которая сделает проект на основании ПУЭ (правила устройства электроустановок) и СНиП (строительные нормы и правила). В ТУ будет указана общая разрешенная мощность для подключения, сечение кабельной или воздушной линии, марка и тип. Специалисты организации согласно ТУ и нормам выполнят проект, но вы обязаны принять участие в его работе, так как существует ряд нюансов. Схема электроснабжения дома поможет проработать многие детали.

Пример внешнего электроснабжения

В большинстве случаев энергоснабжающая организация выдаёт ТУ на подключение частного дома воздушным вводом. Это делается с целью минимизиции случаев хищения электрической энергии. По этой же причине рекомендуется устанавливать ШУЭ (шкаф учета электроэнергии) на опоре или на фасаде дома. Чтобы не возникало проблем с последующей сдачей электроснабжения на коммерческий учёт, рекомендуется прислушаться к этим рекомендациям.

Сечение вводного провода и его марка

Согласно нормативной документации, вводной кабель должен быть сечением не менее: 10 мм2 для кабеля с медной жилой, и не менее 16 мм2 для кабеля с алюминиевой жилой, если воздушный ввод более 25 метров. Это связано с тем, что этот участок ввода рассматривается как отдельный участок воздушной линии, от столба к дому. Если он составляет менее 25 метров, то сечение медной жилы не менее 4 мм2, алюминиевой не менее 10 мм2.

Сечение выбирают согласно ПУЭ, и зависит оно от системы, будет ли проводник PEN разделен на PE и N или нет. Всё это сделают специалисты проектного института.

Пример, как проводить электричество в частном доме

Необходимо помнить, что сечение кабельной линии выбирается по его длительно допустимому току. Он зависит от способа прокладки. К примеру, самый распространённый кабель – это ВВГ. Если сделать ввод в дом воздушным, а сечение его 10 мм2, то длительно допустимый ток для него составляет 80 А, а если этот же провод тем же сечением проложен в трубе один – трёхжильный, то длительно допустимый ток составляет 50 А. Это уже погрешность примерно 40 %.

Виды однолинейных электрических схем

В зависимости от того, на каком этапе выполнения работ по созданию электрической сети объекта составляется однолинейная схема, зависит её вид и прямое предназначение. На этапе разработки проектной документации составляется расчётная однолинейная схема, служащая основным документом для расчёта параметров системы электроснабжения. Именно этот документ необходим для последующих согласований с органами, выдающими технические условия для подключения объекта строительства к действующим электрическим сетям, каковыми являются электросетевые организации в месте размещения объекта-потребителя электрической энергии.

К сведению! Порядок получения технических условий на подключение к электрическим сетям регламентирован рядом документов. Среди них: Постановление Правительства РФ № 861 от 27.12.2004 «Об утверждении Правил недискриминационного доступа к услугам по передаче электрической энергии и оказания этих , «Правил недискриминационного доступа к услугам администратора торговой системы оптового рынка и оказания этих . Все нормативные документы должны быть учтены при разработке документации обязательно.

Расчётная схема квартирного щита загородного дома

На этапе эксплуатации объекта составляются однолинейные исполнительные схемы, на которых отображаются все изменения, вносимые в конфигурацию электрической сети в процессе её использования. Это может быть связано с модернизацией используемого оборудования или его заменой, добавлением новых мощностей или изменением конфигурации магистральных и групповых линий. На крупных объектах, где система электроснабжения подразделяется на несколько уровней, однолинейные схемы составляются по каждой группе потребителей: «объект в целом – цех – участок» и т.д. Изначально делается рисунок, отображающий подстанции (ТП) и конфигурацию сетей их объединяющих, затем схема ТП или ГРЩ (главный распределительный щит) и затем − каждого силового или осветительного щитка, имеющегося на объекте.

К сведению! На объектах различной формы собственности за ведение технической документации и её соответствие предъявляемым требованиям отвечает лицо, ответственное за энергохозяйство (ПТЭЭП гл.1.2 «Обязанности, ответственность потребителей за выполнение правил»).

Исполнительная схема 2-трансформаторной подстанции

На основе однолинейных разрабатываются прочие электрические схемы системы электроснабжения: структурные и функциональные, принципиальные и монтажные.



Шкаф учёта и распределения электроэнергии

Разводка электричества в частном доме ШРУ должна выглядеть следующим образом.

  1. Вводное устройство. Это может быть рубильник типа ЯРВ или автоматический выключатель.
  2. Прибор учёт электроэнергии (индукционный или электронный электросчетчик).
  3. УЗО (устройство защитного отключения), которое защищает человека от опасного действия электрического тока.
  4. Автоматические выключатели, которые защищают электрическую сеть от перегрузок и токов короткого замыкания. Могут устанавливаться дифференциальные автоматические выключатели.

Шкаф учёта и распределения электроэнергии
Есть некоторые нюансы. К примеру, установка УЗО является обязательным, а защита от перенапряжений – нет. Скачки напряжений в электрической сети сегодня не редкость. Но в частных домах рекомендуется совместить защиту от перенапряжений и защиту от импульсных перенапряжений, вызванных ударом молнии. В данном случае лучшим вариантом будет установить в вводной электрощит УЗИП, защиту от импульсных перенапряжений. В таких случаях предусматривается резервное электроснабжение дома.

Схема ШРУ с учётом внутренней электропроводки

Специалисты проектной организации будут комплектовать электрощит с учётом внутренней электропроводки и её разводки. Поэтому предварительно необходимо нанести на план дома точки установок розеток и мощность электробытовых приборов, которые будут к ним подключаться. Исходя из этого, будет определяться однолинейная схема электроснабжения дома или многолинейная.

На этом видео вы можете посмотреть на однолинейную схему электроснабжения частного жилого дома

Так же необходимо сделать и относительно сети освещения, места установки выключателей, светильников и их мощность. На основе ваших данных и в соответствии ПУЭ и СНиП специалисты проектной организации выберут защиту для сети освещения и розеточной сети, а так же план разводки электропроводки по дому.

Особенности обустройства распределительного щитка

Трехфазный щит учета

Однолинейная схема щита учета 15 кВт 380В (как частный случай) – самый распространенный вариант построения этой части системы энергоснабжения. При ее обустройстве рассматриваются следующие варианты комплектации, учитывающие различия однофазного и трехфазного питаний:

  • Использование в качестве защитного оборудования стандартных однополюсных автоматов и УЗО (по одному на каждую фазу).
  • Применение в схеме одних 4-хполюсных дифференциальных приборов.
  • Установка в щитке двухполюсных автоматов, дополненных кросс-модулем и УЗО.
  • Монтаж однополюсных линейных автоматов совместно с 4-х полюсным УЗО и кросс модулем.

Каждый из этих вариантов при наличии места в щитке подходит для обустройства и подключения полноценной трехфазной системы энергоснабжения. Выбор конкретного набора коммутирующих устройств зависит от предпочтений и финансовых возможностей хозяина загородного жилья.

Варианты заземления

Заземление служит для защиты человека от вредного воздействия электрического тока, если напряжение бесперебойное. Суть заключается в том, что при прикосновении человека к поврежденному участку цепи, и тем самым попадая под опасное напряжение, электрический ток идёт по наименьшему сопротивлению. В данном случае выполняют заземление с наименьшим сопротивлением, чтоб электрический ток пошёл не через вас, а через систему заземления в землю. Но для этого систему заземления необходимо выполнить в соответствии с правилами.

Контур заземления

Если на участке возле вашего дома хватает площади для контура заземления, то необходимо его выполнить. В данном случае, в землю вбиваются как минимум три вертикальных электрода, длиной не менее 2 м. Расстояние между ними должно быть не меньше, чем их сама длина. Вбиваться они должны в траншею, глубина которой должна быть не меньше 0.5 м.

При помощи горизонтальных металлических стержней они соединяются при помощи сварки и выводятся к зданию, после чего подводятся к вводному устройства дома. После монтажа заземления измеряют сопротивление тока. Если оно не соответствует, то забивают дополнительные электроды до тех пор, пока сопротивление заземления не будет доведено до нужного показателя.

Модульное заземление

Если не хватает площади для контура, часто выполняют модульное (точечное) заземления. В последнее время модульное заземление стало популярным, и не только из-за нехватки площади. Вбивается вручную или при помощи перфораторов в землю специальный электрод на глубину до 15 – 25 м. Одновременно с этим измеряется сопротивление.

Схема электрополитического заземления

Внимание! В частных домах и дачах при бытовом напряжении 220 Вольт / 380 Вольт сопротивление должно быть не более 30 Ом. Если оно не соответствует этому показателю, то заземление на вашем участке не защитит вас от опасного действия электрического тока, так как оно не больше, чем просто обыкновенное железо, бездарно закопанное в землю.

На этом видео можете посмотреть, как правильно делать модульное заземление при подводе электричества к дачному дому

https://youtu.be/AouaoZfmo44
Единственный минус модульного заземления в том, что неизвестно, на какую глубину нужно забить электрод, пока показатель сопротивления заземления не достигнет нужной отметки. Может, и на 30 м, а это уже высота 9-ти этажного дома.

Помните, что работы, связанные с оборудованием системы энергоснабжения, должны выполняться только квалифицированными специалистами!

Трехфазный двигатель, работающий от однофазного источника питания

Трехфазный асинхронный двигатель переменного тока широко используется в промышленном и сельскохозяйственном производстве благодаря своей простой конструкции, низкой стоимости, простоте обслуживания и эксплуатации. Трехфазный двигатель переменного тока использует трехфазный источник питания (3 фазы 220 В, 380 В, 400 В, 415 В, 480 В и т. Д.), Но в некоторых реальных приложениях у нас есть только однофазные источники питания (1 фаза 110 В, 220 В, 230 В, 240 В и т. Д.) .), особенно в бытовой технике. В случае, если трехфазные машины работают от однофазных источников питания, есть 3 способа сделать это:

  1. Перемотка мотора
  2. Купить GoHz VFD
  3. Купить преобразователь частота / фаза

I: Перемотка двигателя
Необходимо выполнить некоторые работы по преобразованию работы трехфазного двигателя в однофазное питание.Здесь вы узнаете, как преобразовать трехфазный двигатель 380 В для работы от однофазного источника питания 220 В.

Принцип перемотки
Трехфазный асинхронный двигатель использует три взаимно разделенных угла 120 ° сбалансированного тока через обмотку статора для создания изменяющегося во времени вращающегося магнитного поля для привода двигателя. Прежде чем говорить об использовании трехфазного асинхронного двигателя, переводимого для работы от однофазного источника питания, мы должны пояснить вопрос создания вращающегося магнитного поля однофазного асинхронного двигателя, поскольку однофазный двигатель может быть запущен только после установления вращающегося магнитного поля. .Причина, по которой у него нет начального пускового момента, заключается в том, что однофазная обмотка в магнитном поле не вращается, а пульсирует. Другими словами, он фиксирован относительно статора. В этом случае пульсирующее магнитное поле статора взаимодействует с током в проводнике ротора и не может генерировать крутящий момент, потому что нет вращающегося магнитного поля, поэтому двигатель не может быть запущен. Однако расположение двух обмоток внутри двигателя имеет разный угол наклона. Если он пытается произвести ток другой фазы, двухфазный ток имеет определенную разность фаз во времени, чтобы создать вращающееся магнитное поле.Таким образом, статор однофазного двигателя должен иметь не только рабочую обмотку, но и пусковую. В соответствии с этим принципом мы можем использовать трехфазную обмотку трехфазного асинхронного двигателя и сдвинуть одну из катушек обмотки с помощью конденсатора или индуктивности, чтобы две фазы могли проходить через разный ток, чтобы установить вращающееся магнитное поле, чтобы управлять двигателем. Когда трехфазный асинхронный двигатель использует однофазный источник питания, мощность составляет только 2/3 от исходной.

Метод перемотки
Чтобы использовать трехфазный двигатель на однофазном источнике питания, мы можем последовательно соединить любые двухфазные катушки обмотки, а затем подключить к другой фазе. В это время магнитный поток в двух обмотках имеет разность фаз, но рабочая обмотка и пусковая обмотки подключены к одному источнику питания, поэтому ток одинаковый. Поэтому последовательно подключите конденсатор, катушку индуктивности или резистор к пусковой обмотке, чтобы ток имел разность фаз.Для увеличения пускового момента соединения можно использовать автотрансформатор для увеличения напряжения однофазного источника питания с 220 В до 380 В, как показано на Рисунке 1.

Малогабаритные двигатели общего назначения имеют Y-образное соединение. Для трехфазного асинхронного двигателя Y-типа клемма обмотки конденсатора C подключается к клемме пуска автотрансформатора. Если вы хотите изменить направление вращения вала, подключите его, как показано на рисунке 2.

Если вы не хотите повышать напряжение, источник питания 220 В также может использовать это.Поскольку исходная трехфазная обмотка напряжения питания 380 В теперь используется для источника питания 220 В, напряжение слишком низкое, поэтому крутящий момент слишком низкий.

Рисунок 3 Слишком низкий крутящий момент проводки. Если вы хотите увеличить крутящий момент, вы можете подключить конденсатор фазовой синхронизации к двухфазной обмотке в катушке и использовать ее в качестве пусковой обмотки. Одна катушка, напрямую подключенная к источнику питания 220 В, см. Рисунок 4.

На рисунках 3 и 4, если вам нужно изменить направление вращения вала, вы можете просто изменить сквозное направление пусковой или рабочей обмотки. .

Магнитный момент после того, как две обмотки соединены последовательно (одна из которых является обратной струной), складывается из двух углов магнитного момента 60 ° (Рисунок 5). Магнитный момент намного выше, чем магнитный момент 120 ° (показан на Рисунке 6), поэтому пусковой момент проводки на Рисунке 5 больше, чем на Рисунке 6.

Значение резистора доступа R (рисунок 7) на обмотке пускателя должно быть замкнуто на сопротивление фазы обмотки статора и должно выдерживать пусковой ток, равный 0.1-0,12 пускового момента.

Выбор конденсатора фазового сдвига
Рабочий конденсатор c = 1950 × Ie / Ue × cosφ (микрозакон), Ie, ue, cosφ — это исходный номинальный ток двигателя, номинальное напряжение и значения мощности.
Обычный рабочий конденсатор, используемый в однофазном источнике питания на трехфазном асинхронном двигателе (220 В): на каждые 100 Вт используются 4-6 микроконденсаторы. Пусковой конденсатор может быть выбран в соответствии с пусковой нагрузкой, обычно в 1–4 раза превышающей рабочий конденсатор.Когда двигатель достигает 75% ~ 80% номинальной скорости, пусковой конденсатор должен быть отключен, иначе двигатель перегорит.

Емкость конденсатора должна быть правильно выбрана, чтобы токи 11, 12 двух фазных обмоток были равны и равны номинальному току Ie, то есть 11 = 12 = Ie. Если требуется высокий пусковой момент, можно добавить пусковой конденсатор и подключить его к рабочему конденсатору. При нормальном запуске отключите пусковой конденсатор.

Есть много преимуществ в использовании трехфазного двигателя от однофазного источника питания, работа по перемотке проста.Однако общая мощность однофазного источника питания слишком мала, он должен выдерживать высокий пусковой ток, поэтому этот метод можно применить только к двигателю мощностью 1 кВт или менее.

II: Купите GoHz VFD
VFD, сокращение от Variable Frequency Drive, это устройство для управления двигателем, работающим с регулируемой скоростью. Однофазный преобразователь частоты в трехфазный — лучший вариант для трехфазного двигателя, работающего от однофазного источника питания (1 фаза 220 В, 230 В, 240 В), он устраняет пусковой ток во время запуска двигателя, заставляя двигатель работать от нулевой скорости до полной. скорость плавная, плюс цена абсолютно доступная.Доступны частотно-регулируемые приводы GoHz мощностью от 1/2 до 7,5 л.с., более мощные частотно-регулируемые приводы могут быть настроены в соответствии с конкретными двигателями.

Видео с подключением однофазного частотно-регулируемого привода с частотой ГГц к трехфазному преобразователю частоты

Преимущества использования частотно-регулируемого привода с частотой 1 ГГц для трехфазного двигателя:

  1. Плавный запуск может быть достигнут путем настройки параметров частотно-регулируемого привода, время запуска может быть установлено на несколько секунд или даже десятки.
  2. Функция бесступенчатого регулирования скорости для обеспечения оптимальной работы двигателя.
  3. Переведите двигатель с индуктивной нагрузкой на емкостную нагрузку, которая может увеличить коэффициент мощности.
  4. VFD имеет функцию самодиагностики, а также функции защиты от перегрузки, перенапряжения, низкого давления, перегрева и более 10 функций защиты.
  5. Может быть легко запрограммирован с клавиатуры для автоматического управления.

III: Купите преобразователь частоты / фазы.
Преобразователь частоты GoHz или преобразователь фазы также можно использовать для таких ситуаций, он может преобразовывать однофазный (110 В, 120 В, 220 В, 230 В, 240 В) в трехфазный (0- 520 В) с чистым синусоидальным выходом, который лучше для характеристик двигателя, чем форма волны ШИМ VFD, они предназначены для лабораторных испытаний, самолетов, военных и других приложений, где требуются высококачественные источники питания, это очень дорого.

Статья по теме: Влияние двигателя 60 Гц (50 Гц) на источник питания 50 Гц (60 Гц)

Варианты фаз и напряжения генератора

Прежде всего при принятии решения о том, какой тип генератора лучше всего подходит для вашей среды, необходимо убедиться, что вы выбрали правильную электрическую конфигурацию. Электрическая конфигурация обычно включает фазу, напряжение, кВт и герц, которые лучше всего подходят для вашего приложения. Чтобы объяснить, как работают фазы и напряжение, полезно понять, что включает в себя генераторная установка.Генераторная установка (также известная как генераторная установка) состоит из двух основных компонентов — промышленного двигателя (обычно дизельного, природного газа или пропана) и части генератора. Двигатель вырабатывает мощность и обороты, а конец превращает их в электричество.

Объяснение фаз

Однофазные генераторы — для небольших однофазных нагрузок эти генераторы обычно не превышают 40 кВт. Они обычно используются в жилых помещениях и имеют коэффициент мощности 1.0.

Трехфазные генераторы — в основном для более крупных промышленных предприятий, эти генераторные установки могут обеспечивать как однофазное, так и трехфазное питание для работы промышленных двигателей с большей мощностью, отводить питание для отдельных линий и в целом более гибкие. . Обычно они используются в коммерческих средах и имеют коэффициент мощности 0,8.

Увеличьте номинальную выходную мощность — вы можете преобразовать однофазную мощность в трехфазную и иногда получить номинальную выходную мощность примерно на 20-30%, но конец необходимо повторно подключать, и вам также необходимо учитывать нагрузку балансы и несколько других переменных.

Снижение номинальной мощности (преобразование из трехфазной в однофазную) — обычно снижает номинальную выходную мощность в кВт примерно на 30%. Например, трехфазный генератор мощностью 100 кВт упадет примерно до 70 кВт при преобразовании в однофазный.

• Чтобы точно рассчитать скорректированную мощность, которую вы получите после снижения номинала, вы всегда должны пытаться снизить номинальную мощность в кВА, а не в кВт. Формула: 2/3 кВА (например, однофазная мощность 150 кВА будет снижена до 100 кВА), а затем преобразовать оттуда в киловатты, если необходимо.

• Для снижения мощности генераторной установки соответствующая сторона генератора обычно должна иметь 12 или 10 выводов, которые можно повторно подключить. Нагрузка на сам двигатель не затронута, потому что это сторона генератора, по сути, переходит в режим повышенной передачи. Если генератор не подлежит повторному подключению (или может быть подключен только для высокого / низкого напряжения), вы все равно можете применять к нему однофазные нагрузки, если не превышаете номинальный ток на отдельной линии.

• Генератор ограничен своей электрической мощностью в зависимости от стороны генератора и на самом деле не имеет большого отношения к двигателю.

Общие напряжения на коммерческих генераторных установках
Однофазный

• 120
• 240
• 120/240

3 фазы
• 208
• 120/208
• 240
• 480 (наиболее распространенное напряжение для промышленных генераторов)
• 277/480
• 600 (в основном для районов Канады)
• 4160 Вольт

Требования к напряжению могут сильно различаться для разных типов оборудования (например, другие варианты напряжения включают: 220, 440, 2400, 3300, 6900, 11 500 и 13 500)

Как определить необходимое напряжение

Чтобы убедиться, что конфигурация напряжения именно такая, какая вам нужна, вам всегда следует консультироваться с электриком или подрядчиком по электрике.Они могут оценить вашу среду и определить различные нагрузки, которые потребуются вашему объекту или предприятию, а также смогут принять во внимание другие переменные, такие как напряжение, подаваемое в здание, максимальную силу тока, выходную мощность электродвигателя и многое другое. Вы также можете обратиться к нашему калькулятору мощности, чтобы получить числа. Используйте эти числа в качестве отправной точки и используйте диаграмму силы тока, которая доступна здесь и на других сайтах различных производителей в Интернете. Обязательно учитывайте следующие ключевые элементы, перечисленные ниже, чтобы помочь вам определить правильное напряжение для вашей генераторной установки:

• Требуемое напряжение, поступающее на ваш объект, или питание от сетевого трансформатора, который подается в здание.

• Максимальная сила тока, необходимая для работы вашего конкретного оборудования. Если вы не знаете эту информацию, токи генератора (для 3-фазных генераторов переменного тока) обычно можно сопоставить с таблицей, чтобы определить размер автоматического выключателя, который потребуется вашему генератору.

• Также следует учитывать пусковой ток промышленных двигателей. Многие двигатели будут работать с определенной мощностью, но потребуют гораздо более высоких пусковых кВт. Например, вам может потребоваться 200 кВт и увеличенная сила тока при запуске, даже если ваша средняя рабочая нагрузка составляет всего 90 кВт.Также хорошо оценить требования к мощности электродвигателя. Некоторые двигатели поставляются с устройством плавного пуска, которое помогает контролировать ускорение путем подачи напряжения. Некоторые промышленные двигатели предоставляют всю эту информацию на своих бирках данных.

• Частота электросети также играет роль — в большинстве США и некоторых частях Азии частота составляет 60 Гц, а в остальном мире — 50 Гц. Большинство крупных кораблей и самолетов используют специальную частоту 400 Гц. Чтобы изменить мощность в электросети на другую частоту, иногда можно использовать преобразователь частоты, но необходимо учитывать дополнительные факторы.Большинство генераторов можно преобразовать, но некоторые генераторы не будут работать должным образом или могут потребоваться дополнительные детали и работа по настройке. Проконсультируйтесь с производителем генератора для получения дополнительных сведений о подобной ситуации.

Регулировка напряжения генератора

Регулировка напряжения генераторов — это то, что наши опытные техники выполняют каждые несколько дней, чтобы удовлетворить все различные комбинации и особые электрические требования наших клиентов.Хотя напряжение можно регулировать на большинстве генераторов, ваши конкретные параметры всегда будут ограничены в зависимости от того, с каким концом генератора вы работаете.

Сам процесс изменения напряжения — это относительно техническая электрическая процедура, которая в первую очередь включает регулировку выводов на стороне генератора. На большинстве 3-фазных генераторов мы обычно берем 10 или 12 выводов со стороны генератора и меняем конфигурацию их расположения и подключения, корректируем их маршрут к панели управления и некоторым другим местам — в зависимости от того, что мы пытаемся выполнить.Мы хорошо изолируем провода, при необходимости отрегулируем чувствительные провода, а затем при необходимости внесем дополнительные изменения. Здесь часто упоминаются такие термины, как изгиб и двойной треугольник (или зигзаг), Y-конфигурация и другие различные схемы подключения. Подробнее об этих условиях читайте в нашей статье о фазовых преобразованиях. На 3-фазных генераторах мы можем изменить, например, 208 В на 480 В или с 480 на 240 В или почти любое количество других комбинаций и фаз, используя все напряжения, которые доступны в настоящее время (при условии, что конец генератора может быть повторно подключен).

Сторона генератора — это основной компонент, который будет определять реакцию генератора на изменение фазы и / или напряжения. При правильном выполнении изменение напряжения не должно повредить или перенапрягать устройство. Многим клиентам требуется наличие двух или более напряжений системы от их резервной генераторной установки. Это могут быть электродвигатели, работающие на 480 Вольт, бытовые приборы и производственное оборудование, использующие 208 Вольт, а также меньшие нагрузки и электроинструменты на 240 Вольт.Вы можете добиться этого с помощью трехфазного генератора либо с помощью переключателя, либо с помощью двойного генератора напряжения, который уже сделан для этой цели. Однако имейте в виду, что вы не можете одновременно выводить несколько напряжений от одного генератора, вам нужно будет вручную переключить выход на каждое другое напряжение или использовать трансформатор для этого.

Есть несколько ограничений, о которых следует помнить при рассмотрении изменения напряжения. Специализированные или высоковольтные генераторы (например, 4160 или 13 500 Вольт) не очень практичны для изменения.Вы можете изменить 600 В на 480 В, но не наоборот. Кроме того, на многих 3-фазных генераторах иногда бывает трудно получить доступ к определенным элементам и обойти их. Например, у них может быть гибкий кабелепровод, который обертывается, дверцы панелей, которые находятся в необычных местах, или корпуса, которые не позволяют нашим техническим специалистам легко получить доступ. Хотя почти всегда есть доступ к стволу и проводке на концах 3-фазного генератора, иногда это может быть сложно. Следует также иметь в виду, что некоторые концы генератора не подлежат повторному подключению, поэтому варианты и схемы проводки, доступные для этих типов генераторов, очень ограничены.

Еще одна распространенная вещь, которую мы делаем при изменении напряжения, — это обновляем компоненты и рассматриваем другие возможные аспекты оборудования в вашей системе, включая следующее:

Замените датчики — всякий раз, когда мы изменяем напряжение на старом генераторе, нам часто приходится заменять несколько датчики, чтобы мы могли прочитать новые уровни вывода. Одним из приятных преимуществ новой цифровой панели управления является то, что их обычно можно перепрограммировать.

Выключатели — мы регулярно заменяем выключатели на устройствах в соответствии с требованиями наших клиентов по силе тока.Прерыватель обычно прикрепляется к стороне генератора, и это важный компонент, который поможет защитить генератор, гарантируя, что вы не превысите номинальную силу тока для этого устройства. В зависимости от того, хочет ли клиент, чтобы все было на одном выключателе или было разделено по какой-либо конкретной причине, мы можем изменить конфигурацию на что-то другое (например, один выключатель на 1200 А или два на 600 А).

Регулятор напряжения — на большинстве генераторных установок при повторном подключении проводов к другому напряжению необходимо также тщательно отрегулировать чувствительные провода, идущие к регулятору и / или панели управления.Если это не будет сделано должным образом, вы можете сжечь доску или нанести другой ущерб. Большинство современных коммерческих генераторов теперь имеют регулятор напряжения, встроенный в панель управления, поэтому вы можете регулировать параметры напряжения оттуда, и он помогает выполнять все регулировки. Это в первую очередь хорошее достижение, но делает замену платы намного более дорогостоящей из-за дополнительных функций. К старым генераторам часто присоединяется отдельное оборудование, которое выполняет те же функции. Все эти регуляторы работают для автоматического поддержания постоянного напряжения, чтобы ваше оборудование вырабатывало стабильный выходной сигнал.

Трансформатор — если он есть в вашей системе, возможно, придется перенастроить часть проводки для соответствия новому напряжению.

Автоматический переключатель резерва (ATS) — определение силы тока для этого типа переключателя также важно, потому что ATS является ключевой частью гарантии того, что вы можете автоматически переключить генератор во время сбоя в электросети, а также выключить его после питание возвращается.

Подводя итог, можно сказать, что существует множество вариантов комбинаций фаз и напряжений, конфигураций и преобразований.Это может быть сложный процесс, поэтому лучше всего обратиться за профессиональной помощью к электрику или опытному технику-генератору. Однако, если у вас есть какие-либо вопросы по вопросам, затронутым в этой статье, вам нужна помощь в определении размеров генератора или если вам нужна помощь в определении того, что лучше всего подходит для вашей конкретной среды, просто позвоните по телефону 800-853-2073 или свяжитесь с нами. онлайн.

Цвета электропроводки — фаза 3 США

Стандарт цветового кодирования электропроводки для трехфазных электрических систем стандартизирован, чтобы помочь идентифицировать отдельные фазы проводов.Цветовые коды проводки для цепей распределения питания переменного и постоянного тока менялись много раз и различаются в зависимости от региона. Для трехфазного электроснабжения схемы будут использовать пять проводов: провод заземления, нулевой провод, провод под напряжением, провод линии 2, электрический провод линии 3. В этой статье подробно описаны следующие цветовые коды кабелей:

— Международные цвета проводки
— Цветовые коды проводки в США
— Старые и новые цвета проводки в Великобритании

Электроснабжение с фиксированной проводкой требует определенных правил цвета проводки (bs 7671) для обозначения различных линий питания в разных страны.В США есть свои собственные цвета проводки для электрических цепей: черный, красный и синий используются для трехфазной сети 208 В переменного тока; коричневый, оранжевый и желтый используются для 480 В переменного тока. В Австралии также существует другой стандарт цвета проводки. Новые цвета кабелей для вилок в Великобритании теперь гармонируют с цветами кабелей питания в Европе для переменного и постоянного тока. Большая часть Европы соблюдает правила расцветки электропроводки IEC («Международная электротехническая комиссия») для параллельных цепей переменного тока.

* США (LV) Это должно использоваться для 3 ФАЗЫ ПЕРЕМЕННОГО ТОКА 120/208 В переменного тока

* США (HV) Это должно использоваться для 3 ФАЗЫ 277/480 В переменного тока.

В США цветовые коды обычно используются для силовых проводов в «ответвленных цепях», проводки между последним защитным устройством.

Это типы цветов проводов, которые обычно используются дома и в офисе.

Фаза 1 — Черный

Фаза 2 — Красный

Фаза 3 — Синий нейтраль — Белое заземление — Зеленый, Зеленый с желтой полосой или оголенный провод

Если одна фаза вашей проводки находится под более высоким напряжением, чем другие, используйте соединение с высокой ветвью, провода должны быть помечены оранжевым цветом для этой фазы.В более новых установках соединения с высокой ветвью обычно не используются.

Промышленные двигатели и оборудование обычно имеют системы с более высоким напряжением. Фаза 1 — Коричневый Фаза 2 — Оранжевый Фаза 3 — Желтый нейтраль — Серое заземление — Зеленый, зеленый с желтой полосой или оголенный провод

Очень важно иметь задокументированную систему маркировки проводов для систем с более высоким напряжением. Этикетки должны включать информацию о цепи и соответствующей точке отключения для блокировки / маркировки.

Постоянный или постоянный ток, как правило, используется в аккумуляторных системах и солнечных энергетических системах вместо переменного или переменного тока.Положительный (без заземления) — Красный Отрицательный (без заземления) — Черный Заземление — Белый или Серый

Силовые кабели в Европе и Великобритании идентифицируются с помощью стандартной цветовой кодировки силовых кабелей.

Однофазное и трехфазное питание Объяснение

В электричестве фаза относится к распределению нагрузки. В чем разница между однофазным и трехфазным блоком питания? Однофазное питание — это двухпроводная силовая цепь переменного тока. Обычно это один провод питания — фазный провод — и один нейтральный провод, при этом ток течет между силовым проводом (через нагрузку) и нейтральным проводом.Трехфазное питание — это трехпроводная силовая цепь переменного тока, в которой каждый фазный сигнал переменного тока разнесен на 120 электрических градусов.

Жилые дома обычно питаются от однофазного источника питания, в то время как коммерческие и промышленные объекты обычно используют трехфазное электроснабжение. Одно из ключевых различий между однофазным и трехфазным состоит в том, что трехфазный источник питания лучше выдерживает более высокие нагрузки. Однофазные источники питания чаще всего используются, когда типичными нагрузками являются освещение или обогрев, а не большие электродвигатели.

Однофазные системы могут быть производными от трехфазных систем. В США это делается через трансформатор для получения нужного напряжения, а в ЕС — напрямую. Уровни напряжения в ЕС таковы, что трехфазная система может также служить тремя однофазными системами.

Однофазное и трехфазное питание

Еще одним важным отличием трехфазного питания от однофазного является постоянство подачи питания. Из-за пиков и провалов напряжения однофазный источник питания просто не обеспечивает такой стабильности, как трехфазный источник питания.Трехфазный источник питания обеспечивает постоянную подачу питания.

По сравнению с однофазным питанием и трехфазным, трехфазные источники питания более эффективны. Трехфазный источник питания может передавать в три раза больше мощности, чем однофазный источник питания, при этом требуется только один дополнительный провод (то есть три провода вместо двух). Таким образом, трехфазные источники питания, независимо от того, имеют ли они три провода или четыре, используют меньше проводящего материала для передачи заданного количества электроэнергии, чем однофазные источники питания.

Разница между трехфазной и однофазной конфигурациями

В некоторых трехфазных источниках питания действительно используется четвертый провод, который является нейтральным проводом. Две наиболее распространенные конфигурации трехфазных систем известны как звезда и треугольник. Конфигурация треугольника имеет только три провода, в то время как конфигурация звезды может иметь четвертый, нейтральный, провод. Однофазные блоки питания также имеют нейтральный провод.

Как однофазные, так и трехфазные системы распределения электроэнергии имеют функции, для которых они хорошо подходят.Но эти два типа систем сильно отличаются друг от друга.

Статьи по теме

Узнайте больше об анализаторах качества электроэнергии.

Трехфазное питание или магия отсутствующей нейтрали

Мало что может вызвать такую ​​путаницу, как трехфазное питание, особенно в конфигурации с треугольником. Сантехники и автолюбители: радуйтесь! В этом посте мы представим версию трехфазной системы питания для сантехника (и автомеханика).

Представьте себе водную систему переменного тока, которая подает чередующиеся импульсы давления воды и вакуума в замкнутой системе с использованием двух труб.Вода поступает в ресивер (своего рода гидравлический двигатель) по одной трубе (назовем ее A), затем обратно к источнику по другой трубе (назовем ее N). Каждые несколько секунд направление потока воды меняется на противоположное. Вы можете представить две трубы, идущие к двум концам цилиндра, толкающие и тянущие поршень в одноцилиндровом двигателе, преобразуя пульсации воды в полезную работу.

Система водоснабжения переменного тока

А теперь представьте, что вы хотите увеличить мощность в три раза.Вам понадобятся три таких системы (A, B и C, всего шесть труб, A-N1, B-N2 и C-N3).

Вы можете запустить три пары синхронно (вода течет с одинаковой скоростью и направлением в любой момент времени во всех трубах A / B / C и всех трубах N1 / N2 / N3), или вы можете запустить их не синхронно (например, текущая полная скорость в одном направлении, B собирается назад, а C движется на полной скорости назад). Обратите внимание, что если все системы имеют одинаковые потоки (за исключением разного времени), когда N1 течет в одном направлении, N2 и N3 текут в противоположном направлении.Более того, если вы сдвинете их из синхронизации ровно на цикла каждый, поток в N-трубах будет эффективно сокращаться, и вам вообще не понадобится N каналов (или, может быть, вы вместо этого используете только один общий N-канал. из трех, чтобы устранить любые дисбалансы потока через А-образные трубы, которые не компенсируются полностью).

Одинарная труба «N»


Нет трубы «N» вообще

Та же идея работает для трех электрических цепей.Вот почему так популярно трехфазное питание. Это позволяет передавать такое же количество энергии с меньшим количеством проводов, в некоторых случаях на 50% меньше (используя 3 провода вместо 6). Чтобы он работал, вам нужны три синхронизированных источника питания (три «фазы», ​​обычно называемые X, Y и Z), сдвинутые на цикла. Обычная труба «B» в этой схеме является «нейтральной».

Если вы используете только «трубы A», это называется соединением «треугольник». В этой конфигурации вы полностью пропускаете «трубу B» — «нейтраль» волшебным образом исчезает! В трехфазном соединении треугольником вы используете 3 силовых проводника (обычно обозначаются X, Y и Z).У вас также может быть 4-й заземляющий провод для безопасности. Это то, что электрики называют 3-полюсным 3-проводным подключением (3P3W, без заземления) или 3-полюсным 4-проводным подключением (3P4W, с заземлением).

Если вы используете три трубы «A» и обычную трубу «B», это называется Y-образным («звездообразным») соединением (три ветви плюс центр). В Y-соединении вы используете 4 силовых проводника (с маркировкой X, Y, Z и N) и дополнительный 5-й заземляющий провод для безопасности. Это то, что электрики называют 4-полюсным 4-проводным подключением (4P4W, без заземления) или 4-полюсным 5-проводным подключением (4P5W, с заземлением).

Трехфазные системы питания: Y (звезда) и треугольник

При трехфазном питании у вас есть два способа подключения традиционной двухпроводной нагрузки, например, лампочки или сервера. В системе Y вы можете подключить его между любой фазой (X, Y или Z) и нейтралью (N). В системах Y и Delta вы также можете подключить его между любыми двумя фазами (X-Y, Y-Z или Z-X).

В трехфазной системе напряжение между любыми двумя фазами в 3 раза выше напряжения отдельной фазы в 1 раз.73 (точнее, квадратный корень из 3). Если ваше напряжение X-N (а также Y-N и Z-N) составляет 120 В (распространено в США), напряжения X-Y (и Y-Z и Z-X) (также известные как «межфазные» напряжения) будут 120 В * 1,73 = 208 В. 208 В (иногда путают с европейскими 220 В) поступают от перекрестных соединений к трехфазной системе на 120 В. Система 220 В с тремя фазами 220 В имеет межфазное напряжение 220 * 1,73 = 380 В.

Системы мониторинга энергии

Packet Power поддерживают трехфазное питание в конфигурациях звезда и треугольник и измеряют все ключевые параметры каждой отдельной фазы в цепи, а также общую мощность и потребление энергии.Отправьте письмо по адресу [email protected] , если вам нужна дополнительная информация.

Если вы нашли эту информацию полезной, вы также можете насладиться несколькими недавними сообщениями в блоге.

Вольт, Ампер, Ватт, Ватт-час и стоимость

Коэффициент мощности: разница между обещанием и реальностью

DC в DC

Низковольтные потребители — Руководство по электрическому монтажу

Страна Частота и допуск
(Гц и%)
Внутренний (V) Коммерческий (V) Промышленное (В)
Афганистан 50 380/220 (а)
220 (к)
380/220 (а) 380/220 (а)
Алжир 50 ± 1.5 220/127 (д)
220 (к)
380/220 (а)
220/127 (а)
10 000
5 500
6 600
380/220 (а)
Ангола 50 380/220 (а)
220 (к)
380/220 (а) 380/220 (а)
Антигуа и Барбуда 60 240 (к)
120 (к)
400/230 (а)
120/208 (а)
400/230 (а)
120/208 (а)
Аргентина 50 ± 2 380/220 (а)
220 (к)
380/220 (а)
220 (к)
Армения 50 ± 5 380/220 (а)
220 (к)
380/220 (а)
220 (к)
380/220 (а)
Австралия 50 ± 0.1 415/240 (а)
240 (к)
415/240 (а)
440/250 (а)
440 (м)
22 000
11 000
6 600
415/240
440/250
Австрия 50 ± 0,1 230 (к) 380/230 (а) (б)
230 (к)
5 000
380/220 (а)
Азербайджан 50 ± 0,1 208/120 (а)
240/120 (к)
208/120 (а)
240/120 (к)
Бахрейн 50 ± 0.1 415/240 (а)
240 (к)
415/240 (а)
240 (к)
11000
415/240 (а)
240 (к)
Бангладеш 50 ± 2 410/220 (а)
220 (к)
410/220 (а) 11 000
410/220 (а)
Барбадос 50 ± 6 230/115 (к)
115 (к)
230/115 (к)
200/115 (а)
220/115 (а)
230/400 (г)
230/155 (к)
Беларусь 50 380/220 (а)
220 (к)
220/127 (а)
127 (к)
380/220 (а)
220 (к)
380/220 (а)
Бельгия 50 ± 5 230 (к)
230 (а)
3N, 400
230 (к)
230 (а)
3N, 400
6 600
10 000
11 000
15 000
Боливия 50 ± 0.5 230 (к) 400/230 (а)
230 (к)
400/230 (а)
Ботсвана 50 ± 3 220 (к) 380/220 (а) 380/220 (а)
Бразилия 60 ± 3 220 (к, а)
127 (к, а)
220/380 (а)
127/220 (а)
69 000
23 200
13 800
11 200
220/380 (а)
127/220 (а)
Бруней 50 ± 2 230 230 11 000
68 000
Болгария 50 ± 0.1 220 220/240 1000
690
380
Камбоджа 50 ± 1 220 (к) 220/300 220/380
Камерун 50 ± 1 220/260 (к) 220/260 (к) 220/380 (а)
Канада 60 ± 0,02 120/240 (к) 347/600 (а)
480 (ж)
240 (е)
120/240 (к)
120/208 (а)
7200/12 500
347/600 (а)
120/208
600 (ж)
480 (ж)
240 (ж)
Кабо-Верде 220 220 380/400
Чад 50 ± 1 220 (к) 220 (к) 380/220 (а)
Чили 50 ± 1 220 (к) 380/220 (а) 380/220 (а)
Китай 50 ± 0.5 220 (к) 380/220 (а)
220 (к)
380/220 (а)
220 (к)
Колумбия 60 ± 1 120/240 (г)
120 (к)
120/240 (г)
120 (к)
13,200
120/240 (г)
Конго 50 220 (к) 240/120 (к)
120 (к)
380/220 (а)
Хорватия 50 400/230 (а)
230 (к)
400/230 (а)
230 (к)
400/230 (а)
Кипр 50 ± 0.1 240 (к) 415/240 11 000
415/240
Чешская Республика 50 ± 1 230 500
230/400
400 000
220 000
110 000
35 000
22 000
10 000
6 000
3 000
Дания 50 ± 1 400/230 (а) 400/230 (а) 400/230 (а)
Джибути 50 400/230 (а) 400/230 (а)
Доминика 50 230 (к) 400/230 (а) 400/230 (а)
Египет 50 ± 0.5 380/220 (а)
220 (к)
380/220 (а)
220 (к)
66,000
33,000
20,000
11,000
6,600
380/220 (а)
Эстония 50 ± 1 380/220 (а)
220 (к)
380/220 (а)
220 (к)
380/220 (а)
Эфиопия 50 ± 2,5 220 (к) 380/231 (а) 15 000
380/231 (а)
Фолклендские острова 50 ± 3 230 (к) 415/230 (а) 415/230 (а)
Острова Фиджи 50 ± 2 415/240 (а)
240 (к)
415/240 (а)
240 (к)
11 000
415/240 (а)
Финляндия 50 ± 0.1 230 (к) 400/230 (а) 690/400 (а)
400/230 (а)
Франция 50 ± 1 400/230 (а)
230 (а)
400/230
690/400
590/100
20 000
10 000
230/400
Гамбия 50 220 (к) 220/380 380
Грузия 50 ± 0,5 380/220 (а)
220 (к)
380/220 (а)
220 (к)
380/220 (а)
Германия 50 ± 0.3 400/230 (а)
230 (к)
400/230 (а)
230 (к)
20 000
10 000
6 000
690/400
400/230
Гана 50 ± 5 220/240 220/240 415/240 (а)
Гибралтар 50 ± 1 415/240 (а) 415/240 (а) 415/240 (а)
Греция 50 220 (к)
230
6000
380/220 (а)
22 000
20 000
15 000
6 600
Гранада 50 230 (к) 400/230 (а) 400/230 (а)
Гонконг 50 ± 2 220 (к) 380/220 (а)
220 (к)
11 000
386/220 (а)
Венгрия 50 ± 5 220 220 220/380
Исландия 50 ± 0.1 230 230/400 230/400
Индия 50 ± 1,5 440/250 (а)
230 (к)
440/250 (а)
230 (к)
11000
400/230 (а)
440/250 (а)
Индонезия 50 ± 2 220 (к) 380/220 (а) 150 000
20 000
380/220 (а)
Иран 50 ± 5 220 (к) 380/220 (а) 20 000
11 000
400/231 (а)
380/220 (а)
Ирак 50 220 (к) 380/220 (а) 11 000
6 600
3 000
380/220 (а)
Ирландия 50 ± 2 230 (к) 400/230 (а) 20 000
10 000
400/230 (а)
Израиль 50 ± 0.2 400/230 (а)
230 (к)
400/230 (а)
230 (к)
22 000
12 600
6 300
400/230 (а)
Италия 50 ± 0,4 400/230 (а)
230 (к)
400/230 (а) 20 000
15 000
10 000
400/230 (а)
Ямайка 50 ± 1 220/110 (г) (к) 220/110 (г) (к) 4,000
2,300
220/110 (г)
Япония (восток) + 0.1
— 0,3
200/100 (в) 200/100 (ч)
(до 50 кВт)
140,000
60,000
20,000
6,000
200/100 (ч)
Иордания 50 380/220 (а)
400/230 (к)
380/220 (а) 400 (а)
Казахстан 50 380/220 (а)
220 (к)
220/127 (а)
127 (к)
380/220 (а)
220 (к)
380/220 (а)
Кения 50 240 (к) 415/240 (а) 415/240 (а)
Киргизия 50 380/220 (а)
220 (к)
220/127 (а)
127 (к)
380/220 (а)
220 (к)
380/220 (а)
Корея (Северная) 60 +0, -5 220 (к) 380/220 (а) 13 600
6 800
Корея (Южная) 60 ± 0.2 220 (к) 380/220 (а) 380/220 (а)
Кувейт 50 ± 3 240 (к) 415/240 (а) 415/240 (а)
Лаос 50 ± 8 380/220 (а) 380/220 (а) 380/220 (а)
Лесото 220 (к) 380/220 (а) 380/220 (а)
Латвия 50 ± 0.4 380/220 (а)
220 (к)
380/220 (а)
220 (к)
380/220 (а)
Ливан 50 220 (к) 380/220 (а) 380/220 (а)
Ливия 50 230 (к)
127 (к)
400/230 (а)
220/127 (а)
230 (к)
127 (к)
400/230 (а)
220/127 (а)
Литва 50 ± 0.5 380/220 (а)
220 (к)
380/220 (а)
220 (к)
380/220 (а)
Люксембург 50 ± 0,5 380/220 (а) 380/220 (а) 20 000
15 000
5 000
Македония 50 380/220 (а)
220 (к)
380/220 (а)
220 (к)
10 000
6 600
380/220 (а)
Мадагаскар 50 220/110 (к) 380/220 (а) 35 000
5 000
380/220
Малайзия 50 ± 1 240 (к)
415 (а)
415/240 (а) 415/240 (а)
Малави 50 ± 2.5 230 (к) 400 (а)
230 (к)
400 (а)
Мали 50 220 (к)
127 (к)
380/220 (а)
220/127 (а)
220 (к)
127 (к)
380/220 (а)
220/127 (а)
Мальта 50 ± 2 240 (к) 415/240 (а) 415/240 (а)
Мартиника 50 127 (к) 220/127 (а)
127 (к)
220/127 (а)
Мавритания 50 ± 1 230 (к) 400/230 (а) 400/230 (а)
Мексика 60 ± 0.2127/220 (а)
120/240 (к)
127/220 (а)
120/240 (к)
4,160
13,800
23,000
34,500
277/480 (а)
127/220 (б)
Молдавия 50 380/220 (а)
220 (к)
220/127 (а)
127 (к)
380/220 (а)
220 (к)
380/220 (а)
Марокко 50 ± 5 380/220 (а) 380/220 (а) 225 000
220/110 (а) 150 000
60 000
22 000
20 000
Мозамбик 50 380/220 (а) 380/220 (а) 6 000
10 000
Непал 50 ± 1 220 (к) 440/220 (а)
220 (к)
11 000
440/220 (а)
Нидерланды 50 ± 0.4 230/400 (а)
230 (к)
230/400 (а) 25 000
20 000
12 000
10 000
230/400
Новая Зеландия 50 ± 1,5 400/230 (д) (а)
230 (л)
460/230 (д)
400/230 (д) (а)
230 (к)
11 000
400/230 (а)
Нигер 50 ± 1 230 (к) 380/220 (а) 15 000
380/220 (а)
Нигерия 50 ± 1 230 (к)
220 (к)
400/230 (а)
380/220 (а)
15000
11000
400/230 (а)
380/220 (а)
Норвегия 50 ± 2 230/400 230/400 230/400
690
Оман 50 240 (к) 415/240 (а)
240 (к)
415/240 (а)
Пакистан 50 230 (к) 400/230 (а)
230 (к)
400/230 (a)
Папуа-Новая Гвинея 50 ± 2 240 (к) 415/240 (а)
240 (к)
22 000
11 000
415/240 (а)
Парагвай 50 ± 0.5 220 (к) 380/220 (а)
220 (к)
22 000
380/220 (а)
Филиппины (Республика) 60 ± 0,16 110/220 (к) 13,800
4,160
2,400
110/220 (в)
13,800
4,160
2,400
440 (б)
110/220 (в)
Польша 50 ± 0,1 230 (к) 400/230 (а) 1,000
690/400
400/230 (а)
Португалия 50 ± 1 380/220 (а)
220 (к)
15000
5000
380/220 (а)
220 (к)
15 000
5 000
380/220 (а)
Катар 50 ± 0.1 415/240 (к) 415/240 (а) 11 000
415/240 (а)
Румыния 50 ± 0,5 220 (к)
220/380 (а)
220/380 (а) 20 000
10 000
6 000
220/380 (а)
Россия 50 ± 0,2 380/220 (а)
220 (к)
380/220 (а)
220 (к)
380/220 (а)
Руанда 50 ± 1 220 (к) 380/220 (а) 15 000
6 600
380/220 (а)
Сент-Люсия 50 ± 3 240 (к) 415/240 (а) 11 000
415/240 (а)
Самоа 400/230
Сан-Марино 50 ± 1 230/220 380 15 000
380
Саудовская Аравия 60 220/127 (а) 220/127 (а)
380/220 (а)
11 000
7 200
380/220 (а)
Соломоновы Острова 50 ± 2 240 415/240 415/240
Сенегал 50 ± 5 220 (а)
127 (к)
380/220 (а)
220/127 (к)
90 000
30 000
6 600
Сербия и Черногория 50 380/220 (а)
220 (к)
380/220 (а)
220 (к)
10 000
6 600
380/220 (а)
Сейшельские острова 50 ± 1 400/230 (а) 400/230 (а) 11 000
400/230 (а)
Сьерра-Леоне 50 ± 5 230 (к) 400/230 (а)
230 (к)
11 000 900 15 400
Сингапур 50 400/230 (а)
230 (к)
400/230 (а) 22 000
6 600
400/230 (а)
Словакия 50 ± 0.5 230 230 230/400
Словения 50 ± 0,1 220 (к) 380/220 (а) 10 000
6 600
380/220 (а)
Сомали 50 230 (к)
220 (к)
110 (к)
440/220 (к)
220/110 (к)
230 (к)
440/220 (г)
220/110 (г)
Южная Африка 50 ± 2,5 433/250 (а)
400/230 (а)
380/220 (а)
220 (к)
11000
6 600
3300
433/250 (а)
400/230 (а)
380/220 (а)
11000
6 600
3 300
500 (б)
380/220 (а)
Испания 50 ± 3 380/220 (а) (д)
220 (л)
220/127 (а)
127 (л)
380/220 (а)
220/127 (а) (д)
15000
11000
380/220 (а)
Шри-Ланка 50 ± 2 230 (к) 400/230 (а)
230 (к)
11 000
400/230 (а)
Судан 50 240 (к) 415/240 (а)
240 (к)
415/240 (а)
Свазиленд 50 ± 2.5 230 (к) 400/230 (а)
230 (к)
11 000
400/230 (а)
Швеция 50 ± 0,5 400/230 (а)
230 (к)
400/230 (а)
230 (к)
6 000
400/230 (а)
Швейцария 50 ± 2 400/230 (а) 400/230 (а) 20,000
10,000
3,000
1,000
690/500
Сирия 50 220 (к)
115 (к)
380/220 (а)
220 (к)
200/115 (а)
380/220 (а)
Таджикистан 50 380/220 (а)
220 (к)
220/127 (а)
127 (к)
380/220 (а)
220 (к)
380/220 (а)
Танзания 50 400/230 (а) 400/230 (а) 11 000
400/230 (а)
Таиланд 50 220 (к) 380/220 (а)
220 (к)
380/220 (а)
Того 50 220 (к) 380/220 (а) 20 000
5 500
380/220 (а)
Тунис 50 ± 2 380/220 (а)
220 (к)
380/220 (а)
220 (к)
30 000
15 000
10 000
380/220 (а)
Туркменистан 50 380/220 (а)
220 (к)
220/127 (а)
127 (к)
380/220 (а)
220 (к)
380/220 (а)
Турция 50 ± 1 380/220 (а) 380/220 (а) 15 000
6 300
380/220 (а)
Уганда + 0.1 240 (к) 415/240 (а) 11 000
415/240 (а)
Украина + 0,2 / — 1,5 380/220 (а)
220 (к)
380/220 (а)
220 (к)
380/220 (а)
220 (к)
Объединенные Арабские Эмираты 50 ± 1 220 (к) 415/240 (а)
380/220 (а)
220 (к)
6 600
415/210 (а)
380/220 (а)
Соединенное Королевство
(кроме Северной
Ирландии)
50 ± 1 230 (к) 400/230 (а) 22 000
11 000
6 600
3 300
400/230 (а)
Соединенное Королевство
(включая Северную
Ирландию)
50 ± 0.4 230 (к)
220 (к)
400/230 (а)
380/220 (а)
400/230 (а)
380/220 (а)
Соединенные Штаты
Америка
Шарлотта
(Северная Каролина)
60 ± 0,06 120/240 (к)
120/208 (а)
265/460 (а)
120/240 (к)
120/208 (а)
14 400
7 200
2400
575 (е)
460 (е)
240 (е)
265/460 (а)
120/240 (к)
120/208 (а)
Соединенные Штаты
Америка
Детройт (Мичиган)
60 ± 0.2 120/240 (к)
120/208 (а)
480 (ж)
120/240 (в)
120/208 (а)
13 200
4800
4 160
480 (ж)
120/240 (в)
120/208 (а)
Соединенные Штаты
Америка
Лос-Анджелес (Калифорния)
60 ± 0,2 120/240 (к) 4800
120/240 (г)
4800
120/240 (г)
Соединенные Штаты
Америка
Майами (Флорида)
60 ± 0.3 120/240 (к)
120/208 (а)
120/240 (j)
120/240 (h)
120/208 (a)
13 200
2400
480/277 (а)
120/240 (в)
Соединенные Штаты
Америка Нью-Йорк
(Нью-Йорк)
60 120/240 (к)
120/208 (а)
120/240 (к)
120/208 (а)
240 (е)
12,470
4,160
277/480 (а)
480 (ж)
Соединенные Штаты
Америка
Питтсбург
(Пенсильвания)
60 ± 0.03 120/240 (к) 265/460 (а)
120/240 (к)
120/208 (а)
460 (е)
230 (е)
13 200
11500
2400
265/460 (а)
120/208 (а)
460 (е)
230 (е)
Соединенные Штаты
Америка
Портленд (Орегон)
60 120/240 (к) 227/480 (а)
120/240 (к)
120/208 (а)
480 (е)
240 (е)
19 900
12 000
7 200
2400
277/480 (а)
120/208 (а)
480 (е)
240 (е)
Соединенные Штаты
Америка
Сан-Франциско
(Калифорния)
60 ± 0.08 120/240 (к) 277/480 (а)
120/240 (к)
20800
12000
4,160
277/480 (а)
120/240 (г)
Соединенные Штаты
Америка
Толедо (Огайо)
60 ± 0,08 120/240 (к)
120/208 (а)
277/480 (в)
120/240 (в)
120/208 (в)
12,470
7,200
4,800
4,160
480 (ж)
277/480 (а)
120/208 (а)
Уругвай 50 ± 1 220 (б) (к) 220 (б) (к) 15 000
6 000
220 (б)
Вьетнам 50 ± 0.1 220 (к) 380/220 (а) 35 000
15 000
10 000
6 000
Йемен 50 250 (к) 440/250 (а) 440/250 (а)
Замбия 50 ± 2,5 220 (к) 380/220 (а) 380 (а)
Зимбабве 50 225 (к) 390/225 (а) 11 000
390/225 (а)

Анализ и объяснение схемы импульсного источника питания с несколькими выходами на входе 380 В переменного тока

1.Вступление


В связи с быстрым развитием силовых электронных устройств и технологии высокочастотных инверторов, различные преобразователи мощности, использующие технологию инверторов высокой мощности, широко используются в различных отраслях, таких как преобразователи частоты, гальваника, электродуговые печи, ИБП, электрифицированный локомотив, мощность связи, электрическая сварочный аппарат и т. д., а также IGBT из-за его биполярного силового транзистора и мощности. Преимущество MOSFET — это относительно превосходный комплексный индекс электрических характеристик, который широко используется в устройствах преобразования энергии.


Чтобы максимально использовать преимущества IGBT, производители разработали различные схемы управления и защиты и продвинули их на рынок, такие как M57959 / 57962 Mitsubishi Co, двигатель Fuji EXB840 / 841, Toshiba Co TLP250, Hewlett-Packard. Co 316J и SKH I22A / B Симена Канга, среди которых доступны M57959 / 57962. Он широко используется в различных мощных преобразователях мощности IGBT.


Каждому M57959 / 57962 требуется два положительных и отрицательных вспомогательных источника питания, и, поскольку между затвором IGBT большой мощности и эмиттером существует большая паразитная емкость, требуется ток заряда-разряда ряда сейфов в нарастающем и убывающем фронте управляющий импульс для удовлетворения динамических требований открытия и закрытия.Это приводит к тому, что положительный и отрицательный два вида вспомогательного источника питания должны иметь возможность потери. Создается определенный пиковый ток. В нормальных условиях устройство преобразования мощности IGBT высокой мощности использует полную мостовую топологию. Следовательно, имеется 8 цепей с 4 парами одинаковых положительных и отрицательных двух вспомогательных источников питания. В большинстве практических приложений используется режим питания традиционного понижающего трансформатора плюс линейный регулятор напряжения или традиционный сброс давления трансформатора плюс один или несколько обычных импульсных регуляторов, которые не только имеют большой объем, большой вес, низкую эффективность, узкую адаптацию к входу. напряжение, но теперь не может заполнить объем силового трансформатора.Требования экономичности и технологичности. Если один импульсный источник питания генерирует 4 пары из 8 положительных и двух отрицательных вспомогательных источников питания одновременно, он может компенсировать эти недостатки.


Средняя выходная мощность вспомогательного импульсного источника питания составляет около 30 Вт. Для упрощения схемы, уменьшения объема и повышения надежности лучшим выбором будет несимметричный обратный преобразователь. Однако в реальной ситуации вход некоторых мощных преобразователей источника питания IGBT представляет собой трехфазный трехпроводной источник питания без средней линии (например, электросварочный аппарат).Для этого требуется, чтобы питание вспомогательного переключателя могло работать при входном напряжении 380 В переменного тока (до 460 В переменного тока). В это время требования к напряжению на лампе переключателя должны быть выше 1200 В, и выбор устройства дан. Это трудно.


В конструкции мощного преобразователя источника питания IGBT мощностью 26,4 кВт, малый объем, высоконадежный вход 380 В переменного тока и вспомогательный импульсный источник питания малой мощности с несколькими выходами разработан для требований толстопленочной схемы управления M57962.

2. Схема и принцип работы.


Принципиальная схема источника питания переменного тока 380 В и вспомогательного переключателя с несколькими выходами показана на рисунке 1. На рисунке 1 используется обычная интегральная схема переключателя мощности второго поколения американской компании PI (TOP224Y.). Это своего рода ИС большой мощности, которая не только объединяет колебательный контур, схему запуска, схему управления ШИМ, схему защиты от перегрузки по току, схему защиты от перегрева, но также объединяет мощность 700 В, MOSFET.power IC и используйте один. По сравнению со схемой MOSFET и ИС внешнего управления, можно уменьшить только 20 периферийных компонентов. Поскольку номинальное напряжение полевого МОП-транзистора составляет 700 В, его можно использовать только для однофазного входа 220 В перем. мощность MOSFET составляет более 1300 В, и на эти два устройства может быть распределено напряжение более 1200 В, чтобы питание было безопасным. Он применяется к ситуации высокого напряжения на входе 380 В переменного тока.


Рис.1 Принципиальная схема источника питания вспомогательного переключателя на входе 380 В переменного тока и с несколькими выходами

Как показано на Рисунке 1, вспомогательный импульсный источник питания имеет в общей сложности выходное напряжение A, B, C и D от 4 до 15 В, — 9 В. Поскольку средняя выходная мощность источника питания постоянна, а 4 выхода точно такие же, применяется регулирование с первичной обратной связью.Применение прецизионного эталона TL431 (1N102) обеспечивает очень высокий показатель стабильности выходного напряжения многоканальной выходной мощности.

В нормальных условиях напряжение около 530 В постоянного тока после выпрямления и фильтрации добавляется на одном конце первичной обмотки трансформатора, а другой конец первичной обмотки подключается к полюсу утечки внешнего полевого МОП-транзистора 1 В 104. 1 В 104 — это подключен к MOSFET в пределах 1N101 (TOP224Y).Когда полевой МОП-транзистор внутри 1N101 включен, напряжение источника 1N101 понижается до низкого уровня и включается 1V104. Диод регулятора напряжения 1V105 ограничивает напряжение затвора 1V104, чтобы не было пробоя из-за перенапряжения. Когда 1N101 выключен, 1V105 не находится под давлением, а 1V104 одновременно выключается. В настоящее время серии 1V107, 1V108 и 1V109 составляют схему ограничения на 550 В, чтобы гарантировать, что напряжение утечки 1N101 поддерживается на уровне около 550 В.Когда входное напряжение постоянного тока выше 550 В, часть напряжения, превышающая 550 В, добавляется к 1V104, так что обратное напряжение и напряжение шины постоянного тока могут быть распределены на полевом МОП-транзисторе внутри 1V104 и 1N101. Во время обратного хода схема ограничения, состоящая из 1V102A, 1V 102B и 1V103, ограничивает скачок напряжения на 1V104 и 1N101 из-за индуктивности рассеяния трансформатора.


Поскольку используется первичная обратная связь, с одной стороны, выходной сигнал вспомогательной обмотки подается на схему управления.В то же время сигнал выборки выходного напряжения подается 1R107 и 1RP101 в схему управления с обратной связью, а ток через 1V106 трубки триода регулируется через 1N102, то есть ток, текущий в 1N101. Для достижения цели стабилизации выходного напряжения.


На рисунке 2 показана принципиальная схема источника питания вспомогательного переключателя с широким входом напряжения и множеством выходов силовой ИС четвертого поколения.

Если используется серия TOPSw itch-GX интегральной схемы переключателя мощности четвертого поколения компании PI, добавляются только 2 резистора, это может сделать источник питания функцией перенапряжения, защиты от пониженного напряжения и защиты от перегрузки по току, а также имеет функция джиттера частоты переключения, чтобы улучшить индекс ЭМС источника питания. Кроме того, если вход вспомогательного источника питания подключен к трехфазному четырехлинейному входу и выпрямленной фильтрации, вход компонентов схемы и переключающий трансформатор можно выбрать и спроектировать для ввода в однофазный 115 В переменного тока. , 220 В переменного тока или трехфазного 200 В переменного тока, 380 В переменного тока или на входе потеряна одна фаза или более одной фазы, и средняя линия не подключена.Он все еще может хорошо работать в случае скачков напряжения или даже падения напряжения в течение длительного времени, а его электрическая принципиальная схема показана на рисунке 2.

3. Данные испытаний


Автор протестировал вспомогательный источник питания схемы, показанной на рис. 1. Результаты испытаний показывают, что вспомогательный источник питания может работать безопасно и надежно при входном напряжении 380 В переменного тока и сохраняет хороший стабилизирующий эффект при более широком входном напряжении. диапазон и намного выше, чем эффективность работы традиционного режима вспомогательного источника питания.В таблице 1 представлены данные испытаний на воздействие источника, а на рисунке 3 представлена ​​кривая зависимости КПД от входного напряжения. Поскольку входной источник питания имеет ограниченный диапазон регулировки, он имеет только самые высокие тестовые данные — 440 В переменного тока. Общая выходная мощность вспомогательной выходной мощности составляет около 30 Вт.


Таблица 1 данные испытаний влияния источника


На рис.3 кривая изменения КПД при входном напряжении


4.Заключение

Данные физических испытаний, полученные с помощью схемы, показанной на Рисунке 1, показывают, что влияние источника вспомогательного источника питания составляет менее 0,5%, а рабочий КПД составляет менее 70% в широком диапазоне входного напряжения 220 ~ 440 В переменного тока.


Форма переключателя блока питания 113 мм, 61 мм, 32,5 мм, вес 150 г. Как трехфазный преобразователь источника питания высокой мощности на входе 380 В переменного тока, схема управления IGBT использует вспомогательный источник питания с несколькими выходами.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *