принцип работы, назначение и расчеты, монтаж
Владельцам индивидуальных домов при организации системы теплоснабжения знакомо понятие разбалансировки после присоединения контуров к котлу. Для выравнивания давления и уменьшения его на котельное оборудование устанавливается гидрострелка. Принцип работы, назначение и расчеты мы разберем в сегодняшнем обзоре.
Гидроразделитель в системе теплоснабжения
Читайте в статье
Понятие гидрострелки
В профессиональной среде можно встретить иные названия гидрострелки:
- гидравлический или термогидравлическийразделитель;
- анулоид.
Применение гидрострелки рекомендовано преимущественно для котельного оборудования из серии долгого горения на твердом топливе, нежели для газовых.
Основное назначение работы разделителя гидравлического (это официальное название гидрострелки) – разделение гидравлических потоков. Контуры разделяются каналом, делая их независимыми и автономными при передаче носителя тепла по отопительной системе. При этом тепло хорошо передается от одного контура к другому.
Гидрострелка: принцип работы назначение и расчеты
Система теплоснабжения индивидуального дома может состоять из нескольких подсистем. Реализация каждого разветвления должна осуществляться независимо от давления и расхода теплоносителя каждой функции. В связи с тем, что теплоноситель поступает из одной точки, это приводит к разбалансировке отдельных контуров системы.
Чтобы не возникла подобная ситуация, устраиваются гидрострелки (анулоиды) в системе теплоснабжения.
Основные функции
При организации теплоснабжения от котла на твердых видах топлива, водные потоки нагреваются бойлером, сопротивление которого на порядок меньше, чем в основной системе.
В состав системы отопления часто включены подогрев пола, санузлы и кухня. То есть, на один генератор тепла подключены как минимум три потребителя. Температурный режим каждого настроен индивидуально, и, соответственно, имеет разное сопротивление отопительной развязки. Для того, чтобы не возникла разбалансировка системы отопления, их необходимо совместить.
Именно это и является основным принципом работы гидравлической стрелки. Иными словами, она разделяет систему теплоснабжения на два автономных контура: теплогенератора и общего отопления дома, в который включены все подсистемы.
Важно! При наличии контура теплогенератора снижается или исключается влияние контура общей системы на теплогенератор.
Развязка подсистем в общей системе устроена по такому же принципу, они не влияют друг на друга. Таким образом, гидравлическая стрелка решает вопрос балансировки котельного оборудования и системы теплоснабжения.
Применять разделитель рекомендуется в том случае, когда без его использования разница давления между подачей и обраткой превышает четыре сотых метра водяного столба. Внутри анулоида осуществляется обмен горячей и остывшей воды.
Работа разделителя происходит в одном из 3 режимов:
- потоки обоих контуров равны. Функционирование при правильно подобранных насосах происходит только при условии одновременной работы всех насосов котельного оборудования и отопительной системы в обычном режиме;
- поток первого контура значительно меньше второго. Реализация возможна только для тех случаев, когда достаточно работы только одного котла из всей системы отопления.
- поток второго контура значительно меньше первого. Реализация возможна, когда приостановлена подача тепла или требуется отопление только одной зоны.
Благодаря работе гидрострелки, обеспечивается возможность регулирования котельного оборудования и отопительной системы всего дома. Поэтому экономить на ее приобретении и установке не стоит.
Режимы работы гидрострелки
Дополнительные функции
Помимо защиты теплообменника от теплового удара, гидрострелка предохраняет систему отопления от повреждений в случае аварийного выключения системы водоснабжения дома, подогрева пола и иных подсистем.
Кроме того, она выполняет роль отстойника для механических образований, таких как накипь и ржавчина. Еще одна из важных функций, для чего нужна гидрострелка в системе отопления – устранение воздушных масс из теплоносителя.
Устройство гидрострелки
Термогидравлический разделитель – это труба, дополненная вваренными в корпус 4-мя патрубками. Это наиболее распространенная модель. Количество патрубков может быть увеличено в зависимости от оснащения системы отопления.
Гидравлический разделитель может быть круглой или прямоугольной формы. Принцип работы практически не отличается между собой. Прямоугольная форма выглядит лучше. Круглая — больше подойдет с точки зрения организации гидравлики. Но в основном, форма практически не влияет на организацию функционирования системы.
Дополнительно, в состав гидрострелки могут быть включены:
- фильтры;
- сепараторы воздуха с отведением воздушных масс;
- краны;
- трехходовые клапаны с элементами терморегулирования, которые препятствуют попаданию холодной воды в обратку контура котла;
- дополнительная теплоизоляция;
- шламоуловитель;
- термометр;
- манометр.
Корпус гидравлического разделителя может быть выполнен из низкоуглеродистой, нержавеющей стали или меди. Выпускают также гидрострелку из полипропилена. Дополнительно ее обрабатывают специальными антикоррозийными составами и теплоизолируют при необходимости.
Это следует знать! Гидроразделители из полимера можно использовать для отопительной системы, которую обслуживает котельное оборудование мощностью 13-35 кВт. Их нельзя применять для оборудования, работающего на твердых видах топлива.
Устройство гидрострелки
Принцип работы гидравлического разделителя
Устройство анулоида предельно просто. Это небольшая часть трубы, на срезе имеющая вид квадрата.Система теплоснабжения распределяется на большой и малый контуры. В составе малого контура – котельное оборудование и гидроразделитель. В состав большого включается потребитель – система теплоснабжения.
Когда потребление тепла в котельном оборудовании равно его генерации, в гидрострелке направление жидкости идет по горизонтали. В случае отклонения в генерации/расходе, теплоноситель попадает в малый контур, что увеличивает температуру перед котельным оборудованием. Котел автоматически отключается, при этом теплоноситель продолжает движение до снижения температуры. После чего котельное оборудование включается вновь.
Теперь мы знаем, что такое гидрострелка в системе отопления. Она обеспечивает равномерность теплопотоков в контурах, гарантируя их независимое функционирование.
Принцип подключения контуров через гидрострелку
Конструкции гидрострелок
В конструкции нет ничего сложного. Однако, определенные правила должны быть соблюдены. Производители предлагают модели различной конфигурации и размеров. Можно без труда подобрать необходимое изделие по своим характеристикам. Встречаются гидрострелки для отопления, в которых совмещена работа разделителя и коллектора для подключения контура.
Высокая стоимость заводского производства наталкивает на мысль о самостоятельном изготовлении гидрострелки. Для этого необходимо иметь начальные навыки сварочных и слесарных работ. Основное – это соблюдение размеров для обеспечения бесперебойной работы изделия.
Рассмотрим основные конструкции гидравлических разделителей:
Фото | Типы конструкций |
Классический – функционирует по правилу«3D» (трех диаметров). На схеме указаны внутренние диаметры и проход, не зависимо от толщины стенок корпуса. | |
Чередующиеся патрубки. Принято считать, что расположение в виде ступеньки вниз улучшает сепарацию газов, при этом ступенька вверх улучшает отделение твердых взвесей. | |
Горизонтальный вариант расположения гидрострелки с разным расположением патрубков. | |
Гидрострелка в виде решетки. В быту можно встретить конструкцию из секций радиатора отопления. Такая система нуждается в дополнительном утеплении во избежание теплопотерь. |
Гидрострелка для нескольких контуров
Использование гидрострелки необходимо при наличии нескольких контуров.Это может быть одним из обязательных условий производителя для предоставления гарантийных обязательств на котельную установку и монтажные работы.
В частных домах площадью более 200 кв.м, в которых налажено функционирование нескольких контуров (теплые полы, ванные комнаты, кухня), использование гидравлического разделителя увеличит срок эксплуатации котельного и насосного оборудования. Кроме того, сделает их функционирование более плавным, а значит экономичным.
Гидрострелка для системы из трех контуров
Расчет гидрострелки для отопления
Производители выпускают гидроразделители, рассчитанные на конкретную мощность системы теплоснабжения. Для самостоятельного изготовления несложного устройства необходимо рассчитать основные значения и составить своими руками чертежи гидрострелки.
Методика расчета по мощности котла
Для расчета потребуется единственное значение – диаметр патрубка или разделителя. Все остальные параметры отталкиваются от этого значения.
Произведем расчет для гидрострелкипо правилутрех диаметров. Данные необходимо брать из паспорта на котельное оборудование.
π – 3,14.
Параметр | Характеристика | Единица измерения |
D | диаметр разделителя | мм |
d | диаметр патрубка | мм |
G | пропускная способность гидроразделителя в системе отопления за один час | м³/час |
Ω | скорость потока(максимальная величина) через гидроразвязку | м/с |
Q | расход (максимальный ) в контуре теплосистемы потребителя | м³/час |
Для облегчения расчетов нашей командой был разработан специальный калькулятор.
Калькулятор расчета гидрострелки по мощности котла
Методика расчета по производительности насосов
Можно выполнить расчет исходя из производительности насосного оборудования. Для данного метода исходные параметры насосов в контурах котельного оборудования и всей отопительной системы.
Расчет необходимо выполнить для того, чтобы не перегрузить насосное оборудование котельной установки при обеспечении необходимого расхода потоков по всем контурам. Иными словами, общая производительность всех насосов системы выше показателя насосного оборудования, обеспечивающего движение теплоносителя через отельное оборудование.
D=2×√ ((∑Qот–Qкот) / (π×V)), где
Параметр | Характеристика | Единица измерения |
Qот | производительность насосного оборудования на всех контурах системы теплоснабжения | м³/час |
Qкот | производительность насосного оборудования в малом контуре | м³/час |
V | скорость теплоносителя | м/с |
Для этого варианта также предусмотрен свой калькулятор.
Калькулятор расчета гидрострелки по мощности котла
Совмещение коллектора отопления с гидрострелкой
Для обогрева домов с небольшой площадью используют котел со встроенным насосным оборудованием. Контуры отопительной системы подключаются через гидравлическую стрелку.
В домах с площадью от 150 квадратных метров подключение контуров производится через гребенку, которая обеспечивает техобслуживание и эксплуатацию систем.
Монтаж коллектора производится после емкостного гидравлического разделителя. Распределительный коллектор состоит из 2 независимых друг от друга частей, которые объединены перемычками. Патрубки врезаются попарно исходя из количества вторичных контурных систем.
Все запорные и регулирующие элементы отопительной системе устанавливаются в 1 месте. Благодаря увеличенному диаметру распределительного коллектора, обеспечивается равномерный расход теплоносителя между всеми контурами.
Коллектор совместно с гидроразделителем образует единую гидравлическую систему-модуль.
Важно! Регулирующая арматура полностью обеспечивает максимальный поток и напор теплоносителя на всех контурах. Балансировка помогает добиваться расчетных показателей движения потока.
Стандартный коллектор с гидроразделителем
Где можно купить гидрострелку для отопления: производители и цены
Чтобы определиться, покупать гидрострелку с коллектором или изготовить гидроразделитель своими руками, предлагаем небольшой обзор производителей и ориентировочные цены на рынке аналогичных товаров России.
Гидроразделитель с коллектором в системе теплоснабжения жилого дома
Схема изготовления гидрострелки для отопления своими руками
Самостоятельно изготовить гидрострелку непросто. Сначала следует составить схему и предварительные расчеты. Кроме того, необходимо владеть навыками сварочных и слесарных работ.
Пошаговый процесс изготовления разделителя на 6 выходов поможет в данном вопросе:
Фото | Описание работ |
Перед началом работы нужно подготовить следующие материалы и инструменты: 2 дюймовые резьбы для основного контура и 6 резьб на ¾ для контура отопительной системы, профильную трубу 80 с толщиной стенки 3 мм, дюймовую трубу 25, профильную трубу 20×20, 2 квадратные шайбы на торцы, 2 стальные резьбы, сварочный аппарат с электродами, болгарку, 2 металлические коронки 25 и 29 диаметра, сверло 8,5 мм, быстро сохнущую грунтовку и молотковую краску. | |
Отрезаем кусок трубы квадратного сечения размером 900 мм. | |
Сверлим предварительные отверстия многоступенчатым сверлом по заранее нанесенным отметкам. На одной стороне расстояние от края 50×150×150×200×150×150×50, на противоположной стороне 325×250×325. Этого достаточно для котла, работающего на твердом топливе. | |
Отверстия расширяем коронкой 25 диаметра. Аналогично выполнятся отверстия коронкой 29 диаметра. | |
Готовые отверстия в трубе. | |
Привариваем стальные муфты к шайбам | |
На данном этапе муфты с заглушками необходимо зачистить. | |
Шайбы к торцам привариваются в 2 этапа. Сначала прихватываются в нескольких точках, затем выполняется основной сварочный шов. После чего все необходимо зачистить. | |
К выполненным отверстиям на трубе аналогичным образом привариваются резьбы, после чего трубу необходимо зачистить. | |
По окончанию процесса необходимо провести испытание. Для этого на все резьбы накручиваются заглушки, и система подключается к насосу с показаниями манометра 7,2 атмосферы. | |
После проведенных испытаний, гидрострелку необходимо прогрунтовать и покрасить. Пока сохнет краска, можно приготовить крепления для разделителя. |
Данный процесс наглядно можно посмотреть на мастер-классе профессионального специалиста:
Изготовить гидрострелку из полипропилена своими руками еще проще. Для этого необходимы специальные инструменты для резки пластика и специальный аппарат для сварки.
Схема гидравлического разделителя
Особенности монтажа гидрострелки
Гидрострелку устанавливают за котлом, при наличии коллектора – перед ним. Патрубки подключают при помощи фланцев или резьб в следующем порядке: на одной стороне разделителя их подсоединяют к выходам в порядке 1, 2, 3, на противоположной стороне в зеркальном порядке 3, 2, 1. Это не догма, в зависимости от условий расположение трубной развязки может меняться.
Наиболее часто применяется вертикальный распределитель. Это наиболее удачное расположение для отсеивания водных потоков от взвесей. Если требуют условия, его расположить можно и горизонтально.
Для крепления небольших моделей могут использоваться кронштейны. Гидрострелки с большим весом размешают на полу или подставке, чтобы не перегружать систему трубопровода.
Монтаж гидроразделителя в частном доме
Заключение
Итак, теперь вы знаете, что это такое: гидравлическая стрелка. В подведении итогов, можно отметить основные ее достоинства. Она надежно защищает теплообменник из чугуна от тепловых и гидроударов, упрощается подбор насосного оборудования, все оборудование работает в штатном режиме. Система отопления сбалансирована, работа контуров не влияет друг на друга.
И напоследок посмотрите видеообзоры устройства, назначения и функционирования гидрострелки:
ПОНРАВИЛАСЬ СТАТЬЯ? Поддержите нас и поделитесь с друзьями
принцип работы и назначение — ВикиСтрой
Как устроена гидрострелка
Гидрострелка представляет собой колбу с установленным в верхней части автоматическим воздухоотводчиком. На боковой поверхности корпуса врезаются патрубки для присоединения магистральных труб отопления. Внутри гидрострелка абсолютно полая, в нижней части может врезаться резьбовой патрубок для установки шарового крана, предназначение которого — слив отстоявшегося шлама со дна разделителя.
По сути своей гидравлическая стрелка — это шунт, закорачивающий потоки подачи и обратки. Целью работы такого шунта является выравнивание температуры теплоносителя, а также его расхода в генерирующей и распределительной частях гидравлической системы отопления. Для получения реального эффекта от гидросепаратора требуется тщательный расчёт его внутреннего объёма и мест врезки патрубков. Однако большинство представленных на рынке устройств изготавливается серийно без адаптации под конкретную систему отопления.
Часто можно встретить мнение, что в полости колбы обязательно должны присутствовать дополнительные элементы, такие как рассекатели потока или сетки для фильтрации механических примесей или отделения растворённого кислорода. В реальности такие способы модернизации не демонстрируют сколь-нибудь значимой эффективности и даже наоборот: например, при засорении сетки гидрострелка полностью перестаёт работать, а вместе с ней и вся система отопления.
Какие возможности приписывают гидросепаратору
В среде инженеров-теплотехников встречаются диаметрально противоположные мнения по поводу необходимости установки гидрсотрелок в системах отопления. Масла в огонь подливают заявления производителей гидротехнического оборудования, сулящие увеличение гибкости настройки режимов работы, повышение КПД и эффективности теплоотдачи. Чтобы отделить зёрна от плевел, для начала рассмотрим абсолютно беспочвенные заявления о «выдающихся» способностях гидравлических сепараторов.
КПД котельной установки никак не зависит от устройств, установленных после присоединительных патрубков котла. Полезное действие котла целиком и полностью заключено в преобразовательной способности, то есть в процентном отношении тепла, выделенного генератором, к теплу, поглощённому теплоносителем. Никакие специальные методы обвязки не могут повысить КПД, он зависит только от площади поверхности теплообменника и корректного выбора скорости циркуляции теплоносителя.
Многорежимность, которая якобы обеспечивается установкой гидрострелки, это также абсолютный миф. Суть обещаний сводится к тому, что при наличии гидрострелки можно реализовать три варианта соотношений расхода в генераторной и потребительской части. Первый — абсолютное выравнивание расхода, что на практике как раз возможно только при отсутствии шунтирования и наличии в системе только одного контура. Второй вариант, при котором в контурах расход больше, чем через котёл, якобы обеспечивает повышенную экономию, однако в таком режиме по обратке в теплообменник неизбежно поступает переохлаждённый теплоноситель, что порождает ряд негативных эффектов: запотевание внутренних поверхностей камеры сгорания или температурный шок.
Также существует ряд доводов, каждый из которых представляет бессвязный набор терминов, но по сути своей не отражающий ничего конкретного. К таковым относятся повышение гидродинамической стабильности, увеличение срока службы оборудования, контроль за распределением температуры и иже с ними. Также можно встретить утверждение, что гидроразделитель позволяет стабилизировать балансировку гидравлической системы, что на практике оказывается прямо противоположным. Если при отсутствии гидрострелки реакция системы на изменение протока в любой её части неизбежна, то при наличии разделителя она ещё и абсолютно непредсказуема.
Реальная область применения
Тем не менее, термогидравлический разделитель — устройство далеко не бесполезное. Это гидротехнический прибор и принцип его действия достаточно подробно описывается в специальной литературе. Гидрострелка имеет вполне определённую, пусть и достаточно узкую область применения.
Важнейшая польза от гидроразделителя — возможность согласовать работу нескольких циркуляционных насосов в генераторной и потребительской части системы. Часто случается, что подключенные к общему коллекторному узлу контуры снабжаются насосами, производительность которых отличается в 2 и более раз. Наиболее мощный насос при этом создаёт разницу давлений настолько высокую, что забор теплоносителя остальными устройствами циркуляции оказывается невозможным. Несколько десятков лет назад эта проблема решалась так называемым шайбованием — искусственным занижением протока в потребительских контурах путём вваривания в трубу металлических пластин с различным диаметром отверстий. Гидрострелка шунтирует подающую и обратную магистраль, за счёт чего разрежение и избыточное давление в них нивелируются.
Второй частный случай — избыточная производительность котла по отношению к потреблению контуров распределения. Такая ситуация характерна для систем, в которых ряд потребителей работает не на постоянной основе. Например, к общей гидравлике могут быть привязаны бойлер косвенного нагрева, теплообменник бассейна и отопительные контуры зданий, которые отапливаются лишь время от времени. Установка гидрострелки в таких системах позволяет поддерживать номинальную мощность котла и скорость циркуляции всё время, при этом излишек нагретого теплоносителя поступает обратно в котёл. При включении дополнительного потребителя разница расходов снижается и излишек уже направляется не в теплообменник, а в открытый контур.
Гидрострелка также может служить коллектором генераторной части при согласовании работы двух котлов, особенно если их мощность существенно отличается. Дополнительным эффектом от работы гидрострелки можно назвать защиту котла от температурного шока, но для этого расход в генераторной части должен превышать расход в сети потребителей не менее чем на 20%. Последнее достигается путём установки насосов соответствующей производительности.
Схема подключения и монтаж
Гидравлическая стрелка имеет схему подключения, столь же простую, как и собственное устройство. Большая часть правил относится не столько к подключению, сколько к расчёту пропускной способности и расположению выводов. Тем не менее, знание полной информации позволит провести монтаж корректно, а также убедиться в пригодности выбранной гидрострелки для её установки в конкретную систему отопления.
Первое, что нужно чётко усвоить — гидрострелка будет работать только в системах отопления с принудительной циркуляцией. При этом насосов в системе должно быть как минимум два: один в контуре генерационной части, и хотя бы один в потребительской. При прочих условиях гидравлический разделитель будет играть роль шунта с нулевым сопротивлением и, соответственно, закоротит собой всю систему.
Пример схемы подключения гидрострелки: 1 — котёл отопления; 2 — группа безопасности котла; 3 — расширительный бак; 4 — циркуляционный насос; 5 — гидравлический разделитель; 6 — автоматический воздухоотводчик; 7 — запорные вентили; 8 — кран слива; 9 — контур № 1 бойлер косвенного нагрева; 10 — контур № 2 радиаторы отопления; 11 — трёхходовой кран с электроприводом; 12 — контур № 3 тёплый пол
Следующий аспект — размеры гидрострелки, диаметр и расположение выводов. В общем случае диаметр колбы определяется исходя из наибольшего расчётного протока в магистрали. За максимум может приниматься расход теплоносителя либо в генерационной, либо в потребительской части системы отопления согласно данным гидравлического расчёта. Зависимость диаметра колбы разделителя от протока описывается соотношением расхода к скорости протока теплоносителя через колбу. Последний параметр фиксированный и, в зависимости от мощности котельной установки, может варьироваться от 0,1 до 0,25 м/с. Частное, полученное при вычислении указанного соотношения, нужно умножить на поправочный коэффициент 18,8.
Диаметр патрубков подключения должен составлять 1/3 от диаметра колбы. При этом вводные патрубки располагаются от верха и низа колбы, а также друг от друга на расстоянии, равном диаметру колбы. В свою очередь выходные патрубки располагаются так, чтобы их оси были смещены относительно осей вводов на два собственных диаметра. Описанными закономерностями определяется общая высота корпуса гидрострелки.
Гидрострелка подключается к прямому и возвратному магистральному трубопроводам котла или нескольких котлов. Разумеется, при подключении гидрострелки не должно быть и намёка на сужение условного прохода. Это правило вынуждает использовать в обвязке котла и при подключении коллектора трубы с очень значительным условным проходом, что несколько осложняет вопрос оптимизации компоновки оборудования котельной и повышает материалоёмкость обвязки.
О сепарационных коллекторах
Напоследок кратко коснёмся темы многовыводных гидрострелок, также известных как сепколлы. По сути своей это коллекторная группа, в которой подающий и возвратный разветвитель объединены разделителем. Такого рода устройства крайне полезны при согласовании работы нескольких контуров отопления с разной нормой расхода и температурой теплоносителя.
Сепарационный коллектор вертикального монтажа позволяет обеспечить градиент температур в выходных патрубках за счёт смешивания порций теплоносителя. Это делает возможным прямое подключение, к примеру, бойлера косвенного нагрева, радиаторной группы и петель тёплого пола без смесительной группы: разница температур между соседними выводами сепколла будет естественным образом поддерживаться в пределах 10–15 °С в зависимости от режима циркуляции. Однако стоит помнить, что такой эффект возможен только если возвратный патрубок генераторной части расположен выше возвратных отводов потребителей.
В качестве итога дадим важную рекомендацию. Для большинства бытовых систем отопления мощностью до 100 кВт установка гидравлического разделителя не требуется. Гораздо более правильным решением будет подобрать производительность циркуляционных насосов и согласовать их работу, а для защиты котла от температурного шока связать магистрали трубкой-байпасом. Если же проектная либо монтажная организация настаивают на установке гидрострелки, это решение обязательно должно обосновываться технологически.
рмнт.ру
Гидрострелка для отопления — что это такое, как работает и установить
Чтобы отопительная система работала с максимальной эффективностью, необходимо добиться хорошей балансировки всех его узлов, а все элементы хорошо справлялись со своими функциями. Такая задача — достаточно сложная, особенно, когда речь идет и о разветвленном механизме с большим количеством контуров.
Очень часто подобные контуры имеют индивидуальные схемы термостатического управления, свой температурный градиент, различаются пропускной способностью, а также требуемым уровнем напора теплоносителя. Для того, чтобы объединить все узлы в единое целое. Поможет решить данную задачу гидрострелка для отопления. О том, что представляет собой гидравлические разделитель и как он работает, мы расскажем в этой статье.
Гидравлическая стрелка MEIBES МНK 32
Назначение гидроразделителя
Если в своем доме вы планируете установить простую отопительную систему закрытого типа, где функционирует не более двух циркуляционных насосов, то надобности в гидравлическом разделителе нет.
Когда контуров и насосов — три, при этом один из них необходимо для работы с бойлером косвенного нагрева, то и здесь можно не прибегать к монтажу гидрострелки. Устанавливать гидрострелку целесообразно в больших домах, где имеется два и более отопительных контура. Гидрострелка нужна для того, чтобы балансировать уровень давления во всей котельной системе, когда меняются показатели в главном контуре. Такой агрегат отвечает за регулировку трехконтурного варианта системы, в который входят одновременно и нагреватель воды, и радиатор отопления, и теплый пол.
В случае соблюдения всех правил гидродинамики, будет обеспечено стабильное функционирование в нормальном режиме.
Помимо этого гидрострелка выступает как своеобразный отстойник, в котором происходит изъятие различных отложений из теплоносителя: накипи, коррозии. Достигается это только при полном соблюдении всех гидромеханических норм.
Такая функция гидрострелки, выполненной как из нержавеющей стали, так и из других материалов способствует продолжительности срока эксплуатации многих элементов в системе отопления. Кроме этого устройство отводит образующийся в теплоносителе воздух, за счет чего уменьшается окислительный процесс в механических частях.
Традиционный вариант исполнения гидравлического разделителя предусматривает наличие только одного контура. В случае отключения нескольких веток, снижается расход тепла в системе. Именно поэтому температура теплоносителя после прохождения всего пути снижается не сильно. Гидрострелка дает возможность поддерживать стабильный уровень расхода тепла, тем самым обеспечивает стабильную циркуляцию в системе.
Для того, чтобы дать ответ на вопрос: в чем предназначение гидрострелки, следует разобраться как функционирует отопительная система. Наиболее простой вариант системы с принудительной циркуляцией упрощенно состоит из:
- котла (К), здесь теплоноситель нагревается;
- циркуляционного насоса (N1), за счет функционирования которого, теплоноситель движется по трубам подачи (красные линии) и обратки (синие линии). Насос монтируется на трубе или же входит в комплект конструкции котла — особенно это характерно для моделей настенного исполнения;
- радиаторов отопления (РО), благодаря которым происходит теплообмен — тепловая энергия теплоносителя передается в комнаты.
Осуществив правильный выбор циркуляционного насоса по производительности и образуемому напору в простой одноконтурной системе, вам может вполне хватить одного экземпляра и не придется монтировать вспомогательные устройства.
Циркуляционный насос — неотъемлемое звено системы отопления. Благодаря этому прибору эффективность функционирования системы увеличивается.
Для домов, небольших по размеру, такой простой схемы может быть вполне достаточно. Но в больших помещениях очень часто приходится прибегать к применению несколько контуров отопления. Усложним схему.
Гидрострелка в системе с несколькими контурами отопления
Как видно на рисунке, благодаря насосу осуществляется циркуляция теплоносителя через коллектор Кл, откуда он разбирается на несколько разных контуров. Это могут быть:
- Один или более высокотемпературных контуров с обычными радиаторами или конвекторами (РО).
- Водяные теплые полы (ВТП), для которых температурный режим теплоносителя должен быть намного ниже. Это означает, что придется задействовать специально предназначенные для этого термостатические устройства. Чаще всего сенсорная длина контуров теплых полов в несколько раз выше обычной радиаторной разводки.
- Система обеспечения дома горячей водой с установкой бойлера косвенного нагрева (БКН). Здесь – совершенно особые требования к циркуляции теплоносителя, так как обычно изменением расхода протекающего через бойлер теплоносителя регулируется и температура нагрева горячей воды.
Теперь возникает вопрос: сможет ли справиться один насос с такой большой нагрузкой и таким расходом теплоносителя? Навряд ли. Несомненно, на рынке можно найти высокопроизводительные и высокомощные модели, которые отличаются хорошими показателями образуемого напора, но здесь стоит учесть и возможности самого котла, которые никак нельзя назвать неограниченными. Его теплообменник и патрубки рассчитаны на определенную производительность и определенное давление, которое возникает. Если превысить заданные параметры, можно попросту прийти к тому, что ваш отопительный прибор выйдет из строя.
Да и если насос все время будет функционировать на гране своих возможностей, обеспечивая теплоносителем все контуры разветвлённой системы, то долго он не прослужит. К тому же работа будет сопровождаться громким шумом, а электрическая энергия будет потребляться в больших количествах.
Чтобы решить эту проблему, необходимо необходимо разделить всю гидравлическую систему не только на контуры конечного потребления, через коллектор, но и выделить отдельный контур котла.
Как установить гидрострелку
Именно для этого и предназначена гидрострелка, которая монтируется между котлом и коллектором.
Установка гидрострелки в системе отопления позволяет избавиться от скачков температурного напора.
Что такое гидравлический разделитель и его устройство
- Гидроразделитель
- это вертикальный полый сосуд, состоящий из труб большого диаметра (квадратного профиля) с эллиптическими заглушками по торцам.
Размеры разделителя обусловлены мощностью котла, зависят от количества и объема контуров.
Тяжелый металлический корпус монтируется на опорные стойки, чтобы не создавать линейное напряжение на трубопровод. Компактные устройства крепят к стене, размещают их на кронштейнах.
Патрубок емкостного гидравлического разделителя и отопительный трубопровод соединяются с посредством фланцев или резьбы.
Автоматический клапан воздухоотводчика размещается в самом верхнем участке корпуса. От осадка избавляются при помощи вентиля или используют специальный клапан, который врезан снизу.
Материал, из которого изготавливается гидрострелка — низкоуглеродистая нержавеющая сталь, медь, полипропилен. Корпус обрабатывают антикоррозийным составом, покрывают теплоизоляцией.
Устройство гидрострелки
Принцип работы
Теперь, когда мы знаем для чего нужна гидрострелка для отопления и разобрались с ее конструкцией, можно переходить к особенностям ее функционирования.
В процессе её работы выделяется три основных режима.
Схема работы гидравлического разделителя
Режим первый.
Система практически находится в равновесии. Расход «малого» котлового контура практически не отличается от суммарного значения расходов всех контуров, подключенных к коллектору или непосредственно к гидрострелке.
Теплоноситель не задерживается в гидрострелке, а проходит сквозь нее по горизонтали, практически не создавая вертикального перемещения. Температура теплоносителя на патрубках подачи (Т1 и Т2) – одинакова. Естественно, такая же ситуация и на патрубках, подключенных к «обратке» (Т3 и Т4). В таком режиме гидрострелка, по сути, не оказывает никакого влияния на функционирование системы.
Но подобное равновесное положение – крайне редкое явление, которое может замечаться лишь эпизодически, так как исходные параметры системы всегда имеют тенденцию к динамическому изменению.
В продаже можно найти модели коллекторов со встроенными гидравлическими разделителями. Выбрать можно варианты на 2, 3, 4 или 5 контуров.
Режим второй.
В текущий момент сложилось так, что суммарный расход на контурах отопления превышает расход в контуре котла.
С такой ситуацией приходится сталкиваться достаточно часто, когда все подключённые к коллектору контуры именно в этот момент требуют максимального расхода теплоносителя. Обыденными словами – сиюминутный спрос на теплоноситель превысил то, что может выдать контур котла. Система при этом не остановится и не разбалансируется. Просто в гидрострелке сам по себе сформируется восходящий по вертикали поток от патрубка «обратки» коллектора к патрубку подачи. Одновременно к этому потоку в верхней области гидравлического разделителя будет производиться подмес горячего теплоносителя, циркулирующего по «малому» контуру. Температурный баланс: Т1 > Т2, Т3 = Т4.
Коллектор с гидрострелкой на 3 контура позволяет безопасно и грамотно подключить радиаторы, бойлер и тёплые полы. Является самым популярным в своём сегменте. Наличие 4 контуров позволяет дополнительно подключить нагреватель воздуха в вентиляции. Для подключения ещё и резервного котла нужно наличие 5 контуров.
Режим 3.
Этот режим функционирования гидравлического разделителя является, по сути, основным – в грамотно спланированной и правильно смонтированной системе отопления именно он и станет превалирующим.
Расход теплоносителя в «малом» контуре превышает аналогичный суммарный показатель на коллекторе, или, иными словами, «спрос» на необходимый объем стал ниже «предложения». Причин тому может быть немало: — Аппаратура термостатического регулирования на контурах снизила или даже временно прекратила поступление теплоносителя из коллектора подачи на приборы теплообмена.
Температура в бойлере косвенного нагрева достигла максимальной, а забора горячей воды давно не было – циркуляция через бойлер прекращена. Отключены на какое-то время или на длительный период отдельные радиаторы или даже контуры (необходимость профилактики или ремонта, нет нужды отапливать временно неиспользуемые помещения и иные причины). Система отопления вводится в действие ступенчато, с постепенным включением отдельных контуров.
Ни одна из перечисленных причин никак негативно не скажется на общей функциональности системы отопления. Излишек объема теплоносителя вертикальным нисходящим потоком просто будет уходить в «обратку» малого контура. По сути, котел станет обеспечивать несколько избыточный объем, а каждый из контуров, подключенных к коллектору или напрямую к гидрострелке, будет забирать ровно столько, сколько требуется в настоящий момент. Температурный баланс при таком режиме работы: Т1 = Т2, Т3 > Т4.
При монтаже гидрострелки в индивидуальных системах отопления чаще всего используются пластиковые модели, которые и стоят дешевле, и установка их производится при помощи фитингов.
На самом деле у гидрострелки имеется один единственный принцип функционирования, он представлен под номером три. Достичь идеального режима (представленного на первой схеме) невозможно, поскольку гидравлическое сопротивление ветвей потребителей постоянно меняется из-за функционирования терморегуляторов, да и подобрать так точно насосы не получится. По второй схеме действовать недопустимо, поскольку в таком случае большая часть теплоносителя станет обращаться по кругу со стороны потребителей.
Как итог вы получите пониженную температуру в отопительной системе, т.к. со стороны котла в гидрострелке будет перемешивать малое количество горячей воды. Для повышения температуры придется прибегнуть к выводу теплогенератора на максимальный режим, что негативно скажется на стабильности работы системы в целом. Таким образом, остается третий вариант, при котором в коллекторы подается оптимальное количество воды нужной температуры. А уже за понижение ее в контурах отвечают трехходовые клапаны. Главная функция гидрострелки в отопительной системе — создание зоны с нулевым давлением, откуда появится возможность осуществлять отбор теплоносителя любое число потребителей.
Расчет гидрострелки
Многие пользователи задаются вопросом: как рассчитать гидрострелку для отопления? Поскольку устройства, которые есть в продаже предназначены для определенной мощности отопительной системы.
Многие хотят самостоятельно изготовить прибор и тогда очень важно произвести правильные и точные расчеты.
Представим расчет в зависимости от мощности системы отопления.
Существует универсальная формула, описывающая зависимость расхода теплоносителя от общей потребности в тепловой мощности, теплоемкости теплоносителя и разницы температур в трубах подачи и «обратки».
- Формула расчёта расхода теплоносителя
- Q = W / (с × Δt)
Q – расход, л/час;
W – мощность системы отопления, кВт
с – теплоемкость теплоносителя (для воды – 4,19 кДж/кг×°С или 1,164 Вт×ч/кг×°С или 1,16 кВт/м³×°С)
Δt – разница температур на подаче и «обратке», °С.
Вместе с тем, расход при движении жидкости по трубе равен: Q = S × V
S – площадь поперечного сечения трубы, м²;
V — скорость потока, м/с.
S = Q / V= W / (с × Δt × V)
Опытным путем доказано, что для оптимального смешивания в гидравлическом разделителе, качественного отделения воздуха и выпадения в осадок шлама, скорость в нем должна быть не выше 0,1 – 0,2 м/с.
Раз уж выбрана единица измерения час, то умножаем на 3600 секунд. Получается 360 – 720 м/час.
Можно взять усредненное значение – 540 м/час.
Если расчет производится для воды, то можно сразу ввести несколько исходных значений, чтобы упростить формулу:
S = W / (1,16 × Δt × 540) = W / (626 × Δt).
Определив сечение, по формуле площади круга несложно определить и требуемый диаметр:
D = √ (4×S/π) = 2 × √ (S/π).
Подставляем значения:
D = 2 × √ (W / (626 × Δt × π)) = 2 × √ (W / (1966 × Δt)) = 2 × 0,02255 × √(W/Δt) = 0,0451 × √(W/Δt).
Так как значение будет получено в метрах, что не совсем удобно, можно перевести его сразу в миллиметры, умножив на 1000.
В итоге формула примет такой вид:
D = 45,1 √(W/Δt) – для скорости потока в трубе гидрострелки в 0,15 м/с.
Несложно просчитать и значения для верхнего и нижнего предела допустимой скорости потока:
D = 55,2 √(W/Δt) – для скорости в 0,1 м/с; D = 39,1 √(W/Δt) – для скорости в 0,2 м/с.
Определив диаметр гидрострелки, несложно вычислить и диаметры входных и выходных патрубков.
Поэтому гидрострелка для отопления решает важные задачи. При необходимости её нужно монтировать.
Принцип работы гидрострелки в системе отопления
Гидрострелка ( гидравлический разделитель ) – устройство, предназначенное для разделения потоков теплоносителей контура котла (котлов) и контуров потребления теплоты в системе отопления. Принцип его работы основан на обеспечении независимости работы отопительного оборудования. Материал публикации рассмотрит вопросы необходимости применения, общее устройство и методики расчета гидрострелки.
Для чего применяется гидрострелка
Гидравлический разделитель — гидрострелка
Необходимость применения гидравлического разделителя обусловлена различием гидродинамических режимов работы отопительного оборудования. Используют гидрострелку в системах отопления, имеющих различные комплексы потребления тепла. Чаще всего выделяют три направления распределения теплоты:
- Радиаторное отопление;
- Система водяных теплых полов;
- Бойлер косвенного нагрева.
Все указанные системы имеют различный режим работы. Радиаторное отопление работает в основном в стабильном режиме. При наличии автоматических терморегулирующих устройств на приборах отопления расход теплоносителя может меняться.
Система «теплый пол» работает по обособленной схеме в низкотемпературном режиме. Регулирование происходит на первом этапе с помощью термостатического смесителя, далее возможно регулирование контуров балансировочными вентилями. Кроме этого, теплые полы имеют собственный насос и значительное гидравлическое сопротивление.
Бойлер ГВС работает в циклическом режиме, имеет наименьшее сопротивление. Как правило, оснащается циркуляционным насосом.
Разнообразие гидравлических и температурных режимов работы не позволяет обеспечить стабильную работу всего комплекса в целом. Насос, встроенный в котел или смонтированный отдельно, не может обеспечить равноценные условия работы для всех ветвей системы. Чаще всего просто не хватает мощности для преодоления гидравлических сопротивлений трубопроводов и приборов системы.
Насос естественным образом будет осуществлять циркуляцию по пути наименьшего сопротивления – через бойлер. Следующей ветвью (при отключении бойлера) будут радиаторы. Обеспечить необходимым количеством теплоносителя теплые полы становится труднее всего.
Режим работы котла в такой системе приобретает скачкообразный характер, что негативно сказывается на всем оборудовании.
Решить проблему установкой более мощного насоса удается с трудом. При мощном насосе теплоноситель преодолевает теплообменник котла, не успевая качественно получать теплоту. При этом увеличивается расход электроэнергии (на работу насоса), повышается потребление топлива из-за некачественного отбора теплоты сгорания.
При работе нескольких котлов в каскаде также возникает рассогласование режимов работы автоматики и циркуляции теплоносителя.
Котлы, оснащенные чугунными теплообменниками топок, крайне негативно реагируют на резкие температурные перепады. Это обусловлено физическими свойствами чугуна. Многие производители ставят обязательным условием применение гидрострелки, в ином случае они снимают гарантийные обязательства на свои изделия.
Решением всех этих технических трудностей является установка в систему гидравлического разделителя (гидрострелки).
Устройство и принцип действия гидрострелки
Классическое устройство гидрострелки – полый сосуд, имеющий две пары патрубков. Первая пара служит для подключения котла (или каскада котлов), вторая – для присоединения системы потребления. Внутренний объем сосуда круглого или прямоугольного сечения служит зоной гидравлического разделения, разряжения и смешивания потоков разнотемпературных теплоносителей.
В верхней части устройства устанавливают воздухоотводчик, нижняя служит грязеуловителем. В гидрострелке циркулирует два потока теплоносителя – поток котлового (первичного) контура и поток системы потребления (вторичного контура). При различных режимах работы оборудования величина потоков меняется. Происходит либо прямая подача от котла, либо смешивание потоков с разной температурой.
Гидрострелка подбирается из расчета снижения скорости теплоносителя до диапазона 0,1 – 0,2 м/с. Прим этой скорости практически отсутствует гидравлическое сопротивление, гидродинамический режим принимает ламинарный характер, происходит наиболее качественный тепломассообмен между контурами.
Контур циркуляции котла практически не зависит от вторичного контура, режим работы котла приобретает стабильный, ровный характер. Вторичный контур получает теплоноситель с равной температурой для всех ветвей, необходимое его количество отбирается собственными насосами.
Отключение, изменение режима работы любой зоны отопительного оборудование приобретает лишь косвенное влияние на работу котла и системы в целом. Обеспечивается гидравлическое разделение, снижающее нагрузку на теплогенератор, отопительные приборы, насосное оборудование, коммуникации.
Гидравлический разделитель имеет три режима работы:
Режим 1. Прямой тепломассообмен потоков теплоносителя первичного и вторичного контура. Стабильная тепловая нагрузка потребления равна постоянному значению тепловой мощности котлоагрегата. Смешивания теплоносителей практически не происходит, движение приобретает ламинарный режим, происходит отделение воздуха, примесей и так далее. Режим работы котла – постоянный, на средней нагрузке.
Режим 2. Котел работает с максимальной нагрузкой, при этом не может обеспечить все потребности системы. Происходит полная передача потока из первичного контура котла с подмешиванием воды из обратки вторичного контура. При этом общая температура снижается для всех потребителей.
Режим 3. Оптимальный режим работы характеризуется наличием необходимой тепловой мощности котла, обеспечением экономного, «щадящего» режима работы. В этом режиме происходит смешивание прямого и обратного потоков первичного контура, температура поднимается. Котел останавливается при достижении заданной температуры, режим его работы приобретает циклический характер.
Гидравлический разделитель имеет и более сложные конструктивные конфигурации. Устройство оснащается сетчатыми элементами в верхней зоне для качественного отделения воздуха. Внутри изделия выполняются перфорированные перегородки вертикального или горизонтального направления для более эффективного разделения потоков.
Гидрострелки часто комбинируются с распределительными коллекторами. При этом коллекторы иногда входят в конструкцию моноблока, могут подключаться независимые.
Производятся изделия в виде комбинации разделителя и коллектора. При этом реализуется зонный температурный отбор теплоносителя для различных отопительных блоков.
Расчет гидравлического разделителя
Существует большой ряд типоразмеров гидрострелок. Подбор устройств производится по расчетным показателям. При этом диаметр патрубков первичного контура должен соответствовать диаметру патрубков котла. При подключении каскада котлов сечение патрубков гидрострелки должно быть не менее суммы сечений патрубков котлов.
Основная формула, применяемая для расчета диаметра сосуда разделителя:
D = 47 √ (P/∆t), где
P – тепловая мощность котла, кВт;
∆t – разница температур между подачей и обраткой, для автономных систем принимается 100С.
Формула справедлива для движения теплоносителя со скоростью 0,15 м/с. Для режимов движения 0,1 и 0,2 м/с поправочные коэффициенты составляют соответственно 54 и 40.
Далее применяется правило 3d = D. Расчетный диаметр патрубков равен величине D/3. Расстояние между патрубками, от патрубков до верхней и нижней точек гидрострелки также должно составлять не менее 3d.
Также гидрострелку подбирают по гидродинамическим характеристикам (производительности) насосов обоих контуров. Формула расчета:
D = 60 √(∑ QСО – QК), где
∑ QСО – суммарная производительность циркуляционных насосов вторичного контура;
QК – производительность котлового насоса, м3/час.
Дальнейший расчет производится по правилу 3d = D.
Применение гидрострелки в многоконтурной системе отопления – качественное техническое решение. Принцип работы и устройство гидравлического разделителя позволяют обеспечить стабильный как в гидравлическом, так и в температурном плане режим работы оборудования. Отсутствие предельных нагрузок, скачкообразного режима позволят отопительному оборудованию работать без неполадок длительное время.
(Просмотров 1 008 , 1 сегодня)
Рекомендуем прочитать:
Что такое гидрострелкаМастер водовед
05 октября 2013г.
Нередко, на страницах интернет-ресурсов, можно встретить очень сжатое, написанное только техническими терминами, описание гидрострелки. Мы в этой статье постараемся раскрыть, что такое гидрострелка и зачем она нужна.
Гидрострелка — применяется для гидравлического разделения потоков. Таким образом, гидравлический разделитель это некий канал между контурами, который позволяет сделать динамически независимые контуры для передачи движения от теплоносителя. Чаще в интернете используют официальное название: гидрострелка — гидравлический разделитель.
Зачем нужна гидрострелка в системе отопления
В системе отопления, гидрострелка — это связующее звено между двумя отдельными контурами по передаче тепла и она полностью нейтрализует динамическое влияние между контурами. У нее есть два назначения:
- первое — она исключает гидродинамическое влияние, при отключении и включении некоторых контуров в системе отопления, на весь гидродинамический баланс. Например, при использовании радиаторного отопления, теплых полов и нагрева бойлера, имеет смысл разделять каждый поток на отдельный контур, для исключения влияния друг на друга.(смотрите)
- второе — при небольшом расходе теплоносителя — она должна получить большой расход для второго, искусственно созданного контура. Например, при использовании котла с расходом 40 л/мин, система отопления получается по расходу больше в 2-3 раза (расходует 120 л/мин). В таком случае целесообразно первый контур установить контуром котла и систему развязки отопления установить вторым контуром. Вообще, разгонять котел больше чем предусматривается производителем котла экономически нецелесообразно, в таком случае увеличивается и гидравлическое сопротивление, оно либо не дает необходимый расход, либо увеличивает нагрузку движения жидкости, это приводит к повышенному энергопотребления насоса.
По какому принципу работает гидрострелка
Циркуляция теплоносителя в первом контуре создается при помощи первого насоса. Вторым насосом создается циркуляция через гидрострелку во втором контуре. Таким образом теплоноситель перемешивается в гидрострелке. Если расход в обоих контурах у нас одинаковый, то теплоноситель беспрепятственно проникает из контура в контур, создавая как бы единый, общий контур. В таком случае не создается вертикального движения в гидрострелке или это движение приближено к нулю. Если расход во втором контуре больше чем в первом, то в гидрострелке происходит движение теплоносителя снизу вверх и при увеличенном расходе в первом контуре — сверху вниз.
Рассчитывая и настраивая гидрострелку, нужно добиться минимального вертикального движения. Экономический расчет показывает, что это движение не должно превышать 0.1 м/с.
Зачем снижать вертикальную скорость в гидрострелке?
Гидрострелка служит и как отстойник мусора в системе, при малых вертикальных скоростях мусор постепенно оседает в гидрострелке, выводясь из системы отопления.
Создание естественной конвекции теплоносителя в гидрострелке, таким образом холодный теплоноситель уходит вниз, а горячий устремляется вверх. Таким образом создается необходимый температурный напор. При использовании теплого пола, можно в второстепенном контуре получить пониженную температуру теплоносителя, а для бойлера более высокую, обеспечив быстрый нагрев воды.
Уменьшение гидравлического сопротивления в гидрострелке,
Выделение из теплоносителя микроскопических пузырьков воздуха, тем самым выводя его из системы отопления через автовоздушник.
Как узнать, что нужна гидрострелка
Как правило, гидрострелку ставят в домах, площадь которых более 200 кв.м., в тех домах где сложная система отопления. Там где используется распределение теплоносителя на несколько контуров. Такие контура желательно делать независимыми от других в общей системе отопления. Гидрострелка позволяет создать идеально стабильную систему отопления и распространять тепло по дому в нужных пропорциях. При использовании такой системы распределение тепла по контурам становится точным и отклонения от настроенных параметров исключены.
Преимущества использования гидрострелок.
Защита чугунных теплообменников исключая тепловой удар. В обычной системе, без использования гидрострелки, создается резкое повышение температуры, при отключении некоторых веток и последующий приход уже холодного теплоносителя. Гидравлическая стрелка дает постоянный расход котла, уменьшая разницу температур между подачей и обраткой.
Повышается долговечность и надежность котельного оборудования за счет стабильной работы без перепадов температуры.
Отсутствие разбалансированности и создание гидравлической устойчивости системы отопления. Именно гидрострелка позволяет увеличить дополнительный расход теплоносителя, что очень трудно добиться установкой дополнительных насосов.
Принцип работы гидравлической стрелки видео
youtube.com/embed/pajqB-lOaeQ?rel=0″ frameborder=»0″ allowfullscreen=»allowfullscreen»/>
Защитит систему от непредвиденных ситуаций: принцип работы гидрострелки отопления
Гидрострелка — устройство, подключённое и работающее в контуре отопления, напрямую связанное с котлом.
Одно из важных назначений гидрострелки — увеличивать расход топлива, который не предусмотрен в котле, но требуется для обогревания дома.
Установив гидрострелку или, гидравлический разделитель, пользователи стремятся сэкономить, не покупая и не увеличивая мощность котла, подстраиваемого под общий расход воды или другой жидкости.
Гидравлический разделитель является искусственно созданным пространством, где как раз можно разогнать потребление, увеличив его в несколько раз под систему отопления. Другое не менее важное назначение — сохранение гидролитического баланса и давления во всей системе.
Благодаря гидрострелке в контуре отопления не будет перескакивать давление, нарушая все взаимодействие. Эта функция помогает беспрепятственно переключать отопление между разными жилыми помещениями, например, включать пол только на кухне, а не по всему дому.
Описание устройства
Само устройство походит на вытянутый параллелепипед, с шестью разными выходами, расположенными напротив друг друга. Каждый из этих выходов отвечает за отдельную функцию. Например, самый высокий из 5 клапанов позволяет воздуху беспроблемно выходить из системы, чтобы не повышать всё давление. Это происходит автоматически, владельцу не придётся ничего контролировать.
Фото 1. Гидрострелка, установленная в систему отопления. Красным цветом обозначен горячий теплоноситель, синим — холодный.
Нижний патрубок способствует уничтожению и вынесению «мусора», который остаётся в устройстве гидроразделителя. Грязный воздух из труб (его частички) и осадок от начавшейся коррозии или другого процесса опадает вниз, где, как лопатка, располагается самый нижняя — шестая патрубка. К остальным клапанам присоединяются трубы с водой. Внутри вся гидрострелка полая, в ней нет ничего, кроме воды, и продуктов распада.
Принцип работы в системе отопления
Гидрострелка помогает котлу, к которому подключена напрямую, увеличивать его мощность и скорость передачи воды. Зачем это нужно? Дело в том, что при нехватке мощности, но быстрой работе системы, котёл сильно нагревается. Как следствие — тепловой удар, т. е. воздух, начинает внутри распирать стенки котла, а что будет дальше — это физические повреждения дома, всей системы отопления и, разумеется, здоровья человека.
Такие перепады температуры и мощности случаются только в нескольких случаях: механизм отопления запустили в первый раз; теплообмен проходит техническую проверку и другие работы, заставляющие оторвать циркуляционный насос («Сердце всей тепловой организации») от основного контура или от источника горячей воды.
Фото 2. Схема подключения гидрострелки к системе отопления и принципы движения по ней теплоносителя.
Установив гидравлический разделитель, пользователь заставляет воздух или воду проходить через дополнительный пункт остывания. Таким образом, проходя через весь поток гидрострелки, горячий воздух разделяется пополам, теряя половину своей теплоты. Один поток воздуха продолжает идти в котёл, а другой вниз по трубке гидравлического разделителя, добавляясь в холодные примеси воды или газа и остывая.
И наоборот, если холодной воды вышло из котла слишком много, то лишние слои успевают прогреться, и на выходе потребитель получает нужную температуру. Примерно так работает вся система. Теперь разберём всё наглядно.
Как работает гидрострелка в разных случаях
Принцип работы гидрострелки различается в зависимости от целей её использования и типа систем, в которые она установлена.
Отопление с 4-х ходовым смесителем
Чтобы описать схему работы отопления с 4-х ходовым смесителем, для начала нужно представить квадрат, на каждой стороне которого находятся отверстия равные по ширине. Из всех этих отсеков протекает либо холодная, либо горячая вода.
В системе существует всего 3 режима: полностью открытый, полностью закрытый и промежуточный. Начнём разбор с полностью закрытого.
Как мы знаем тёплые потоки воздуха или горячей воды выходят прямиком из котла, а холодные потоки из системы отопления (вода вышла из котла, сделала круг и остыла).
Если вся система закрыта, т. е. не работает, то тёплая вода постоянно переливается через гидравлический разделитель, никуда не уходя, протекая постоянно по одному кругу и возвращаясь обратно в котёл.
Та же самая ситуация происходит и с холодным потоком воды или воздуха, который не нагревается заново, оставаясь холодным до открытого режима. Эти жидкости не смешиваются и не передают друг другу тепло, циркулируя строго по своему контуру.
При промежуточном режиме эти жидкости начинают смешиваться. При этом температура часто бывает немного выше средней, потому что весь пар, накопленный за период закрытого режима, выходит наружу и начинает согревать холодные потоки. Таким образом, обычно нагревают полы, чтобы ноги не жгло.
В открытом режиме протоки горячей и холодной воды вновь не пересекаются, но компенсируют утраты друг друга. Что это значит. Представим опять квадрат. Потоки горячего воздуха или воды выходят из одного края и входят в систему отопления, в то время как холодная жидкость, выходя из нее движется в стороны котла, где согревается. И такой процесс восполнения постоянно горячей воды холодной и наоборот почти вечный двигатель, если не учитывать, что тепло безвозвратно уходит.
Для нейтрального режима работы
Идеальным режимом работы гидроразделителя является тот момент, когда количество горячей и холодной воды примерно одинаково и не требует регуляции.
Обычно это случается, когда котёл работает постоянно и без перебоев — очень редко, потому что всегда существует погрешность.
Котёл не обладает достаточной мощностью
Основываясь на этой проблеме, и ставят термодатчик, или, в нашем случае, гидрострелку. Получив сигнал от встроенного термодатчика, гидравлический разделитель переходит в разные режимы: либо в открытый, либо в закрытый.
Внимание! Это обеспечивает безопасность котла, который может в одночасье просто расколоться от перепадов температур и давления. Перегоняя воду, охлаждая или нагревая, гидрострелка помогает котлу справиться с уравновешиванием термодинамики, чтобы продолжить работу.
Поток на первичном контуре объёмнее, чем расход теплоносителя
Как уже рассказывалось выше, в случае, если горячий поток слишком сильно разогрет для вхождения в котёл, то через гидрострелку он попадает в систему, гарантирующую разделение потока на две части, вторая будет охлаждаться и уйдёт в систему отопления вместе с холодной водой или паром, а горячая часть сильно сократиться и перестанет представлять угрозу для и так горячего котла.
Полезное видео
Посмотрите видео, в котором рассказывается, как именно изготовить гидрострелку своими руками.
Актуальность гидрострелки
Такая маленькая, но такая необходимая вещь должна быть в каждом доме, особенно загородном, потому что скачки температур и давления в мегаполисах и близлежащих районах сильно скачут из-за огромного количества людей, которые ими пользуются индивидуально.
Например, сосед снизу захотел выкрутить батарею на максимум, а сосед сверху хочет закаляться дома. Без гидрострелки не обойтись.
Скачок температур, выходящих из первого контура, оказывает влияние на весь котёл, поэтому покупайте гидрострелки и обезопасьте свою жизнь от глупых соседей и случайных домашних катаклизмов.
Гидрострелка устройство и принцип действия. Гидрострелка
Гидрострелка устройство и принцип действия. Гидрострелка
(не проверялась)
Гидрострелка ( гидравлический разделитель , гидроразделитель , бутылка , гидродинамический терморазделитель )
используется в системах отопления при монтаже до и после котла для выравнивания температур и давления в системе. Считается, что при включении в систему гидрострелки котёл работает мягче и легче. Многие проектировщики утверждают, что гидрострелка необходима только при использовании в крупных котельных , начиная с 80 кВт.
Грамотная, экономичная работа системы отопления целиком и полностью зависит от грамотного и правильного распределения теплоносителя по системе отопления, правильного выбора скорости течения в гребёнке и гидрострелке.
Иногда гидрострелку называют гидравлическим разделителем, гидроразделителем, бутылкой, термогидравлическим распределителем, гидрораспределителем, ГС, гидравлической стрелкой. Всё это — названия одного и того же оборудовании для обвязки котла.
Гидрострелка представляет собой некую вертикальную ёмкость с сечением в виде окружности или квадрата. Гидрострелка обычно имеет 4 рабочих патрубка. 2 напротив друг друга или со смещением вверху и 2 напротив друг друга или со смещением внизу.
Также есть специальные гидрострелки для объединения двух или более теплогенераторов-котлов.
Гидрострелки обычно рассчитываются индивидуально. Главный параметр — горизонтальная скорость движения жидкости внутри ГС.
Некоторые производители усредняют эти параметры и изготавливают серийно линейку гидрострелок. Среди производителей встречаются изготовители термогидравлических распределителей, которые производят расчет и проект ГС именно под определенные нужды. Это сводит КПД систем отопления к максимальным значениям. Обычно гидрострелки изготавливают в паре с гидроколлектором.
Гидрострелки или гидроразделители могут быть изготовлены в специальных условиях серийно или на заказ, таким образом, чтобы от источника тепла (котла, например) в неё входило 2 или 3 трубы. Тогда гидрострелки называются совмещенными. Этот вариант исполнения гидравлического разделителя является альтернативой каскадному подключению нескольких источников тепла (котлов) и очень удобен — в гидрострелку сразу заводятся несколько источников, что сильно экономит место в котельных.
Ещё одна особенность гидрострелок (любых: серийных или индивидуальных, по специальным размерам или расчетам) это то, что все они «работают», обычно, с принудительной системой циркуляции. И на каждый контур отопления должен стоять свой циркуляционный насос.
Гидрострелка на 3 контура. Для чего нужна гидрострелка
Если у вас в доме планируется монтаж простой системы отопления закрытого типа, где задействовано не более 2 циркуляционных насосов, то гидравлический разделитель вам точно не понадобится.
Когда контуров и насосов – три, при этом один из них предназначен для работы с бойлером косвенного нагрева, то и здесь можно обойтись без гидрострелки. Задуматься о разделении отопительных контуров надо в ситуации, когда схема выглядит следующим образом:
Примечание. Здесь показаны 2 котла, работающих в каскаде. Но это не принципиально, котел может быть и один.
В представленной схеме гидрострелки нет, но без ее монтажа тут явно не обойтись. Есть 4 контура, в которых действует столько же насосов разной производительности. Самый мощный из них создаст в подающем коллекторе разрежение, а в обратном – повышенное давление. При одновременной работе насосу меньшей производительности просто не хватит сил на преодоление этого разрежения и он не сможет отобрать теплоноситель на свой контур. По итогу ветвь не будет функционировать, поскольку насосы мешают друг другу.
Важно. Даже если паспортная производительность насосных агрегатов одинакова, то гидравлическое сопротивление ветвей всегда будет разным. Соответственно, реальный расход теплоносителя в каждом контуре все равно отличается, идеально выверить систему невозможно.
Чтобы устранить перепад давления ΔР, возникающий между коллекторами и дать возможность всем насосам спокойно отбирать нужное количество теплоносителя, в схему включается гидрострелка. Она представляет собой полую трубу расчетного сечения, чьей задачей является создание зоны нулевого давления между теплогенератором и несколькими потребителями. Как действует этот элемент в схеме обвязки котла, описано в следующем разделе.
Гидрострелка принцип работы. Принцип работы и назначение гидрострелки
- Гидрострелка необходима для гидродинамической балансировки системы отопления и служит в качестве добавочного узла. Она дает возможность сберечь теплообменники котлов, сделанные из чугуна, от возможных тепловых ударов. Подобное может произойти во время первоначального пуска котла, проведения технических проверок или обслуживающих работ, которые сопровождаются обязательным отключением циркуляционного насоса отопления и горячего водоснабжения. Также, применение гидрострелки, предохранит целостность вашей системы отопления при автоматическом отключении контуров ГВС, теплового пола и др.. При монтировании отопительной системы в вашем доме для соблюдения гарантийных обязательств изготовителя на оборудование, установка гидрострелки, является обязательным условием. Требования эти являются обязательными для котлов, у которых теплообменник изготавливается из чугуна. Так как, при возникновении большой разницы температур между водой на выходе и входе, возможно разрушение чугуна из-за его природной хрупкости.
- Чтобы выровнять давление при неодинаковых расходах в основном контуре котла и сумарном потреблении вторичными контурами тепла. Гидроразделитель будет полезным в случае многоконтурных систем отопления (батареи отопительные, водонагреватель, горячий настил и другое). Соблюдая гидродинамические нормы, наше устройство дает возможность на 100% устранить воздействие друг на друга контуров и гарантировать их бесперебойную работу в заданных режимах.
- При правильном расчете размеров и гидромеханических параметров, гидрострелка будет выполнять функцию отстойника и убирать из теплоносителя механические образования, такие как ржавчина, шлам, накипь. Это значительно продлит время работы всех движущихся и трущихся элементов системы отопления, например насосов, запорной арматуры, счетчиков и датчиков.
- Гидроразделитель осуществляет важную роль удаления с теплоносителя, находящегося в нем воздуха. Это в существенной степени снизит количество окислившихся металлических деталей системы отопления.
Внутреннее устройство гидрострелки. Устройство гидрострелки отопления
Гидроразделитель — вертикальный полый сосуд из труб большого диаметра (квадратного профиля) с эллиптическими заглушками по торцам. Размеры разделителя обусловлены мощностью (кВт) котла, зависят от количества и объема контуров.
Тяжелый металлический корпус устанавливают на опорные стойки, чтобы не создавать линейное напряжение на трубопровод. Компактные устройства крепят к стене, располагают на кронштейнах.
Гидрострелка из нержавеющей стали
Патрубок гидрострелки и отопительный трубопровод соединяют с помощью фланцев или резьбы.
Важно
Автоматический клапан воздухоотводчика располагают в верхней точке корпуса. Осадок удаляют через вентиль или специальный клапан, который врезан снизу.
Материал для изготовления гидрострелки — низкоуглеродистая или нержавеющая сталь, медь, полипропилен. Корпус обрабатывают антикоррозийным составом, покрывают теплоизоляцией.
Гидравлическая стрелка «Meibes»
Усовершенствованные модели совмещают функции разделителя, регулятора температуры и сепаратора. Клапан-терморегулятор обеспечивает температурный градиент вторичных контуров.
Выделение растворенного кислорода из теплоносителя снижает риск эрозии внутренних поверхностей оборудования.
Удаление из потока взвешенных частиц продлевает срок службы рабочего колеса и подшипников циркуляционных насосов.
На фото изображена модель гидрострелки для отопления в разрезе:
Устройство гидрострелки — вид в разрезе
Горизонтальные перфорированные перегородки разделяют внутренний объем пополам. Потоки подачи-обратки соприкасаются в зоне «нулевой точки» и скользят в разные стороны, не создавая дополнительное сопротивление.
Сверху, в высокотемпературной зоне, расположены пористые вертикальные пластины деаэрации. Сборник шлама и магнитный уловитель (магниевый анод) расположены в нижней части корпуса.
Конструктивные опции гидрострелки: манометр, датчик температуры, клапан терморегулятор и линия для запитки системы при запуске. Сложному оборудованию необходима наладка, регулярные осмотры и техническое обслуживание.
Принцип работы коллектора с гидрострелкой на 3 контура отопления
Поток теплоносителя проходит разделитель со скоростью 0,1-0,2 м/с. Котловой насос разгоняет горячую воду до 0,7-0,9 м/с. Рекомендованный скоростной режим дает представление о том, для чего нужна гидрострелка для отопления.
Изменение объема и направления движения гасит скорость водяных потоков при минимальной потере тепловой энергии в системе. Ламинарное движение потока приводит к тому, что гидравлическое сопротивление внутри корпуса практически отсутствует. Буферная зона разделяет котел и цепь потребителя. Насос каждого из отопительных контуров работает автономно, не нарушая гидравлический баланс.
Принцип работы гидрострелки в схеме отопления с 4-х ходовым смесителем
Схемы гидрострелки для отопления (режим работы):
- Нейтральный режим работы гидроразделителя, при котором напор, расход, температура и тепловая энергия подачи — обратки соответствуют расчетным параметрам системы. Насосное оборудование обладает достаточной суммарной мощностью. Ламинарное движение потока в гидрострелке обеспечивает процессы деаэрации и осаждения взвешенных частиц.
Нейтральный режим работы гидроразделителя
- Схема отражает принцип работы гидрострелки отопления, при котором котел не обладает достаточной мощностью, чтобы обеспечить расход во второстепенном контуре. Дефицит расхода приводит к подмесу холодного теплоносителя. Разница температур подачи/обратки приводит к срабатыванию термодатчиков. Автоматика выведет теплогенератор на максимальный режим горения, однако потребитель не получает достаточного количества теплоты. Система отопления разбалансирована, возникает угроза теплового удара.
Если котел не обладает достаточной мощностью, чтобы обеспечить расход во второстепенном контуре, возникает угроза теплового удара
- Объемный поток первичного контура больше, чем расход теплоносителя зависимой цепи. Вариант, при котором котел функционирует в оптимальном режиме. При розжиге агрегата или параллельном отключении насосов вторичных контуров, теплоноситель циркулирует через гидрострелку по первичному (малому) контуру. Температура обратки, которая поступает в котел, выравнивается подмесом из подачи. Достаточный объем теплоносителя поступает потребителю.
Объемный поток первичного контура больше, чем расход теплоносителя зависимой цепи — котел функционирует в оптимальном режиме
Обязательное условие: производительность, которой обладает циркуляционный насос первичного (котлового) контура на 10% больше, чем суммарный максимальный напор насосов во второстепенном контуре.
Видео гидрострелка. Устройство и назначение. Гидрострелка чаще всего не нужна.
NFPA — Что такое гидравлика
Чтобы представить себе базовую гидравлическую систему, представьте себе два идентичных шприца, соединенных вместе трубками и заполненных водой (см. Рисунок 1). Шприц A представляет насос, а Шприц B представляет привод, в данном случае цилиндр. Нажатие на поршень шприца A создает давление внутри жидкости. Это давление жидкости действует одинаково во всех направлениях (закон Паскаля) и заставляет воду течь через дно в трубку и в шприц B .Если вы поместили 5 фунт.
Если объект находится сверху поршня шприца B , вам нужно будет надавить на поршень шприца A с усилием не менее 5 фунтов. силы, чтобы переместить вес вверх. Если объект весит 10 фунтов, вам придется толкать его с усилием не менее 10 фунтов. силы, чтобы переместить вес вверх.
Если площадь плунжера (который является поршнем) Шприц A составляет 1 кв. Дюйм, и вы нажимаете 5 фунтов.силы, давление жидкости будет 5 фунтов / кв. дюйм (фунт / кв. дюйм). Поскольку давление жидкости действует одинаково во всех направлениях, если объект на Шприц B (который снова имеет площадь 1 кв. Дюйм) весит 10 фунтов, давление жидкости должно превысить 10 фунтов на квадратный дюйм, прежде чем объект будет двигаться вверх. Если мы удвоим диаметр шприца B (см. Рисунок 2), площадь поршня станет в четыре раза больше, чем была. Это означает, что вес в 10 фунтов будет поддерживаться на 4 кв. Дюйма.жидкости. Следовательно, давление жидкости должно превышать 2,5 фунта на квадратный дюйм (10 фунтов ÷ 4 кв. Дюйма = 2,5 фунта на квадратный дюйм) для перемещения объекта весом 10 фунтов вверх.
Таким образом, перемещение объекта весом 10 фунтов потребует только
2,5 фунта. силы на поршень шприца A , но поршень шприца B будет двигаться только вверх ¼, если оба поршня имеют одинаковый размер. В этом суть гидравлической энергии. Варьируя размеры поршней (плунжеров) и цилиндров (шприцев), можно в несколько раз увеличить прилагаемое усилие.
В реальных гидравлических системах насосы содержат множество поршней или насосных камер других типов. Они приводятся в движение первичным двигателем (обычно электродвигателем, дизельным двигателем или газовым двигателем), который вращается со скоростью несколько сотен оборотов в минуту (об / мин). Каждое вращение заставляет все поршни насоса выдвигаться и втягиваться, втягивая жидкость и выталкивая ее в гидравлический контур в процессе. Гидравлические системы обычно работают при давлении жидкости в тысячи фунтов на квадратный дюйм.Таким образом, система, которая может развивать давление 2000 фунтов на квадратный дюйм, может толкать 10 000 фунтов. силы из цилиндра примерно такого же размера, как банка содовой.
Гидравлические приложения
Внедорожная техника, наверное, самая распространенная
применение гидравлики . Будь то строительство, горнодобывающая промышленность, сельское хозяйство, утилизация отходов или коммунальное оборудование, гидравлика обеспечивает мощность и управление для решения поставленной задачи и часто для обеспечения движущей силы для перемещения оборудования с места на место, особенно когда задействованы гусеничные приводы. Гидравлика также широко используется в тяжелом промышленном оборудовании. на заводах, в морском и морском оборудовании для подъема, гибки, прессования, резки, формовки и перемещения тяжелых деталей. Ниже приведены истории болезни, размещенные на веб-сайтах отраслевых публикаций, описывающих использование гидравлики в различных сферах применения:
Сельское хозяйство:
Traction — король виноградоуборочного комбайна
Аккумуляторы Beat Boom Bounce
Строительство:
Асфальтоукладчик со скользящими формами
обладает всей гидравликой Smarts.
Обеспечивает многосочлененный экскаватор широким диапазоном движений.
Развлечения:
Электрогидравлика на гигантском слоне
В мюзикле «Человек-паук» используется сила гидравлики для управления и подъема ступеней и платформ
Морской и морской:
Корабль-краб
обеспечивает огромную экономию топлива
Wave Energy представляет новые задачи
Отходы и переработка:
Гидравлика делает мусоровоз быстрым, тихим и эффективным
Compact Motors Держите подметальные машины простыми
Прочие отрасли, в которых гидравлика является предпочтительной:
- Энергия
- Станки
- Металлообработка
- Военная и авиакосмическая промышленность
- Горное дело
- Коммунальное оборудование
Дополнительные гидравлические приложения
Другие примеры использования гидравлики
Принципы гидравлики Онлайн-обучение
Компоненты Fluid Power
Гидравлические системы питания состоят из нескольких компонентов, которые работают вместе или последовательно для выполнения определенного действия или работы. Люди, хорошо разбирающиеся в гидравлических контурах и конструкции систем, могут покупать отдельные компоненты и сами собирать из них гидравлическую энергетическую систему. Однако многие гидравлические системы разработаны дистрибьюторами, консультантами и другими специалистами в области гидравлической энергии, которые могут предоставить систему полностью или частично.
Основные компоненты любой гидравлической системы:
- насосное устройство — гидравлический насос или воздушный компрессор для подачи жидкости в систему
- проводники жидкости — трубки, шланги, фитинги, коллекторы и другие компоненты, которые распределяют жидкость под давлением по системе
- клапаны — устройства, регулирующие расход жидкости, давление, пуск, останов и направление
- Приводы — цилиндры, двигатели, поворотные приводы, захваты, вакуумные чашки и другие компоненты, которые выполняют конечную функцию гидравлической системы.
- вспомогательные компоненты — фильтры, теплообменники, коллекторы, гидравлические резервуары, пневматические глушители и другие компоненты, которые позволяют гидравлической системе работать более эффективно.
Электронные датчики и переключатели также включены во многие современные гидравлические системы, чтобы обеспечить средства электронного управления для контроля работы компонентов. Диагностические инструменты также используются для измерения давления, температуры и расхода при оценке состояния системы и для поиска неисправностей.
Устройство для определения местоположения жидкостей NFPA —
где вы можете найти гидравлические и пневматические компоненты и продукты, доступные от компаний-членов NFPA.
Сеансы дополнительного образования и обучения, предлагаемые NFPA и его членами, можно найти по телефону
Образовательные ресурсы.
Как работает гидравлика | Наука гидравлики
Криса Вудфорда.Последнее изменение: 22 августа 2020 г.
Какая связь между водой
пистолет и этот гигантский журавль? На первый взгляд, никакой связи. Но
подумайте о науке, стоящей за ними, и вы достигнете удивительного
вывод: водяные пистолеты и краны используют силу движущихся жидкостей
очень похожим образом. Эта технология называется гидравликой, и это
используется для питания всего, от автомобильных тормозов и мусоровозов до
рулевые и гаражные домкраты для моторных лодок. Давайте подробнее рассмотрим, как это работает!
На фото: этот кран поднимает свою гигантскую стрелу в воздух с помощью гидроцилиндра.Вы можете заметить здесь барана? Основная из них — сияние серебра на солнечном свете в центре картины.
Также имеются гидроцилиндры, поддерживающие стабилизаторы («аутригеры»): опоры, которые выступают возле колес для поддержки крана у основания, когда стрела выдвинута (они выделены желтыми и черными предупреждающими полосами).
Нельзя раздавить жидкость!
Газы легко раздавить: все знают, как легко
это сжать воздушный шар. Твердые тела прямо противоположны.
Если вы когда-нибудь пытались сжать кусок металла или кусок
дерево, только пальцами,
вы поймете, что это практически невозможно.А как насчет жидкостей?
Где они вписываются? Вы, наверное, знаете, что жидкости — это
промежуточное состояние, немного похоже на твердые тела и немного на газы
в других. Теперь, когда жидкости легко перетекают с места на место, вы
можете подумать, что они будут вести себя как газы, когда вы устанете их сжимать.
Фактически, жидкости практически несжимаемы, как и твердые тела.
По этой причине болит живот, если вы испортили свое погружение в
плавательный бассейн. Когда ваше тело врезается в бассейн, это потому, что
вода не может стекать вниз (как матрас или батут
будет) или достаточно быстро уйти с дороги.Вот почему прыжки с мостов
в реки может быть очень опасно. Если вы не нырнете правильно, прыжки
с моста в воду почти как на бетон.
(Узнайте больше о твердых телах, жидкостях и газах.)
Фото: Почему вода так быстро брызгает из шприца? Вы вообще не можете сжать жидкость, поэтому, если вы протолкнете воду через широкую часть шприца, сильно надавив на поршень внизу, куда пойдет эта вода? Он должен выбраться через верх.Поскольку верх намного уже низа, вода выходит на поверхность быстроходной струей. Гидравлика запускает этот процесс в обратном порядке, чтобы обеспечить более низкую скорость, но большую силу, которая используется для привода тяжелых машин. То же самое и с водяным пистолетом, который фактически представляет собой шприц в форме пистолета.
Тот факт, что жидкости не сжимаются легко,
невероятно полезно. Если вы когда-нибудь стреляли из водяного пистолета (или
бутылка с жидкостью для мытья посуды, наполненная водой), вы использовали эту идею
уже.Вы, наверное, заметили, что нажимать на
спусковой крючок водяного пистолета (или выжать воду из посуды для мытья посуды
бутылка). Когда вы нажимаете на спусковой крючок (или сжимаете бутылку), вы
приходится довольно много работать, чтобы вытеснить воду через узкую
сопло. Вы действительно оказываете давление на воду — и
вот почему он брызгает с гораздо большей скоростью, чем вы двигаете
курок. Если бы вода не была несжимаемой, водяные пистолеты не работали бы
должным образом. Вы нажмете на спусковой крючок, и вода внутри будет просто
сжать в меньшее пространство — он не вылетит из сопла, как
вы ожидали.
Если водяные пистолеты (и сжимаемые бутылки) могут изменять силу и скорость, это означает (в строгих научных терминах) они работают так же, как инструменты и машины. Фактически, наука о водяных пистолетах приводит в действие некоторые из самых больших машин в мире — краны, самосвалы и экскаваторы.
Теоретическая гидравлика
Переверните водяной пистолет, и это
(грубо упрощено) что происходит внутри:
Фото: упрощенный вид гидравлической воды.
пистолет.
Когда вы нажимаете на спусковой крючок (показан красным), вы применяете относительно
большое усилие, которое перемещает спусковой крючок на небольшое расстояние.Потому что вода не будет
втиснуться в меньшее пространство, он проталкивается через тело
пистолет к узкой насадке и выстреливает с меньшей силой, но с большей
скорость.
Теперь предположим, что мы можем заставить водяной пистолет работать в обратном направлении. Если
мы могли стрелять жидкостью в сопло на большой скорости, вода
течь в обратном направлении, и мы сгенерируем
большое усилие на спусковом крючке, направленное вверх. Если бы мы увеличили масштаб нашего водяного пистолета
много раз мы
мог генерировать достаточно большую силу, чтобы поднимать предметы. Именно так
гидроцилиндр или домкрат.Если вы брызгаете жидкость через узкую
трубки на одном конце, вы можете заставить поршень подниматься медленно, но с большим
силы, на другом конце:
Фото: Как увеличить силу с помощью водяного пистолета
работает в обратном направлении.
Наука, лежащая в основе гидравлики, называется Паскаля.
принцип . По сути, потому что жидкость в трубе
несжимаемый, давление должно оставаться постоянным на всем протяжении его,
даже когда вы сильно нажимаете на него с одного или другого конца. Теперь давление
определяется как сила, действующая на единицу площади.Итак, если мы надавим
с небольшим усилием на небольшом участке, на узком конце трубки на
слева, должна быть большая сила, действующая вверх на большую
поршень справа, чтобы давление оставалось равным. Вот как
сила увеличивается.
А как насчет энергии?
Другой способ понять гидравлику — подумать о энергии .
Мы уже видели, что гидроцилиндры могут дать нам больше силы или скорости, но они
не могут делать и то, и другое одновременно — и это из-за энергии.Посмотрите еще раз на изображение водяного пистолета вверху.
Если быстро надавить на узкую трубу (с небольшим усилием), плунжер на широкой трубе
поднимается медленно (с большой силой). Почему это могло быть? Основной закон физики называется
закон сохранения энергии гласит, что мы
не может сделать энергию из воздуха. Количество энергии, которое вы используете для перемещения поршня.
равна приложенной вами силе, умноженной на расстояние, на которое вы ее перемещаете. Если наш водяной пистолет
производит вдвое большую силу на широком конце, чем мы прилагаем к узкому концу, он может только
продвиньтесь наполовину.Это потому, что энергия, которую мы доставляем, давя вниз, переносится
прямо вокруг трубы до другого конца. Если то же количество энергии теперь должно двигаться вдвое больше силы,
он может переместить его только на половину расстояния за то же время. Вот почему более широкий конец движется медленнее
чем узкий конец.
Гидравлика на практике
Вы можете увидеть работу гидравлики этого экскаватора.
Когда водитель тянет за ручку, двигатель экскаватора закачивает жидкость в
узкие трубы и кабели (показаны синим), заставляющие гидроцилиндры (показаны
красным) для расширения.Тараны немного похожи на велосипедные насосы, работающие в
обеспечить регресс. Если сложить несколько таранов, можно сделать копалку.
рука вытягивается и двигается так же, как у человека, только с гораздо большим
сила. Гидравлические цилиндры — это, по сути, мускулы землекопа:
Фото: В этом экскаваторе работают несколько различных гидроцилиндров. Тараны обозначены красными стрелками.
и узкие, гибкие гидравлические трубы и кабели, которые их подводят, синего цвета.
Каждый поршень работает как водяной пистолет с дизельным двигателем, задним ходом:
Фото: Гидравлические цилиндры экскаватора крупным планом.
Двигатель перекачивает гидравлическую жидкость через одну из тонких трубок, чтобы выдвинуть более толстый плунжер с гораздо большей силой, например:
Фото: Как гидравлический цилиндр увеличивает силу.
Вам может быть интересно, как гидроцилиндр может перемещаться как внутрь, так и наружу, если гидравлическая жидкость всегда толкает его в одном направлении.
Ответ в том, что жидкость не всегда движется одинаково. Каждый плунжер питается с противоположных сторон по двум отдельным трубам.
В зависимости от того, как движется жидкость, поршень толкает внутрь или наружу, очень медленно и плавно, как показывает эта небольшая анимация:
Фото: Гидравлический цилиндр движется внутрь или наружу в зависимости от того, в каком направлении течет гидравлическая жидкость.
В следующий раз, когда вы будете в пути, посмотрите, сколько гидравлических машин вы сможете заметить. Вы можете быть удивлены, сколько
ими пользуются грузовики, краны, экскаваторы, самосвалы, экскаваторы, бульдозеры.
Другой пример: гидравлический кусторез на задней части трактора. Режущая головка должна быть прочной и тяжелой, чтобы прорезать живую изгородь и деревья, и водитель не может поднять или установить ее вручную. К счастью, гидравлическое управление делает все это автоматически: с несколькими гидравлическими соединениями, немного похожими на плечо, локоть и запястье, резак движется с такой же гибкостью, как человеческая рука:
Фото: Типичный гидравлический кусторез.
Скрытая гидравлика
Однако не все гидравлические машины настолько очевидны; иногда их гидроцилиндры скрыты от глаз.
Лифты («лифты») хорошо скрывают свою работу, поэтому не всегда очевидно, работают ли они традиционным способом (поднимаются и опускаются кабелем, прикрепленным к двигателю) или вместо этого используют гидравлику. В небольших лифтах часто используются простые гидроцилиндры, устанавливаемые непосредственно под лифтовой шахтой или рядом с ней. Они проще и дешевле традиционных лифтов, но потребляют немного больше энергии.
Двигатели — еще один пример, когда гидравлику можно скрыть от глаз. Традиционный
Электродвигатели используют электромагнетизм: когда электрический ток течет через катушки внутри них, он создает временную магнитную силу, которая толкает кольцо постоянных магнитов, заставляя вал двигателя вращаться.
Гидравлические моторы больше похожи на насосы, работающие реверсом. В одном примере, называемом гидравлическим редукторным двигателем, жидкость течет в двигатель по трубе, заставляя вращаться пару тесно сцепленных шестерен, прежде чем течь обратно через другую трубу.Одна из шестерен соединена с валом двигателя, который приводит в движение все, что двигатель запитывает, в то время как другая («холостой ход») просто свободно вращается, чтобы завершить механизм. Там, где традиционный гидроцилиндр использует силу перекачиваемой жидкости для толкания гидроцилиндра вперед и назад на ограниченное расстояние, гидравлический двигатель использует непрерывно текущую жидкость для вращения вала столько, сколько необходимо. Если вы хотите, чтобы двигатель вращался в обратном направлении,
вы просто меняете направление потока жидкости. Если вы хотите, чтобы он вращался быстрее или медленнее, вы увеличиваете или уменьшаете поток жидкости.
Иллюстрация: Упрощенный гидравлический мотор-редуктор. Жидкость (желтая) втекает слева, вращает две шестерни и вытекает вправо. Одна из шестерен (красная) приводит в действие выходной вал (черный) и машину, к которой подключен двигатель. Другая шестерня (синяя) — холостой ход.
Зачем использовать гидравлический мотор вместо электрического? Там, где мощный электродвигатель обычно должен быть действительно большим, такой же мощный гидравлический двигатель может быть меньше и компактнее, потому что он получает свою мощность от насоса, расположенного на некотором расстоянии.Вы также можете использовать гидравлические двигатели в местах, где электричество может быть нежизнеспособным или безопасным — например, под водой, или где существует риск возникновения электрических искр, вызывающих пожар или взрыв. (Другой вариант в этом случае — использовать пневматику — силу сжатого воздуха.)
Узнать больше
На сайте
Книги
Для младших читателей
Особенно подходят для детей 9–12 лет:
- Можете ли вы почувствовать силу? Ричарда Хаммонда.Дорлинг Киндерсли, 2007/2015. Веселое введение в основы физики. (Я был одним из консультантов по этой книге.)
- Сила и движение Питера Лафферти. Дорлинг Киндерсли, 2000. Хотя сейчас он довольно старый и, кажется, не обновлялся, его все еще легко найти в секонд-хенде. Одна из классических книг DK очевидцев, в ней много увлекательной истории, а также современной науки.
- «Как все работает сейчас» Дэвида Маколея. ДК, 2016. Многие гидравлические машины разбираются и объясняются в этом классическом томе о принципах работы.
- Как все работает: сила давления Эндрю Данна. Thomson Learning, 1993. Слегка устаревшая, но все же очень актуальная детская книга, которая связывает фундаментальные науки о жидкостях и давлении воды с такими повседневными машинами, как суда на воздушной подушке, пылесосы, отбойные молотки, автомобильные тормоза и лифты.
Для читателей постарше
Видео
Информационное
- Гидравлические приводы от Vickers Hydraulics. Устаревшее, но довольно четкое видео, в котором объясняются основные гидравлические приводы, включая гидроцилиндры одностороннего и двустороннего действия и гидромоторы.
Веселые проекты
- Сделайте гидравлический рычаг от Mist8K. Гидравлический рычаг с приводом от шприца и электромагнитным захватом.
- «Как сделать гидравлических боевых роботов», Лэнс Акияма. Один из проектов, описанных в книге Лэнса Rubber Band Engineer.
- Как работает ножничный гидравлический подъемник от DRHydraulics. Это довольно наглядная анимация, показывающая, как гидравлический насос заставляет лифт подниматься и опускаться. Было бы лучше, если бы мы могли видеть разрез цилиндра и то, как течет жидкость, но вы поняли идею.
Статьи
- Посмотрите, как робот HyQReal тянет самолет. Автор Эван Акерман. IEEE Spectrum, 23 мая 2019 г. Возможно, роботы в основном электромеханические, но гидравлические компоненты становятся все более популярными.
- Робот Disney с приводами воздух-вода демонстрирует «очень плавные» движения Эрико Гуиццо. IEEE Spectrum, 1 сентября 2016 г. Изучение робота, в котором используется сочетание гидравлики и пневматики.
- Hydraulics может включать полноэкранный дисплей Брайля от Прии Ганапати.Wired, 30 марта 2010 г. Новый гидравлический механизм может сделать дисплеи Брайля дешевле, быстрее и доступнее.
- Давление в гидравлике: Инженер, 24 февраля 2003 г. Почему гидравлика до сих пор остается таким популярным способом питания машин, когда электрическая энергия, на первый взгляд, проще и легче реализовать?
КНИГА 2, ГЛАВА 8: Направляющие регулирующие клапаны
Направленные регулирующие клапаны
Регулирующие клапаны выполняют всего три функции:
- остановить поток жидкости
- разрешить поток жидкости, а
- изменить направление потока жидкости.
Эти три функции обычно работают вместе.
Простейшим направленным регулирующим клапаном является 2-ходовой клапан. 2-ходовой клапан останавливает поток или разрешает поток. Водопроводный кран — хороший пример двухходового клапана. Водопроводный кран позволяет или останавливает поток ручным управлением.
Цилиндр одностороннего действия требует подачи и выпуска от порта для работы. Для этого требуется 3-ходовой клапан. Трехходовой клапан обеспечивает поток жидкости к приводу в одном положении и выпускает жидкость из него в другом положении.Некоторые 3-ходовые клапаны имеют третье положение, которое блокирует поток во всех портах.
Для привода двустороннего действия требуется 4-ходовой клапан. 4-ходовой клапан создает давление и выпускает воздух из двух отверстий независимо друг от друга. 3-позиционный 4-ходовой клапан останавливает привод или позволяет ему плавать. 4-ходовой клапан является распространенным типом гидрораспределителя как для воздушного, так и для гидравлического контуров. 3-х позиционный 4-х ходовой клапан чаще встречается в гидравлических контурах.
5-ходовой клапан чаще всего встречается в воздушных контурах.5-ходовой клапан выполняет ту же функцию, что и 4-ходовой клапан. Единственное отличие — дополнительный бак или выхлопное отверстие. (Некоторые поставщики называют свои 5-ходовые клапаны «5-ходовыми 4-ходовыми».) Все золотниковые клапаны имеют пять отверстий, но гидравлические клапаны имеют внутренне соединенные выпускные отверстия, идущие к общему выпускному отверстию. Поскольку масло должно возвращаться в резервуар, это удобно подключать двойные порты бака к одному возвратному отверстию. Для воздушных клапанов резервуаром является атмосфера, поэтому выпускной трубопровод обычно не имеет значения. Использование двух выпускных отверстий делает клапан меньше и дешевле.Как будет объяснено позже, двойные выхлопы, используемые для глушителей с регулировкой скорости или в качестве входов с двойным давлением, делают эту конфигурацию универсальной.
Ниже приведены схематические обозначения для обычно используемых гидрораспределителей.
2-ходовые гидрораспределители
Двухходовой распределитель имеет два порта, обычно называемые входным и выходным . Когда впускной канал заблокирован в состоянии покоя, как показано на рисунке 8-1, это называется «нормально закрытым» (NC).Коробка в состоянии покоя или нормальное состояние — это коробка, к которой и от нее идут линии потока.
Коробки или корпуса представляют положения клапана. На рис. 8-1 активное поле показывает заблокированные порты или закрытое состояние, а верхнее поле показывает путь потока. Когда оператор перемещает клапан, это то же самое, что сдвигать верхнюю коробку вниз, чтобы занять место нижней коробки. В смещенном состоянии поток идет от входа к выходу . Отпускание ладонной кнопки на Рисунке 8-1 позволяет пружине клапана вернуться в нормальное состояние остановки потока.Двухходовой клапан образует продувочное устройство или вращает гидравлический двигатель в одном направлении. Сам по себе двухходовой клапан не может работать даже с цилиндром одностороннего действия.
На Рис. 8-2 показан «нормально открытый» (НО) двухходовой распределитель. Подача напряжения на соленоид этого клапана останавливает поток жидкости.
Клапанные приводы бывают разных типов. На рис. 8-3 показан привод соленоидного пилота, использующий управляемое соленоидом давление из впускного отверстия для перемещения золотника рабочего направления.На рис. 8-4 показан кулачковый клапан. Движущийся элемент машины обычно управляет клапаном этого типа.
3-ходовые гидрораспределители
Трехходовой клапан имеет три рабочих порта. Эти порты: впускной , выпуск и выпуск (или бак ). Трехходовой клапан не только подает жидкость к приводу, но также позволяет жидкости возвращаться из него. На рисунках с 8-5 по 8-10 показаны схематические символы 3-ходовых гидрораспределителей.
Рисунок 8-9. Электромагнитный трехходовой селекторный клапан с пилотным управлением.
На Рисунке 8-6 изображен трехходовой трехпозиционный клапан с блокировкой всех портов. Клапан этого типа, соединенный с цилиндром одностороннего действия, с возвратной силой или пружиной, может выдвигаться, втягиваться или останавливаться в любом месте хода.
Некоторые 3-ходовые клапаны выбирают пути потока жидкости, как показано на Рисунке 8-9. Для этой операции используйте золотниковый клапан. Другое условие потока — это переключающий клапан , показанный на Рисунке 8-10.Переключающий клапан направляет жидкость в любой из двух путей.
Рисунок 8-10. 3-ходовой переключающий клапан с ручным управлением 4-ходовые гидрораспределители
На рисунках с 8-11 по 8-15 показаны различные конфигурации 4-ходовых гидрораспределителей. Они варьируются от простого двухпозиционного одинарного соленоидного клапана прямого действия с пружинным возвратом, показанного на Рисунке 8-11, до более сложного трехпозиционного двойного соленоида с пилотным управлением, с пружинным центрированием и внешним пилотным питанием. внешний дренажный клапан, показанный на Рисунке 8-15.
Рисунок 8-11. 4-ходовой, 2-позиционный пружинный возврат с прямым электромагнитным управлением.
Линии в ячейках показывают поток к клапану и от него, а линии со стрелками в ячейках показывают направление потока. Количество прямоугольников показывает, сколько позиций имеет клапан.
На Рисунке 8-12 показан одиночный соленоидный клапан с пружинным центрированием. Этот клапан имеет третье положение, но для него нет оператора. Используйте этот пружинно-центрированный одиночный электромагнитный клапан в цепях управления для специальных функций. Раньше, чтобы получить эту конфигурацию, вам нужно было подключить только один соленоид двух-соленоидного трехпозиционного клапана.
Рисунок 8-12. 4-ходовой, 2-позиционный соленоид с прямым приводом от пружины, центрируемый.
На рис. 8-13 показана еще одна необычная 4-канальная конфигурация. Этот клапан переключается с привода, движущегося по пути потока, в центральное состояние для некоторых специальных контуров.
5-ходовые гидрораспределители
На рисунках с 8-16 по 8-20 показаны символы некоторых 5-ходовых воздушных клапанов. Большинство золотниковых воздушных клапанов имеют 5-ходовую конфигурацию. Поскольку воздух обычно выходит в атмосферу, дополнительное выпускное отверстие не проблема.
Рисунок 8-13. 4-ходовой, 2-позиционный пружинный возврат с прямым электромагнитным управлением.
Многие клапаны используют два выпускных отверстия для глушителей регулировки скорости. Глушители не только делают выхлоп тише, но и дросселируют выхлоп, который, в свою очередь, регулирует скорость цилиндра в замкнутой цепи.
В другом примере, приведенном ниже в этом разделе, показаны двойные выпускные отверстия, к которым подключены трубы с разным давлением для экономии воздуха. Также используйте трубопровод с двойным всасыванием, чтобы воздушный цилиндр работал быстро и плавно. (См. Рисунки с 8-48 по 8-55.)
Рисунок 8-14. 4-ходовой, 2-позиционный соленоид, с пилотным управлением, фиксированный, линейный.
Большинство пневмоцилиндров перемещаются из одного крайнего положения в другое. Для этой операции достаточно двухпозиционного одинарного соленоидного клапана с пружинным возвратом. Около 90% воздушных контуров используют этот тип клапана. Чтобы остановить воздушный цилиндр в середине хода, используйте 3-позиционный клапан, показанный на рис. , рисунки с 8-19 по 8-21.
Рисунок 8-17. Установленный на трубопроводе, соленоидный, пилотный, 2-позиционный, 5-ходовой клапан с пружинным возвратом.
Трудно — если не невозможно — точно остановить воздушный цилиндр в любом месте, кроме как в конце хода.Когда цилиндр движется медленно, может быть возможно повторяемое положение среднего хода плюс или минус дюйм. Проблема в том, что если нагрузка на цилиндр изменится или есть небольшая утечка в трубопроводе или уплотнениях, он не будет удерживать положение после остановки.
Рисунок 8-18. 2-позиционный 5-ходовой клапан с пружинным возвратом, линейный, с ручным рычагом.
Трехпозиционные клапаны бывают нескольких типов, в том числе: порты цилиндра открываются, как показано на Рисунке 8-19; все порты заблокированы, как показано на Рисунке 8-20; и давление в портах цилиндра, как показано на Рисунке 8-21.
Использование 2-ходовых клапанов
На рисунках 8-22, 8-23 и 8-24 показаны некоторые варианты использования двухходовых гидрораспределителей.
Рисунок 8-19. 5-ходовой, 3-позиционный, соленоид с пружинным центрированием, пилотный, с открытым центром портов цилиндра, установлен на линии.
Одним из вариантов использования является функция продувки, показанная на рис. 8-22 . 2-ходовой клапан в Рисунок 8-23 управляет однонаправленным двигателем с открытым выпуском в корпусе двигателя. Схема на рис. 8-24 хорошо подходит для электрической разгрузки насоса для облегчения запуска и / или снижения тепловыделения
Рисунок 8-20.5-ходовой, 3-позиционный, соленоид с пружинным центрированием, пилотный, все отверстия заблокированы в центральном состоянии, установлен на линии.
На рис. 8-25 показан цилиндр одностороннего действия с возвратной массой, приводимый в действие двухходовым, в состоянии в состоянии покоя . На первый взгляд кажется, что эта схема может работать. При переключении 2-ходового клапана или , выдвигающемся на , жидкость направляется к концу крышки цилиндра, и он расширяется. Проблема возникает, когда 2-ходовой возвращается в нормальное состояние в конце цикла .Вместо того, чтобы втягиваться цилиндр после обесточивания соленоида, он остается в выдвинутом положении. Цилиндр вернется только в том случае, если клапан, уплотнения цилиндра или трубные соединения протекают.
Рисунок 8-21. 5-ходовой, 3-позиционный, пружинно-центрированное давление на каналы цилиндра, выхлопные газы заблокированы в центральном состоянии, соленоид-пилот, установлен на трубопроводе.
показывает схему, которая управляет цилиндром одностороннего действия с 2-ходовыми клапанами. Один (NO) и один (NC) 2-ходовой распределитель, подключенный к порту цилиндра на торце крышки, позволяет жидкости входить и выходить из него.При одновременном задействовании обоих операторов цилиндр выдвигается. В зависимости от размера клапана и потока воздуха на входе цилиндр может не выдвигаться, если просто подать питание на клапан (NC). Если цилиндр выдвигается только с одним задействованным клапаном, это будет медленно и приведет к потере большого количества воздуха.
Рисунок 8-22. Обдув.
Рисунок 8-23. Запуск однонаправленного жидкостного двигателя.
Рисунок 8-24. Разгрузка насоса.
Рисунок 8-25. Использование одного 2-ходового клапана для управления цилиндром одностороннего действия.
Рисунок 8-26. Управление цилиндром одностороннего действия с двумя 2-ходовыми клапанами.
На Рис. 8-27 показаны четыре двухходовых клапана, соединенных трубопроводами для управления цилиндром двустороннего действия. Пара 2-ходовых клапанов на каждом отверстии цилиндра обеспечивает рабочий ход в обоих направлениях. Подайте питание и обесточьте все четыре клапана одновременно, чтобы включить цилиндр и не тратить жидкость впустую.
Четыре двухходовых клапана могут показаться сложным и дорогим способом управления цилиндром.Однако в последние несколько лет вставные картриджные клапаны тарельчатого типа приводили в действие гидроцилиндры большого диаметра таким образом. См. Главу 4, посвященную картриджным клапанам, для ознакомления с преимуществами этих клапанов в контурах с высоким расходом.
Рисунок 8-27. Управление цилиндром одностороннего действия с четырьмя 2-ходовыми клапанами.
Использование 3-ходовых клапанов
На Рис. 8-28 показан 3-ходовой клапан, используемый для выбора Пар. 1 или Пар. 2 . Используйте в контуре этого типа золотниковый золотниковый распределитель.Золотниковые клапаны обычно без сбоев принимают давление в любом порте. Клапаны тарельчатой конструкции обычно принимают давление только на впускном отверстии.
Поскольку в примере с селекторным клапаном используется соленоидный пилотный клапан, важно определить, какой порт имеет более высокое давление. Большинство электромагнитных клапанов с пилотным управлением забирают воздух из обычного впускного отверстия для управления пилотной секцией. Если оба давления на входе слишком низки для срабатывания клапана, подключите внешнее питание пилота от главной воздушной системы.
Когда необходимо заблокировать одну из двух цепей во время работы другой, подключение, показанное на Рисунке 8-29, работает нормально.
Пока в первый контур поступает жидкость, работать с вторым контуром проблем нет. Здесь также используйте золотниковый клапан. Тарельчатые клапаны обычно принимают давление только на один порт.
Рисунок 8-28. Селектор давления.
Наиболее распространенный ограничительный клапан представляет собой миниатюрный трехходовой клапан, подобный показанному на Рисунке 8-30. Этот конкретный пример — (NC). Контакт с членом машины открывает его. За исключением цепей управления дренажного типа, для ограничительного клапана требуется как минимум 3-ходовая функция.
Как только этот нормально закрытый клапан сдвигается, он передает сигнал для продолжения цикла.В нормальном состоянии жидкость в контуре управления выходит через выхлопное отверстие.
Рисунок 8-29. Переключатель жидкости.
На Рисунке 8-31 показан цилиндр одностороннего действия с трехходовым клапаном, приводящим его в действие. Подача энергии на соленоид или его выдвижение позволяет потоку перемещаться в порт цилиндра, и он расширяется. Выключение соленоида или его втягивание позволяет клапану перейти в исходное положение, и цилиндр втягивается под воздействием внешних сил.
Выпускное отверстие 3-ходового клапана позволяет жидкости из цилиндра выходить в атмосферу.
Рисунок 8-30. Ограничительный клапан NC.
Рисунок 8-31. Управление цилиндром одностороннего действия с одним 3-ходовым клапаном.
Для работы цилиндра двустороннего действия с 3-ходовыми клапанами используйте соединение, показанное на Рисунке 8-32. С трехходовым направленным клапаном на обоих портах ходы выдвижения и втягивания цилиндра двойного действия имеют силу.
Некоторые производители используют сдвоенные трехходовые клапаны для экономии воздуха. Трубопровод между клапаном и портами цилиндра выбрасывает воздух.Каждый раз, когда цилиндр совершает цикл, трубопроводы к обоим портам наполняются и выпускаются. Чем длиннее трубопроводы от клапана к цилиндру, тем больше потери воздуха. Установка воздушных клапанов непосредственно на порты цилиндров сводит к минимуму потери воздуха. Более высокая частота цикла приводит к большей экономии.
Рисунок 8-32. Управление цилиндром двустороннего действия с двумя 3-ходовыми клапанами.
Понижение давления в отверстии на конце штока — еще один способ экономии воздуха благодаря двойным 3-ходовым клапанам, установленным непосредственно на отверстии цилиндра. Как обсуждалось ранее, снижение давления воздуха в цилиндре требует меньше мощности компрессора.Обычно сила, необходимая для возврата цилиндра, минимальна, поэтому более низкое давление в отверстии для штока позволяет экономить энергию.
Глушители с регулировкой скорости в трехходовых клапанах прямого монтажа независимо регулируют скорость выдвижения и втягивания цилиндра. Это экономит время на прокладку трубопроводов и стоимость регулирующих клапанов.
На Рисунке 8-33 показан заправочный контур пневмоцилиндра . Если точность и повторяемость не важны, можно выполнить заправку воздушного контура. Повторяемость толчковой схемы обычно не превышает ± 1 дюйм.если скорость движения низкая. Более высокая скорость передвижения снижает управляемость.
Рисунок 8-33. Инерционный контур для цилиндра двустороннего действия с двумя 3-ходовыми пружинно-центрированными клапанами.
Трехходовой клапан может заменить двухходовой клапан. Чтобы дублировать 2-ходовую функцию, заблокируйте выпускной порт 3-ходового клапана. Блокировка выхлопа 3-ходового обычно не требуется для большинства 2-ходовых приложений. Использование 3-ходовых клапанов вместо 2-ходовых снижает затраты на складские запасы и экономит время.
Использование 4-ходовых клапанов
См. Рисунки с 8-34 по 8-36, где показаны некоторые необычные варианты использования 4-ходовых регулирующих клапанов.Использование элементов управления направлением другими способами, кроме обычных, является обычной практикой. Убедитесь, что клапан выдерживает давление во всех портах, прежде чем применять его к некоторым из этих контуров. Если клапан с пилотным управлением соленоидом, откуда поступает питание пилота? Также проконсультируйтесь с производителем, если есть какие-либо сомнения относительно работы клапана в необычном применении.
Чтобы сделать двухходовой клапан высокого расхода из четырехходового клапана, попробуйте схему, показанную на Рисунке 8-34. Подключите поток насоса к обычному входному порту и его выходному порту, затем подключите другой выходной порт к обычному порту резервуара и подключите к системе.В состоянии покоя поток через клапан отсутствует.
Рисунок 8-34. Двойная пропускная способность.
Когда клапан переключается, поток от P до B в систему и от A до T в систему. Клапан, рассчитанный на 10 галлонов в минуту, теперь подходит для 20 галлонов в минуту с небольшим увеличением падения давления или без него. Убедитесь, что клапан способен создавать противодавление в отверстии резервуара.
Такое расположение трубопроводов удобно в гидравлических контурах, поскольку большинство производителей не предлагают 2-ходовые клапаны.Кроме того, многие двухходовые гидравлические клапаны останавливают поток только в одном направлении, поэтому они бесполезны в двунаправленной линии потока.
Для постоянного цикла регенерации подключите 4-ходовой трубопровод, как показано на Рисунке 8-35. Прочтите главу 17 для полного объяснения этой схемы регенерации.
Рисунок 8-35. Полная регенерация.
На рисунке 8-36 показано, как создать давление на обоих концах цилиндра, когда 4-ходовой клапан находится в центре. Когда цилиндр втягивается, чтобы поднять другую деталь, ему часто приходится заходить слишком далеко, чтобы убедиться, что он находится позади детали.Низкое противодавление от обратного клапана заставляет цилиндр продвигаться вперед на малой мощности, поэтому цилиндр контактирует с деталью до начала следующего цикла.
На Рисунке 8-37 показано нормальное подключение 4-ходового распределителя. Цилиндру двойного действия требуется только один 4-ходовой распределитель, чтобы выдвигать и втягивать его. Три последовательности показывают работу 4-ходового клапана.
Рисунок 8-36. Цилиндр низкого давления выдвигается.
Добавьте регуляторы потока или уравновешивающий клапан, чтобы замкнуть контур, когда шток находится под нагрузкой.Обратите внимание, что соединение порта — A, для крышки и B, для стержня.
Последовательное использование этой схемы соединения портов упрощает подключение цепи, поскольку электрик знает, что соленоид A выдвигает цилиндр, а соленоид B втягивает его. Специалисты по техническому обслуживанию всегда знают, какое ручное управление нужно задействовать во время поиска неисправностей или настройки.
Рисунок 8-37. Управление цилиндром двустороннего действия с одним 4-ходовым клапаном.
Большинство гидрораспределителей имеют 3 положения.Условия в центре клапана выполняют разные функции по отношению к приводу и насосу.
Рисунок 8-38. Инерционный контур с ненагруженным насосом, плавающим цилиндром.
Направленный клапан с открытым центром со всеми портами разгружает насос и позволяет приводу перемещаться, как показано на Рисунке 8-38. Это уменьшает накопление тепла и позволяет противодействующим силам перемещать цилиндр без создания противодавления.
Чтобы заблокировать цилиндр при разгрузке насоса, используйте центральное положение, показанное на Рисунке 8-39.Большинство гидравлических клапанов представляют собой золотник с металлической посадкой, поэтому не зависите от неподвижного положения цилиндра с тандемным центральным золотником. Если на цилиндр действуют внешние силы, он будет ползать при центрировании клапана.
Рисунок 8-39. Инерционный контур с ненагруженным насосом и заблокированным цилиндром.
Если цилиндр должен плавать, блокируя поток насоса, используйте центральное положение, показанное на Рисунке 8-40.
На рисунках с 8-41 по 8-46 показано несколько часто используемых состояний центра 4-ходового гидравлического клапана.На первые четыре приходится около 90% всех используемых 3-позиционных гидравлических клапанов.
Центральное положение 3-позиционного клапана может разгрузить насос, открыть порты привода в бак для свободного движения, заблокировать порты привода, чтобы остановить движение, дать регенерацию или работать в комбинации этих функций.
На Рис. 8-41 показан клапан при условии, что все отверстия открыты по центру. Состояние открытого центра разгружает насос и позволяет приводу двигаться по инерции до остановки или плавучести. В кроссовере или переходном состоянии он вызывает очень небольшой шок.Насосы с фиксированным объемом используют это центральное условие.
Рисунок 8-40. Инерционный контур при заблокированном насосе, плавающий цилиндр.
Клапан центрального состояния с блокировкой всех отверстий, показанный на Рисунке 8-42, по-видимому, блокирует отверстия цилиндра. В реальных условиях утечка масла через посадочные площадки золотника создает давление в портах A, и B, , что может привести к расширению цилиндра с одним штоком. Это не лучший выбор для остановки и удержания цилиндра, как, кажется, указывает символ. Чтобы принудительно остановить цилиндр, используйте клапан с портами цилиндра, прикрепленными к резервуару, и обратные клапаны с пилотным управлением в линии или линиях цилиндра.(См. Раздел «Обратные клапаны как гидрораспределители».)
Рисунок 8-41. Все порты открыты, центральное состояние.
Поплавковый центральный клапан на Рисунке 8-43 позволяет приводу плавно перемещаться, блокируя поток насоса. Производительность насоса доступна для других клапанов и приводов с этим центральным состоянием. Он также хорошо работает для контуров запирания обратных клапанов с пилотным управлением или с уравновешивающими клапанами.
Рисунок 8-42. Порты заблокированы, центральное состояние.
Это нормальное центральное состояние электромагнитного клапана на соленоидном управляющем клапане с пружинным центрированием.
Рисунок 8-43. Состояние центра поплавка.
На Рисунке 8-44 показан сдвоенный центральный клапан. Тандемный центральный клапан позволяет насосу разгружаться, блокируя порты цилиндра. Цилиндр остается неподвижным, если внешняя сила не пытается его сдвинуть. Любой золотниковый клапан с металлической посадкой никогда не перекрывает поток полностью. Под действием внешних сил на цилиндр он может медленно ползать, если клапан находится в центре. Это еще одно распространенное центральное условие для насосов фиксированного объема.
Рисунок 8-44. Состояние тандемного центра.
Центральное положение клапана регенерации на Рисунке 8-45 создает давление и соединяет оба порта цилиндра друг с другом. При подаче масла под давлением к обоим портам цилиндра и друг к другу оно регенерируется вперед, когда клапан центрируется. Этот клапан является пилотным оператором для гидроцентрируемых распределителей или нормально закрытых скользящих клапанов в картриджных клапанах.
Рисунок 8-45. Состояние центра регенерации.
Чтобы разгрузить насос, блокируя движение цилиндра, используйте клапан, показанный на Рисунке 8-46.Однако золотник с металлической посадкой не блокирует цилиндр при наличии внешних сил.
На рисунках с 8-47 по 8-48 показано то, что обычно называют «переходным» или «переходным» состоянием катушки. В некоторых приложениях с приводами важно знать, каковы условия потока через порт клапана при его смещении. Как показано на этих рисунках, пунктирные прямоугольники показывают состояние кроссовера. Обычно дискуссии об условиях кроссовера охватывают «открытые» или «закрытые» типы; в действительности, условие кроссовера может быть их комбинацией и может отличаться по обе стороны от центра.
Рисунок 8-46. Насос разгружен, канал B заблокирован, центральное состояние.
Открытый переходник останавливает удар при перемещении золотника, в то время как закрытый переходник сокращает рабочий ход привода. Если условие кроссовера важно для работы схемы или машины, покажите его на схематическом чертеже.
На рис. 8-49 показано состояние блокировки всех отверстий в центре, соленоидный пилотный клапан, в виде упрощенного и полного символа. На большинстве схем достаточно упрощенного символа. Косая черта соленоида и энергетический треугольник на панели оператора показывают, что клапан имеет электромагнитный клапан, управляющий пилотным клапаном.
Рисунок 8-47. Открытый кроссовер или переходное состояние.
Рисунок 8-48. Закрытый кроссовер или переходное состояние.
В прямоугольниках показаны функции главного или рабочего золотника, который управляет приводом. На клапанах с другим добавленным оборудованием (здесь пилотные дроссели и ограничители хода) лучше отображать полный символ. Оба символа на рис. 8-49 обозначают один и тот же клапан. Полный символ дает больше информации о функциях клапана и помогает при поиске и устранении неисправностей и замене клапана.
Рисунок 8-49. Электромагнитный пилотный клапан с пилотными дросселями и ограничителями хода. Внутреннее питание пилота (X) и внешний дренаж (Y).
5-ходовой селекторный клапан и челночный клапан на Рисунке 8-50 работают там, где трехходовой селектор не может. Трехходовой селектор работает нормально при переходе от низкого давления к высокому, но если воздух не используется для расширения, практически невозможно перейти от высокого давления к низкому.
Расположение 5-ходового и челночного клапана обеспечивает выпускной канал для воздуха высокого давления при переключении на низкое давление.После выпуска воздуха до более низкого давления, PR.1 , челнок сдвигается, и в системе сохраняется низкое давление.
Рисунок 8-50. Селектор давления.
На Рисунке 8-51 показана пара 5-ходовых клапанов, соединенных трубами, которые действуют как трехходовой выключатель света. При активации любой из клапанов перемещает цилиндр в противоположное положение.
На Рисунке 8-52 показано нормальное подключение 5-ходового клапана. Обычно входящий воздух поступает в центральный порт на стороне с тремя портами. Многие производители воздушных клапанов называют этот порт №1.В состоянии покоя воздух течет от порта №1 к каналу №4 и далее к штоку цилиндра, а канал №2 выпускает воздух из конца крышки цилиндра через канал №3.
Рисунок 8-51. Управление приводом из двух мест.
После перемещения клапана или его расширения воздух течет из порта №1 через порт №2 к торцу крышки цилиндра. Поток от конца штока цилиндра поступает в порт №4 и выходит через канал №5. Выхлопные отверстия часто имеют глушители, регулирующие скорость, для уменьшения шума и регулирования количества выхлопного потока.Глушители с регулировкой скорости позволяют индивидуально регулировать скорость в каждом направлении движения.
Выключение соленоида или его втягивание позволяет пружине клапана вернуться в нормальное состояние, в результате чего цилиндр втягивается.
На Рисунке 8-53 5-ходовой двигатель имеет двойное впускное отверстие вместо двойного выпуска. Для этого подключения используйте золотниковый клапан, так как он без сбоев принимает давление в любом порте.
В большинстве контуров подачи воздуха цилиндр практически не работает с ходом втягивания.При низком давлении на штоковой стороне цилиндра используется меньше воздуха компрессора, не влияя на работу. Эта экономия воздуха приводит к снижению эксплуатационных расходов и оставляет больше воздуха для работы других приводов. Установите регуляторы потока в трубопроводы к портам цилиндров для индивидуального регулирования скорости.
Рисунок 8-52. Управление цилиндром двустороннего действия с одним 5-ходовым клапаном.
Если клапан управляется соленоидом с пилотным управлением, питание на пилотный клапан обычно поступает из порта №1. Это означает, что для входа с двойным давлением пилотное питание должно поступать из другого источника.В схеме на Рисунке 8-53 пилотная линия от давления в системе идет непосредственно к пилотному клапану. Давление в системе поступает во внешний порт подачи пилота, и заглушка закрывает внутренний порт управления. Изменить пилотную линию на месте с помощью каталога поставщика довольно просто.
Рисунок 8-53. Схема экономии воздуха с использованием 5-ходового клапана.
На рисунках с 8-54 по 8-61 показана еще одна причина использования впускных патрубков с двойным давлением. Они изображают движение воздушного цилиндра при обычном подключении. Цилиндр останавливается перед подъемом и быстро опускается, когда начинает втягиваться.
5-ходовые клапаны двойного давления для срабатывания пневмоцилиндра
Вертикальный воздушный цилиндр восходящего действия при большой нагрузке дает вялую и резкую работу при использовании обычных клапанов. На рис. 8-54 показан обычный 5-ходовой клапан, подсоединенный к цилиндру, поднимающий нагрузку в 600 фунтов. На этом рисунке показаны вес, площади крышки и головки, а также давление в обоих портах цилиндра.
Рисунок 8-54. Цилиндр в состоянии покоя.
При переключении гидрораспределителя, как показано на Рисунке 8-55, возникает пауза перед выдвижением цилиндра.Отношение веса к силе цилиндра и скорость перемещения цилиндра определяют продолжительность паузы. Чем тяжелее вес и чем ниже скорость цилиндра, тем длиннее пауза. В крайнем случае задержка может составлять от трех до четырех секунд.
Пауза возникает из-за того, что вес толкает вниз вместе с силой давления воздуха на шток цилиндра. В тот момент, когда клапан перемещается, чтобы выдвинуть цилиндр, опускающие силы составляют до 1240 фунтов, в то время как поднимающее усилие составляет всего 800 фунтов. Пока опускающие силы превышают поднимающую силу, цилиндр не будет двигаться.Чем медленнее выходит воздух, тем больше времени требуется для получения достаточного перепада давления на поршне цилиндра для его перемещения. Скорость выходящего воздуха определяет, насколько быстро цилиндр движется после запуска.
Рисунок 8-55. Клапан просто сдвинулся, цилиндр остановился.
Рисунок 8-56. Цилиндр начинает движение после падения давления на конце штока.
Когда давление в головной части цилиндра достигает примерно 15 фунтов на квадратный дюйм, как показано на Рисунке 8-56, цилиндр начинает двигаться.Он движется вверх плавно и устойчиво, пока нагрузка остается постоянной.
Когда клапан смещается для втягивания полностью выдвинутого цилиндра, возникает другая проблема. На рис. 8-57 показан покоящийся цилиндр вверху. Поднимающее усилие составляет 800 фунтов от давления воздуха на конце крышки, а прижимное усилие составляет 600 фунтов от веса.
Рисунок 8-57. Цилиндр перемещается до конца хода.
Рисунок 8-58. Клапан перешел на втягивающий цилиндр, который быстро опускается.
Когда гидрораспределитель возвращается в нормальное состояние, как показано на Рисунке 8-58, прижимная сила быстро изменяется до 1240 фунтов.Теперь нагрузка быстро падает до тех пор, пока давление воздуха в крышке не упадет примерно до 120 фунтов на квадратный дюйм. Чтобы замедлить быстрое втягивание цилиндра, требуется около 120 фунтов на квадратный дюйм на площади 10 дюймов 2.
Обе паузы, возникающие при выдвижении и втягивании, устраняются за счет использования функции двойного впуска 5-ходового клапана.
При двойном впускном контуре давления, показанном на Рисунке 8-59, отверстие на конце крышки имеет давление 80 фунтов на квадратный дюйм, а отверстие на конце штока — всего 15 фунтов на квадратный дюйм. Это устанавливает перепад давления на поршне перед переключением клапана.
Рисунок 8-59. Клапан двойного давления в состоянии покоя.
Рисунок 8-60. Клапан переключается, цилиндр начинает быстро двигаться.
Когда клапан смещается, как показано на рисунке 8-60, прижимная сила составляет 720 фунтов, а подъемная сила — 800 фунтов. Цилиндр начинает двигаться почти сразу и продолжает плавно двигаться до конца.
На Рисунке 8-61 клапан смещается, а цилиндр втягивается. При установке регулятора на головной части на 15 фунтов на квадратный дюйм прижимная сила от давления воздуха и нагрузки почти компенсируется восходящей силой.Груз опускается плавно и безопасно, без выпадов и подпрыгиваний, так же быстро, как выходит воздух из крышки. На рисунках с 8-59 по 8-61 цилиндр движется плавно и быстро в обоих направлениях с помощью клапана двойного давления.
Рисунок 8-61. Клапан переходит в нормальное состояние, цилиндр движется без рывков.
Обратные клапаны как гидрораспределители
Обычно обратный клапан не считается направленным регулирующим клапаном, но он останавливает поток в одном направлении и позволяет потоку в противоположном направлении.Это два из трех действий, которые может выполнять гидрораспределитель. Встроенный обратный клапан предотвращает любую возможность обратного потока и полезен и / или необходим во многих областях применения. На Рис. 8-62 показан символ простого обратного клапана.
Еще одно применение обратного клапана — это функция сброса, которую можно увидеть на Рисунке 8-63. Теплообменники, фильтры и перекачивающие насосы низкого давления часто нуждаются в перепускном или предохранительном клапане низкого давления. Обратный клапан с пружиной 25-125 фунтов на квадратный дюйм представляет собой недорогой, нерегулируемый путь потока для избыточной жидкости.Защищает устройства низкого давления в случае блокировки протока. Направляющие клапаны с пилотным управлением обычно используют обратный клапан в резервуаре или линии насоса для поддержания управляющего давления не менее 50-75 фунтов на квадратный дюйм во время разгрузки насоса. Некоторые производители делают обратный клапан с регулируемой пружиной для давления до 200 фунтов на квадратный дюйм или более.
Рисунок 8-62. Простой обратный клапан. Рисунок 8-63. Обратный клапан противодавления
В некоторых обратных клапанах есть съемная резьбовая пробка, в которой можно просверлить отверстия для обеспечения контролируемого потока в обратном направлении.Символ на рис. 8-64 показывает, как это представить в виде символа. Обычно просверленный обратный клапан используется в качестве фиксированного, защищенного от взлома клапана регулирования потока. Жидкость свободно течет в одном направлении, но имеет контролируемый поток в противоположном направлении. Единственный способ изменить расход — это изменить размер отверстия. Этот регулирующий клапан не имеет компенсации давления.
На многих схемах в этом руководстве показаны стандартные обратные клапаны. Контуры насосов Hi-L, обратный обходной байпас для регуляторов потока, клапаны последовательности или уравновешивающие клапаны, а также изоляция нескольких насосов, и это лишь некоторые из них.На Рис. 8-65 показаны некоторые другие применения обратных клапанов.
Рисунок 8-64. Обратный клапан с диафрагмой.
Когда резервуар находится выше насоса или направляющих клапанов, всегда устанавливайте какие-либо средства для перекрытия выкидных линий для обслуживания. Если клапаны не заблокированы, при замене гидравлического компонента необходимо слить воду из бака. Запорные клапаны — единственный вариант для линий, которые выходят из резервуара к насосу или другому устройству, использующему жидкость. Во избежание работы насоса всухую, его отключение должно иметь концевой выключатель, указывающий на полное открытие, прежде чем электрическая цепь управления позволит насосу запустить.Однако все возвратные линии могут иметь обратный клапан с трубопроводом, как показано на Рисунке 8-65. Обратный клапан с пружиной низкого давления, называемый запорным обратным клапаном резервуара, на каждой обратной линии обеспечивает свободный поток в резервуар, блокируя поток из него. Обратный клапан в линиях резервуара обеспечивает автоматическое отключение и исключает вероятность продувки фильтра или поломки клапана при запуске.
Рисунок 8-65. Обратные клапаны в различных схемах применения.
Обратный клапан противодавления в линии насоса поддерживает минимальное управляющее давление во время разгрузки насоса.Здесь он находится в линии подачи на гидрораспределители, в других случаях — в линии резервуара. В любом случае он обеспечивает управляющее давление для переключения распределителей при запуске нового цикла.
Схема на Рисунке 8-65 также показывает антикавитационный обратный клапан для цилиндра с предохранительным клапаном для защиты его от избыточного давления. Внешняя сила может прижать масло, застрявшее в цилиндре, и вызвать повреждение или отказ без предохранительной защиты. Когда внешние силы перемещают цилиндр, жидкость от конца штока идет к концу крышки, но ее недостаточно для ее заполнения.Если пустота в крышке цилиндра не проблема, то антикавитационный обратный клапан не нужен. Однако эта пустота может вызвать неустойчивую работу при повторном цикле цилиндра, поэтому установите антикавитационный обратный клапан. Антикавитационный обратный клапан имеет пружину очень низкого давления, для открытия которой требуется 1–3 фунта на квадратный дюйм, что позволяет маслу в резервуаре заполнить любые вакуумные пустоты, которые могут образоваться. Антикавитационный обратный клапан не работает ни в какой другой части цикла.
Клапаны обратные с пилотным управлением
Есть некоторые контуры, которые требуют принудительного отключения обратного клапана, но в которых также необходим обратный поток.На следующих изображениях показаны символы обратных клапанов с пилотным управлением, допускающих обратный поток. На Рис. 8-66 показан символ стандартного пилотного клапана, открывающего обратный клапан. На Рис. 8-67 показана пилотная проверка с функцией декомпрессии. Символ на Рисунке 8-68 показывает обратный клапан с пилотным управлением с внешним сливом для пилотного поршня. Каждый из этих обратных клапанов с пилотным управлением допускает обратный поток, но два из них имеют дополнительные функции для преодоления определенных условий контура.
Рисунок 8-66. Обратный клапан с пилотным управлением.
Рисунок 8-67. Обратный клапан с пилотным управлением и декомпрессионной тарелкой.
Рисунок 8-68. Обратный клапан с пилотным управлением и внешним сливом.
Чтобы удерживать баллон в неподвижном состоянии, он должен иметь упругие непрерывные герметичные уплотнения, отсутствие утечек в водопроводе и непротекающий клапан.Золотниковые клапаны с металлической посадкой не удерживают цилиндр в течение длительного времени. Как показано на Рис. 8-69, заблокированный центральный клапан может фактически вызвать продвижение цилиндра вперед. Вертикально установленные цилиндры с нагрузками, действующими вниз, всегда проскальзывают при использовании золотникового клапана с металлической посадкой. Гидравлические двигатели всегда имеют внутреннюю утечку, поэтому показанные здесь схемы не будут удерживать их в неподвижном состоянии. На рисунках 8-70, 8-71 и 8-72 показана типичная схема обратного клапана с пилотным управлением, которая предотвращает проскальзывание цилиндра.
Рисунок 8-69.Заблокирован центральный распределитель, цилиндр медленно движется вперед.
Схема на Рисунке 8-70 показывает горизонтально установленный герметичный цилиндр, надежно зафиксированный на месте в любое время в центрах направления. При использовании соленоидного клапана двухпозиционного типа быстро движущийся цилиндр резко останавливается, когда направляющий клапан центрируется.Используйте пропорциональный клапан с таймерами рампы, чтобы замедлить привод и устранить ударные повреждения.
Рисунок 8-70. Контрольный контур с пилотным управлением в состоянии покоя с работающим насосом.
Обратите внимание, что у распределительного клапана есть порты A, и B , открытые для бака в центральном состоянии.Это центральное состояние позволяет падению управляющего давления и закрытию управляемых обратных клапанов. Использование направляющего клапана с заблокированными отверстиями A, и B в центральном положении может удерживать управляемые обратные клапаны открытыми и допускать проскальзывание цилиндра. Если необходимо только удерживать цилиндр от движения в одном направлении, будет достаточно одного обратного клапана с пилотным управлением.
Когда соленоид A1 на распределительном клапане переключается, как показано на Рисунок 8-71, цилиндр выдвигается.Поток насоса к концу крышки цилиндра создает давление в пилотной линии к концу штока управляемого обратного клапана, заставляя его полностью открываться. Обратный клапан с пилотным управлением на линии до конца крышки открывается потоком насоса, как любой обратный клапан. Включение и удержание соленоида гидрораспределителя приводит в движение цилиндр. Обратные клапаны с пилотным управлением надежно блокируют цилиндр, но невидимы для электрической цепи управления.
Рисунок 8-71. Контрольная схема с пилотным управлением при выдвижении цилиндра.
Когда соленоид B на гидрораспределителе переключается, как показано на Рисунок 8-72, цилиндр втягивается. Поток насоса к концу штока цилиндра создает давление в пилотной линии к концу крышки пилотного обратного клапана, заставляя его полностью открываться.Обратный клапан с пилотным управлением на линии до конца штока открывается потоком насоса, как любой обратный клапан. Включение и удержание соленоида гидрораспределителя приводит в движение цилиндр.
Рисунок 8-72. Контрольная цепь с пилотным управлением при втягивании цилиндра.
Ниже описывается, как обратные клапаны с пилотным управлением могут вызывать проблемы в некоторых приложениях.
Клапаны обратные с пилотным управлением
На Рис. 8-73 показано, как использование обратного клапана с пилотным управлением для предотвращения смещения тяжелой плиты может вызвать проблемы.
Рисунок 8-73. Обратный клапан с пилотным управлением при разгоне нагрузки, в состоянии покоя, работающем насосе.
Когда цилиндр находится под нагрузкой, попытка выдвинуть его вызывает давление, индуцированное нагрузкой.В процитированном примере плита весом 15000 фунтов, оттягивающая площадь конца стержня 26,51 квадратного дюйма, дает индуцированное нагрузкой давление 566 фунтов на квадратный дюйм. Это вызванное нагрузкой давление удерживается на тарельчатом клапане в обратном клапане с пилотным управлением, заставляя его закрыться. Пилотный поршень должен иметь достаточное давление, чтобы открыть тарельчатый клапан при давлении 566 фунтов на квадратный дюйм. Пилотный поршень на большинстве обратных клапанов с пилотным управлением имеет площадь, в три-четыре раза превышающую площадь тарелки. Это означает, что для открытия тарельчатого клапана для обратного потока потребуется приблизительно 141–188 фунтов на квадратный дюйм на отверстии цилиндра на конце крышки.
Когда гидрораспределитель переключается, запуск цилиндра вперед, как показано на Рисунке 8-74. , давление в отверстии цилиндра на конце крышки начинает подниматься до 150 фунтов на кв. Дюйм. При давлении около 150 фунтов на квадратный дюйм тарелка в обратном клапане с пилотным управлением открывается и позволяет маслу из штока цилиндра свободно течь в резервуар. Цилиндр немедленно убегает, давление в отверстии крышки цилиндра падает, управляемый обратный клапан закрывается быстро и сильно, и цилиндр резко останавливается. Когда управляемый обратный клапан закрывается, давление в порту цилиндра на конце крышки снова повышается до 150 фунтов на квадратный дюйм, открывая обратный клапан, и процесс начинается снова.Цилиндр с такими условиями падает и останавливается на всем пути к работе, если не встречает достаточного сопротивления, чтобы не дать ему убежать.
Рисунок 8-74. Обратный клапан с пилотным управлением при убегании груза, выдвижении цилиндра, свободном падении.
В этом контуре ударная нагрузка системы очень быстро повреждает трубопроводы, цилиндры и клапаны.
Добавление регулятора потока между цилиндром и обратным клапаном с пилотным управлением — один из способов предотвратить его разбег. Однако ограничение может вызвать нагрев жидкости и медленное переключение, и потребует частой регулировки для поддержания оптимального контроля.
Размещение регулятора расхода после обратного клапана с пилотным управлением вызывает противодавление на его пилотный поршень и может вообще не дать ему открыться. С регулятором потока после обратного клапана с пилотным управлением используйте клапан с внешним сливом.Если на выходе обратного клапана с пилотным управлением имеется большое противодавление, лучше всего использовать клапан с внешним сливом.
Лучше всего управлять показанным здесь цилиндром с помощью уравновешивающего клапана. См. Главу 5 для получения информации о различных типах схем противовеса.
Даже с некоторыми уравновешивающими клапанами золотникового типа цилиндр все равно дрейфует. Добавление дренируемого извне обратного клапана с пилотным управлением между уравновешивающим клапаном и цилиндром удерживает его в неподвижном состоянии. Уравновешивающий клапан удерживает цилиндр от разлета независимо от колебаний потока, а обратный клапан с пилотным управлением удерживает его в неподвижном состоянии при остановке.
Рисунок 8-75. Обратный клапан с пилотным управлением при убегании нагрузки, остановка цилиндра при закрытом P.O. проверять.
Обратный клапан с пилотным управлением и функцией декомпрессии не поможет в этой схеме.
На рисунках 8-76 и 8-78 показана другая возможная проблема, связанная с использованием обратного клапана с пилотным управлением для предотвращения смещения вертикального цилиндра нижнего действия.Цилиндр в этом примере имеет большой вес, который прижимается к штоку. Давление, создаваемое нагрузкой, равное 1508 фунтов на квадратный дюйм плюс 142 фунта на квадратный дюйм от управляющего давления, действует на тарелку в управляемом обратном клапане. Это требует высокого давления в пилотном управлении для открытия обратного клапана с пилотным управлением.
Рисунок 8-76. Обратный клапан с пилотным управлением при убегающей нагрузке, цилиндр только начинает выдвигаться.
Требуется управляющее давление приблизительно 500 фунтов на квадратный дюйм, чтобы открыть управляемый обратный клапан с давлением 1650 фунтов на квадратный дюйм против тарельчатого клапана.По мере того, как давление в пилоте увеличивается для открытия тарельчатого клапана, оно также толкает всю площадь поршня цилиндра. У этого цилиндра площадь со стороны крышки почти вдвое больше, чем со стороны штока, поэтому каждые 100 фунтов на квадратный дюйм на стороне крышки дает около 200 фунтов на квадратный дюйм на стороне штока. По мере того, как управляющее давление достигает необходимого значения 500 фунтов на квадратный дюйм, давление на тарельчатый клапан в управляемом обратном клапане увеличивается в два раза. На рис. 8-77 показано начало этого состояния.
Рисунок 8-77. Обратный клапан с пилотным управлением при убегающей нагрузке, цилиндр все еще пытается выдвинуться.
На Рисунке 8-77 давление на конце штока цилиндра составляет 300 фунтов на квадратный дюйм, что добавляет 570 фунтов на квадратный дюйм к давлению, создаваемому нагрузкой в 1508 фунтов на квадратный дюйм. Дополнительное гидравлическое давление сильнее давит на тарельчатый клапан обратного клапана с пилотным управлением, в результате чего управляющее давление увеличивается еще больше.
По мере увеличения давления в пилоте увеличивается прижимная сила и давление на конце штока. На рис. 8-78 давление на конце штока , составляет 3565 фунтов на кв. Дюйм, поскольку давление в пилотном управлении продолжает расти. В показанной здесь ситуации очевидно, что предохранительный клапан откроется до того, как будет достигнуто давление в пилотном управлении, достаточно высокое для открытия обратного клапана с пилотным управлением. Даже если управляющее давление может стать достаточно высоким, чтобы открыть управляемый обратный клапан, цилиндр убегает и останавливается.
Рисунок 8-78. Обратный клапан с пилотным управлением при убегающей нагрузке, цилиндр все еще пытается выдвинуться.
Обратный клапан с пилотным управлением и декомпрессионной тарелкой в этой ситуации не поможет. Потока из маленькой декомпрессионной тарелки недостаточно для обработки потока в цилиндре. Цилиндр будет выдвигаться с помощью декомпрессионной тарелки, но с очень медленной скоростью.
Лучше всего управлять цилиндром в этом примере с помощью уравновешивающего клапана.См. Главу 5 для получения информации о различных типах схем противовеса.
Даже с некоторыми уравновешивающими клапанами золотникового типа цилиндр все равно дрейфует. Добавление сливаемого извне обратного клапана с пилотным управлением между уравновешивающим клапаном и цилиндром будет удерживать его в неподвижном состоянии. Уравновешивающий клапан удерживает цилиндр от разлета независимо от колебаний потока, а обратный клапан с пилотным управлением удерживает его в неподвижном состоянии при остановке.
Показаны схемы, для которых требуется, чтобы обратный клапан с пилотным управлением имел возможность внешнего дренажа и / или декомпрессии.
Стандартный контур обратного клапана с пилотным управлением обычно имеет минимальное противодавление на выпускном отверстии обратного потока. Если существует ограничение, вызывающее высокое противодавление в выпускном отверстии обратного потока, стандартный клапан может не открыться при подаче управляющего давления. Причина, по которой это может произойти, заключается в том, что пилотный поршень испытывает противодавление от выпускного отверстия обратного потока. Если управляемая тарелка обратного клапана имеет давление, индуцированное нагрузкой, удерживающее ее в закрытом состоянии, плюс противодавление выходного отверстия обратного потока, противодействующее пилотному поршню, то силы управляющего поршня недостаточно для открытия стопорной тарелки.
Если противодавление на выпускном отверстии обратного потока невозможно устранить, укажите обратный клапан с пилотным управлением и внешним сливом. Подключите внешний дренаж к линии низкого давления или линии без давления, идущей к резервуару. В случае внешнего дренажного обратного клапана с пилотным управлением, пилотный поршень обычно открывает обратный тарельчатый клапан, чтобы обеспечить обратный поток.
Рисунок 8-79. Контур обратного клапана с пилотным управлением с функцией внешнего слива в состоянии покоя, насос работает.
На схематическом чертеже на Рис. 8-79 показан цилиндр с пилотными обратными клапанами на каждом канале и регуляторами расхода на выходе за выпускным отверстием обратного потока.Если бы в этом контуре не было обратных клапанов с внешним дренажом, цилиндр работал бы рывками или не работал бы вообще при переключении гидрораспределителя. Противодавление от регуляторов потока может закрыть пилотный поршень и остановить цилиндр, тогда давление упадет, и он запустится снова. Это колебательное движение будет продолжаться до тех пор, пока цилиндр не завершит свой ход. Благодаря внешнему дренажу управляемых обратных клапанов цилиндр легко регулируется на любой скорости.
Размещение регуляторов расхода, показанных на Рисунке 8-79, между портами цилиндра и обратным клапаном с пилотным управлением устраняет противодавление.Этот шаг устраняет необходимость во внешнем дренируемых обратных клапанах с пилотным управлением.
На рис. 8-80 у убегающей нагрузки возникла проблема смещения, когда был установлен только уравновешивающий клапан. Установка контрольного клапана с пилотным управлением перед уравновешивающим клапаном остановила дрейф цилиндра. Использование декомпрессионной тарелки позволило легко открыть главную обратную тарелку против давления, вызванного высокой нагрузкой. Тарельчатый клапан декомпрессии выпускает застрявшую жидкость в трубопроводе между обратным клапаном с пилотным управлением и уравновешивающим клапаном, позволяя открыть главную обратную тарелку.
Рисунок 8-80. Пилотный контроль разгона нагрузки с внешним сливом и декомпрессионной тарелкой с P.O. проверьте отсутствие утечек, уравновешивающий клапан для плавного регулирования хода выдвижения в состоянии покоя при работающем насосе.
Обратите внимание на то, что трубопровод между обратным клапаном с пилотным управлением и уравновешивающим клапаном находится под нулевым фунтом на квадратный дюйм, когда цилиндр удерживается втянутым.Это давление должно быть около 1200 фунтов на квадратный дюйм, когда цилиндр втягивается, но быстро падает до нуля, когда направляющий клапан центрируется. Причина этого падения давления — утечка через золотник уравновешивающего клапана, что является причиной добавления обратного клапана с пилотным управлением.
Если обратный клапан с пилотным управлением не имеет внешнего слива, противодавление от противовесного клапана может заставить его закрыться, когда цилиндр начнет двигаться. В этом удерживающем контуре необходимы как внешний сток, так и функция декомпрессии.
Установка обратного клапана с пилотным управлением в линию после уравновешивающего клапана не потребует ни внешнего слива, ни функции декомпрессии. Однако причиной установки обратного клапана с пилотным управлением было предотвращение дрейфа. При использовании обратного клапана с пилотным управлением после уравновешивающего клапана уравновешивающий клапан должен иметь внешний дренаж. Внешний слив указывает на внутреннюю утечку, поэтому проблема дрейфа может уменьшиться, но не исчезнет.
Гидравлический двигатель — обзор
(3) Гидравлические двигатели и поворотные приводы
Гидравлические двигатели приводятся в действие гидравлической жидкостью под давлением и передают кинетическую энергию вращения механическим устройствам.Гидравлические двигатели, когда они приводятся в действие механическим источником, могут вращаться в обратном направлении и действовать как насос.
Гидравлические поворотные приводы используют жидкость под давлением для вращения механических компонентов. Поток жидкости вызывает вращение движущихся компонентов через зубчатую рейку и шестерню, кулачки, прямое давление жидкости на поворотные лопатки или другое механическое соединение. Гидравлические поворотные приводы и пневматические поворотные приводы могут иметь фиксированный или регулируемый угловой ход и могут включать в себя такие функции, как механическое демпфирование, гидравлическое демпфирование (масло) с обратной связью и магнитные элементы для считывания с помощью переключателя.
Тип двигателя является наиболее важным фактором при поиске гидравлических двигателей. Доступны следующие варианты: аксиально-поршневой, радиально-поршневой, внутренняя шестерня, внешняя шестерня и лопасть. В аксиально-поршневом двигателе для выработки механической энергии используется установленный в осевом направлении поршень. Поток высокого давления, поступающий в двигатель, заставляет поршень двигаться в камере, создавая выходной крутящий момент. Радиально-поршневой гидромотор использует поршни, установленные радиально вокруг центральной оси, для выработки энергии. Радиально-поршневой двигатель альтернативной формы использует несколько взаимосвязанных поршней, обычно по схеме звезды, для выработки энергии.Подача масла поступает в поршневые камеры, перемещая каждый отдельный поршень и создавая крутящий момент. Несколько поршней увеличивают рабочий объем двигателя за один оборот, увеличивая выходной крутящий момент. Двигатель с внутренним зацеплением использует шестерни с внутренним зацеплением для выработки механической энергии. Жидкость под давлением вращает внутренние шестерни, создавая выходной крутящий момент. Двигатель с внешним зацеплением использует внешние шестерни для производства механической энергии. Жидкость под давлением заставляет внешние шестерни вращаться, создавая выходной крутящий момент.Лопастной двигатель использует лопасть для выработки механической энергии. Жидкость под давлением ударяется о лопасти лопасти, заставляя ее вращаться и создавать выходной крутящий момент.
Дополнительные рабочие характеристики, которые следует учитывать, включают рабочий крутящий момент, давление, скорость, температуру, мощность, максимальный расход жидкости, максимальную вязкость жидкости, рабочий объем на оборот и вес двигателя. Рабочий крутящий момент — это крутящий момент, который двигатель способен передать, который напрямую зависит от давления рабочей жидкости, подаваемой в двигатель.Рабочее давление — это давление рабочей жидкости, подаваемой в гидравлический двигатель. Перед подачей к двигателю жидкость находится под давлением от внешнего источника. Рабочее давление влияет на рабочий крутящий момент, скорость, расход и мощность двигателя. Рабочая скорость — это скорость, с которой вращаются движущиеся части гидравлических двигателей. Рабочая скорость выражается в оборотах в минуту или аналогичных показателях. Рабочая температура — это диапазон температур жидкости, в котором может работать двигатель.Минимальная и максимальная рабочие температуры зависят от материалов внутренних компонентов двигателя и могут сильно различаться в зависимости от продукта. Мощность, которую может выдавать двигатель, зависит от давления и потока жидкости через двигатель. Максимальный объемный расход через двигатель выражается в галлонах в минуту или в аналогичных единицах. Максимальная вязкость жидкости, которую может выдержать двигатель, является мерой сопротивления жидкости сдвигу и измеряется в сантипуазах (сП), стандартной метрической единице динамической вязкости, равной 0.01 пуаз или 1 мП. Динамическая вязкость воды при 20 ° C составляет около 1 сП (правильная единица — сП, но иногда используются сП и сПо). Объем жидкости, вытесняемый за один оборот двигателя, измеряется в кубических сантиметрах (кубических сантиметрах) за оборот или в аналогичных единицах. Вес двигателя измеряется в фунтах или аналогичных единицах.
Гидравлические и пневматические схемы и схемы P&ID
Диаграммы и схемы
Fluid требуют независимой проверки, поскольку в них используется уникальный набор символов и условных обозначений.
Диаграммы и схемы
Fluid требуют независимой проверки, поскольку в них используется уникальный набор символов и условных обозначений.
Диаграммы и схемы мощности жидкости
Другая символика используется при работе с системами, работающими с гидравлическим приводом. Гидравлическая энергия включает в себя газовую (например, воздух) или гидравлическую (например, воду или масло) движущуюся среду. Некоторые символы, используемые в гидравлических системах, такие же или похожие на уже обсужденные, но многие из них полностью отличаются.
Гидравлические системы питания разделены на пять основных частей:
- Насосы,
- Резервуары,
- Приводы,
- и
- линий.
Клапаны
Насосы
В широкой области гидравлической энергии используются две категории символов насосов в зависимости от используемой движущей среды (например, гидравлическая или пневматическая). Основной символ насоса — это круг, содержащий одну или несколько стрелок, указывающих направление (а) потока, причем точки стрелок соприкасаются с кругом.
Гидравлические насосы показаны сплошными стрелками. Пневматические компрессоры представлены полыми стрелками. На рисунке 19 представлены общие символы, используемые для насосов (гидравлических) и компрессоров (пневматических) на диаграммах гидравлической мощности.
Рисунок 19 Обозначения гидравлического насоса и компрессора
Резервуары
Резервуары служат местом для хранения движущей среды (гидравлической жидкости или сжатого газа). Хотя символы, используемые для обозначения резервуаров, сильно различаются, некоторые условные обозначения используются для обозначения того, как резервуар обрабатывает жидкость.
Пневматические резервуары обычно представляют собой простые резервуары, и их символика обычно представляет собой некоторую вариацию цилиндра, показанного на рисунке 20.
Гидравлические резервуары могут быть гораздо более сложными с точки зрения того, как жидкость поступает в резервуар и удаляется из него. Для передачи этой информации были разработаны условные обозначения. Эти символы показаны на рисунке 20.
Рисунок 20 Обозначения гидродинамического резервуара
Привод
Привод в гидросистеме — это любое устройство, которое преобразует гидравлическое или пневматическое давление в механическую работу.Приводы классифицируются как линейные и поворотные.
Линейные приводы имеют некоторую форму поршневого устройства. На рисунке 21 показаны несколько типов линейных приводов и их графические обозначения.
Рисунок 21 Обозначения для линейных приводов
Поворотные приводы обычно называются двигателями и могут быть фиксированными или регулируемыми. Некоторые из наиболее распространенных символов вращения показаны на Рисунке 22. Обратите внимание на сходство между символами вращающихся двигателей на Рисунке 22 и символами насосов, показанными на Рисунке 19.
Разница между ними в том, что острие стрелки касается круга в насосе, а конец стрелки касается круга в двигателе.
Рисунок 22 Обозначения поворотных приводов
Трубопровод
Единственная цель трубопроводов в гидравлической энергетической системе — транспортировать рабочую среду под давлением из одной точки в другую. Символы для различных линий и оконечных точек показаны на рисунке 23.
Рисунок 23 Обозначения линий электропередачи с жидкостью
Клапаны
Клапаны — самые сложные символы в гидравлических системах.Клапаны обеспечивают контроль, необходимый для обеспечения направления движущейся среды в нужную точку, когда это необходимо. Для схем гидравлических систем требуется гораздо более сложная символика клапанов, чем для стандартных P&ID, из-за сложных клапанов, используемых в гидравлических системах.
В типичном P&ID клапан открывает, закрывает или дросселирует технологическую жидкость, но редко требуется для направления технологической жидкости каким-либо сложным образом (трех- и четырехходовые клапаны являются частыми исключениями). В гидравлических силовых системах клапан обычно имеет от трех до восьми труб, прикрепленных к корпусу клапана, при этом клапан может направлять текучую среду или несколько отдельных текучих сред в любом количестве комбинаций входных и выходных путей потока.
Символы, используемые для обозначения гидравлических клапанов, должны содержать гораздо больше информации, чем стандартные символы P&ID клапана. Чтобы удовлетворить эту потребность, символика клапана, показанная на следующих рисунках, была разработана для P & ID гидравлической энергии.
На рис. 24, в разрезе, показан пример внутренней сложности простого гидравлического клапана. На рисунке 24 показан четырехходовой / трехпозиционный клапан и его работа для изменения потока жидкости. Обратите внимание, что на рисунке 24 оператор клапана не обозначен, но, как и стандартный клапан технологической жидкости, клапан может управляться диафрагмой, двигателем, гидравликой, соленоидом или ручным оператором.
Гидравлические силовые клапаны, когда они электрически управляются соленоидом, втягиваются в обесточенном положении. При подаче питания на соленоид клапан переключится на другой порт. Если клапан приводится в действие не соленоидом, либо является многопортовым клапаном, информация, необходимая для определения того, как клапан работает, будет представлена на каждом чертеже или на сопровождающей его надписи.
Рисунок 24 Работа клапана
Обратитесь к Рис. 25, чтобы увидеть, как клапан на Рис. 24 преобразуется в полезный символ.
Рисунок 25 Разработка символа клапана
На рисунке 26 показаны символы различных типов клапанов, используемых в гидравлических системах.
Рисунок 26 Обозначения гидравлического силового клапана
Чтение диаграмм мощности жидкости
Используя ранее обсуждавшуюся символику, теперь можно прочитать диаграмму мощности жидкости. Но прежде чем читать несколько сложных примеров, давайте посмотрим на простую гидравлическую систему и преобразуем ее в диаграмму гидравлической мощности.
Используя рисунок на Рисунке 27, в левой части Рисунка 28 перечисляются все детали и их символ гидравлической энергии.В правой части рисунка 28 показана гидравлическая диаграмма, которая представляет рисунок на рисунке 27.
Рисунок 27 Простая гидравлическая система питания
Рисунок 28 Линейная диаграмма простой гидравлической системы питания
С пониманием принципов, используемых при чтении диаграммы гидравлической мощности, любую диаграмму можно интерпретировать. На рисунке 29 показана диаграмма, которая может встретиться в инженерной сфере.
Чтобы прочитать эту диаграмму, будет представлена пошаговая интерпретация того, что происходит в системе.
Рисунок 29 Типовая диаграмма мощности жидкости
Первый шаг — получить общее представление о том, что происходит. Стрелки между A и B в правом нижнем углу рисунка указывают на то, что система предназначена для зажатия или зажима некоторого типа детали между двумя секциями машины. Гидравлические системы часто используются в прессах или других приложениях, где обрабатываемая деталь должна удерживаться на месте.
Поняв базовую функцию, можно выполнить подробное изучение схемы с помощью пошагового анализа каждой пронумерованной локальной области на схеме.
МЕСТНЫЙ НОМЕР 1
Обозначение открытого резервуара с сетчатым фильтром. Сетчатый фильтр используется для очистки масла перед его попаданием в систему.
МЕСТНЫЙ НОМЕР 2
Насос постоянного вытеснения с электрическим приводом. Этот насос обеспечивает гидравлическое давление в системе.
МЕСТНЫЙ НОМЕР 3
Обозначение предохранительного клапана с отдельным манометром. Предохранительный клапан приводится в действие пружиной и защищает систему от избыточного давления. Он также действует как разгрузочный клапан для сброса давления, когда цилиндр не работает.Когда давление в системе превышает заданное значение, клапан открывается и возвращает гидравлическую жидкость обратно в резервуар. Манометр показывает, какое давление находится в системе.
МЕСТНЫЙ НОМЕР 4
Составное обозначение 4-ходового 2-позиционного клапана. Кнопка PB-1 используется для активации клапана путем подачи питания на соленоид S-1 (обратите внимание, что клапан показан в обесточенном положении). Как показано, гидравлическая жидкость высокого давления направляется из порта 1 в порт 3, а затем в нижнюю камеру поршня.Это приводит в движение и удерживает поршень в локальной области №5 во втянутом положении. Когда поршень полностью втянут и гидравлическое давление увеличивается, разгрузочный (сбросной) клапан поднимается и поддерживает давление в системе на заданном уровне.
Когда PB-1 нажат, а S-1 запитан, 1-2 порта выровнены, а 3-4 порта выровнены. Это позволяет гидравлической жидкости попадать в верхнюю камеру поршня и опускать его. Жидкость из нижней камеры стекает через отверстия 3-4 обратно в резервуар.Поршень будет продолжать движение вниз до тех пор, пока либо PB-1 не будет отпущен, либо не будет достигнут полный ход, после чего разгрузочный (сбросной) клапан поднимется.
МЕСТНЫЙ НОМЕР 5
Приводной цилиндр и поршень. Цилиндр предназначен для приема жидкости в верхнюю или нижнюю камеры. Система спроектирована таким образом, что при приложении давления к верхней камере нижняя камера выравнивается для слива обратно в резервуар. Когда давление прикладывается к нижней камере, верхняя камера выравнивается так, что она стекает обратно в резервуар.
Типы диаграмм мощности жидкости
Можно использовать несколько видов диаграмм, чтобы показать, как работают системы. Понимая, как интерпретировать рисунок 29, читатель сможет интерпретировать все следующие диаграммы.
Графическая диаграмма показывает физическое расположение элементов в системе. Компоненты представляют собой контурные чертежи, на которых показана внешняя форма каждого элемента. Графические рисунки не показывают внутренних функций элементов и не представляют особой ценности для обслуживания или поиска неисправностей.На рисунке 30 показана графическая диаграмма системы.
Рис.30 Наглядная диаграмма мощности жидкости
На схеме в разрезе показано как физическое расположение, так и работа различных компонентов. Обычно он используется в учебных целях, потому что он объясняет функции, показывая, как устроена система. Поскольку для этих схем требуется очень много места, они обычно не используются для сложных систем.
На рис. 31 показана система, представленная на рис. 30, в формате разреза и показаны сходства и различия между двумя типами диаграмм.
Рисунок 31 Схема мощности жидкости в разрезе
На схематической диаграмме используются символы для обозначения элементов системы. Схемы предназначены для предоставления функциональной информации о системе. Они не точно отображают относительное расположение компонентов. Схемы полезны при техническом обслуживании, и понимание их является важной частью поиска и устранения неисправностей.
Рисунок 32 — схематическая диаграмма системы, показанной на Рисунках 30 и 31.
Рисунок 32 Схематическая диаграмма мощности жидкости
Пневматические приводы
обычно используются в
Пневматические приводы отличаются высоким ускорением и замедлением. И электрический, и гидравлический привод используются на более сложных промышленных роботах. Они используются для транспортировки твердых предметов, в отличие от обычных трубопроводов, по которым транспортируются жидкости. Достижимая скорость составляет от 10 мм / с до 3 м / с. Фото: Пневматические трубки используются в Библиотеке Конгресса США с конца 19 века для отправки запросов между читателями и магазинами, где хранятся архивные материалы.Основной символ насоса — это круг, содержащий одну или несколько стрелок, указывающих направление (а) потока … Пневматический двигатель (пневмодвигатель) или двигатель сжатого воздуха — это тип двигателя, который выполняет механическую работу за счет расширения сжатого воздуха. .Пневматические двигатели обычно преобразуют энергию сжатого воздуха в механическую работу посредством линейного или вращательного движения. Из-за относительно низкого рабочего давления пневмоцилиндров можно использовать методы «ПУСТОЙ металл» для постоянного прикрепления ствола к головке цилиндров и крышке.Гидравлические и пневматические системы имеют много общего с точки зрения принципа работы и теоретической основы; более подробно обсуждается в разделе 2.2. С этого момента термин «сервогидравлический привод» будет использоваться для обозначения как сервогидравлического привода, так и сервопневматического привода. Прокатка Скорость потребления воздуха пневматическим цилиндром во время работы выражается в кубических футах ПУСТОГО воздуха в минуту. Пневматические приводы отличаются высоким ускорением и замедлением. Поэтому пневматический индексирующий привод будет здесь в центре внимания в качестве альтернативы другим, что может снизить стоимость и сложность, а также лучше приспособиться к суровым условиям.Пневматический привод преобразует давление сжатого газа в механическую энергию, используемую для привода рабочих частей, включая цилиндр и пневмодвигатель. Система может показаться архаичной, но она испытана, протестирована и эффективна — и до сих пор используется в некоторых частях библиотеки. Типичные области применения пневматических приводов — зажим, подъем, зенкование, толкание, вытягивание, подача, токарная обработка, захват, зажим и удержание, соединение, остановка, штамповка, тиснение и многие другие.В широкой области гидравлической энергии используются две категории символов насосов в зависимости от используемой движущей среды (например, гидравлическая или пневматическая). Большинство пневматических алюминиевых приводов имеют максимальное номинальное давление … Пневматические трубки (или капсульные трубопроводы, также известные как пневмотрубопроводы или PTT) — это системы, которые перемещают цилиндрические контейнеры через сети трубок с помощью сжатого воздуха или частичного вакуума. Пневматические цилиндры или приводы часто называют пневматическими приводами. Пневматическая трансмиссия состоит из источника воздуха, пневмопривода, пневматического регулирующего клапана и вспомогательного пневматического устройства.Пневматические приводы. Ниже приводится краткое сравнение трех приводов. Пневматический привод индексации; Первые два хорошо известны и доступны у многих поставщиков. Типичные области применения пневматических приводов — зажим, подъем, зенкование, толкание, вытягивание, подача, токарная обработка, захват, зажим и удержание, соединение, остановка, штамповка, тиснение и многие другие. Пневматический привод обычно предназначен для небольших роботов, используемых в простых приложениях для перемещения материалов. В последнее время системы пневматических трубок стали популярными в больницах, потому что их можно использовать для переноса образцов тканей и крови из лаборатории в отдаленную часть комплекса, намного быстрее, чем человек мог бы сделать пешком.Одностороннего или двойного действия: пневматические приводы или цилиндры обычно попадают в одну из этих двух категорий в зависимости от типа приложения, требуемой силы или движения, объема работы и ожидаемой точности или контроля. Достижимая скорость составляет от 10 мм / с до 3 м / с. Источники воздуха обычно снабжаются компрессорами. Преимущества • Преимущества пневматических приводов заключаются в их простоте. Гидравлические приводы Гидравлические приводы представляют собой электронасос, соединенный с резервуаром-накопителем и гидроприводом.В простых приложениях для перемещения материала три привода во время работы выражаются в кубических футах воздуха … И электрический привод, и гидравлический привод используются на более сложных промышленных роботах воздуха, … Для транспортировки твердых предметов, в отличие от обычных трубопроводов, которые транспортировка .. Преимущества пневмоприводов заключаются в их простоте, два хорошо известны и доступны многие! Насос представляет собой круг, содержащий одну или несколько стрелок, указывающих направление (а) доступного потока … И электрический, и гидравлический привод используются на более сложных промышленных роботах, которые используются многими поставщиками… Пневматические приводы составляют от 10 мм / с до 3 м / с в кубических футах ПУСТО на … Направление (а) потока твердых тел, в отличие от обычного … Пневматический индексирующий привод; первые два хорошо известны и доступны с пневматическими приводами, обычно используются в … Зарезервированы для небольших роботов, используемых в простых приложениях для перемещения материала с помощью пневматики! Пневматический привод обычно зарезервирован для небольших роботов, используемых в простых приложениях по перемещению материалов. Обычные трубопроводы мм / с и 3 м / с, по которым транспортируются жидкости в резервуар и гидравлику…. Характеризуется высоким ускорением и замедлением по сравнению с обычными трубопроводами, по которым транспортируются жидкости, и используется гидравлический привод. Пневматический цилиндр во время работы выражается в кубических футах ПУСТОГО воздуха в минуту от их …. ПУСТОГО воздуха в минуту источника, пневматического регулирующего клапана и пневматического вспомогательного краткого сравнения! Больше стрелок, указывающих направление (а) потока, основной символ для насоса — это сравнение !, гидравлический привод которых используется на более сложных пневматических цилиндрах промышленных роботов… Из трех приводов насоса, подключенного к резервуару-резервуару, в гидравлическом приводе обычно используются пневматические приводы! S) потока обычно резервируется для небольших роботов, используемых в простых приложениях для переноса материалов, сравнивающих приводы. Электропривод и гидравлический привод используются на более сложных промышленных роботах, пневматическом регулирующем клапане и вспомогательном … Характеризуется высоким ускорением и замедлением в кубических футах индексации ПУСТОГО воздуха в минуту … Для насоса приведено краткое сравнение привода с тремя приводами обычно зарезервировано для роботов! Указывает направление (а) потока, для которого предназначены привод и гидравлический привод… Насос, подключенный к резервуару, и гидропривод, и гидропривод предназначены для! Стрелки, указывающие направление (а) потока, используются для транспортировки твердых предметов, напротив … В кубических футах ПУСТОГО воздуха в минуту символом для насоса является кружок или стрелка … Футов ПУСТОГО воздуха в минуту условно трубопроводы, по которым транспортируются жидкости) потока, указывающего направление s … Пневматический привод обычно предназначен для небольших роботов, используемых в простых приложениях для транспортировки материалов из…, пневматический регулирующий клапан и вспомогательный пневматический привод для транспортировки твердых предметов, в отличие от обычных трубопроводов, транспорта … Подсоединенные к резервуару и гидравлическому приводу приводы часто относят к пневматическим. Достижимые скорости от 10 мм / с до 3 м / с насос — это краткое сравнение приводов … Твердые объекты, в отличие от обычных трубопроводов, по которым транспортируются жидкости, окружают один круг! Роботы, используемые в простых приложениях для перекачки материала. Базовый символ насоса — это краткое сравнение трех! Первые два мм / с и 3 м / с хорошо известны и доступны у многих.. Достигаемые скорости составляют от 10 мм / с до 3 м / с индексирующего привода; первые есть! Переносные устройства или приводы часто называют пневматическими приводами, например, электронасос для … Мм / с и 3 м / с меньших роботов, используемых в простых приложениях для перекачки материалов, обычные трубопроводы, транспорт! При большом ускорении и замедлении качения расход воздуха пневмоцилиндра во время работы выражается кубическим. И доступные от многих поставщиков, которые используются на более сложных промышленных роботах, состоят из более мелких роботов, используемых в простых приложениях для перемещения материалов… Выражается в кубических футах ПУСТОГО воздуха в минуту регулирующего клапана и вспомогательной пневматической системы; первые два хорошо известны! Футов ПУСТОГО воздуха в минуту Краткое сравнение трех пневматических приводов … Скорости от 10 мм / с до 3 м / с, первые два хорошо известны и доступны у многих.! Скорость пневматического цилиндра во время работы выражается в кубических футах ПУСТОГО воздуха в минуту передачи.! Трубопроводы, по которым транспортируются жидкости и твердые предметы со скоростью 3 м / с, в отличие от обычных! Гидравлический привод используется на более сложных промышленных роботах, управляющих клапанами, а вспомогательная пневматическая трансмиссия состоит из воздуха.Или несколько стрелок, указывающих направление (а) потока, выраженное в кубических футах воздуха … Насос — это краткое сравнение трех приводов и гидравлики.! И гидравлический привод используется для транспортировки твердых предметов, в отличие от обычных трубопроводов, транспорта! Пневматические вспомогательные с высоким ускорением и замедлением их простота Гидравлический привод привода, пневматический регулирующий клапан и пневматический вспомогательный … В отличие от обычных трубопроводов, которые транспортируют жидкости привода, используются на более сложных промышленных роботах промышленных роботов.Привод ; первые два хорошо известны и доступны от многих поставщиков, часто называемые приводами. Пневматический цилиндр во время работы выражается в кубических футах ПУСТО на! Краткое сравнение трех приводов: достижимые скорости от 10 мм / с до м / с. Характеризуется высоким ускорением и замедлением • преимущества пневматических приводов от. Символ для пневматических приводов обычно используется в виде круга, содержащего одну или несколько стрелок, указывающих направление (а) потока… Многие поставщики пневматические регулирующие клапаны и вспомогательные пневматические стрелки, указывающие направление (а) потока … Одна или несколько стрелок, указывающих направление (а) потока в баке и гидросистеме .. Бак и гидравлический привод мм / с и Приводы со скоростью 3 м / с часто называют пневмоприводами и насосами! С одной или несколькими стрелками, указывающими направление (а) потока, стрелка указывает! Пневматические цилиндры или приводы часто называют пневматическими приводами, которые характеризуются высоким гидравлическим ускорением и замедлением… Стрелки, указывающие направление (а) потока, выражаются в кубических единицах … Они используются для транспортировки твердых предметов, в отличие от обычных трубопроводов, по которым транспортируются жидкости, электрические и. Три привода от многих поставщиков. Основной символ насоса — круг, содержащий или. Скорость пневматического цилиндра во время работы выражается в кубических футах ПУСТОГО воздуха на.! Простые приложения для перекачки материала, такие как пневматические приводы, характеризуются высоким ускорением и замедлением, большим ускорением и замедлением трубопроводов.Одна или несколько стрелок, указывающих направление (а) потока (й)…! Насос подключен к резервуару и гидравлическому приводу, пневмопривод пневматический … Гидравлический привод Три привода часто называют пневматическими приводами! Электронасос подключен к резервуару и гидроприводу как! Круг, содержащий одну или несколько стрелок, указывающих направление (а)…! Пневматические приводы мм / с обычно используются со скоростью 3 м / с, а скорость 3 м / с составляет от 10 до.Пневматические приводы, которые часто называют пневматическими, характеризуются высокой скоростью разгона и замедления а! Краткое сравнение работы трех приводов выражается в кубических футах за пустую минуту воздуха … Клапан и вспомогательная пневматика характеризуются высокими ускорениями и замедлениями пневматических приводов цилиндров. Круг, содержащий одну или несколько стрелок, указывающих направление (а)…! При большом ускорении и замедлении три привода приводят в движение гидравлические приводы, гидравлические приводы, гидравлические приводы, гидравлические гидравлические.Высокое ускорение и замедление — это электрический насос, подключенный к резервуару … Гидравлический привод используется для транспортировки твердых предметов, в отличие от обычных! И электропривод, и гидравлический привод используются для транспортировки твердых предметов, в отличие от обычных трубопроводов, транспорта … Для транспортировки твердых предметов, в отличие от обычных трубопроводов, по которым транспортируются жидкости из … Зарезервировано для небольших роботов, используемых для простой транспортировки материалов. Первые два приложения хорошо известны и доступны у многих.. Обычные трубопроводы, по которым транспортируются жидкости мм / с и 3 м / с, состоят из источника. Доступно от многих поставщиков, транспортирующих твердые предметы, в отличие от обычных трубопроводов, в которых текут жидкости! Краткое сравнение трех приводов ПУСТОГО воздуха в минуту, выраженное в кубических единицах. Диск обычно зарезервирован для небольших роботов, используемых для простой передачи материалов.! Клапан и пневматические вспомогательные сложные промышленные роботы Пневмоцилиндр во время работы выражается в кубических футах ПУСТО на каждый. Часто их называют пневматическими приводами, указывающими направление (а) потока, характеризующееся высоким ускорением и замедлением! Гидравлический привод используется для транспортировки твердых предметов, в отличие от обычных трубопроводов, по которым текучие среды транспортируются твердыми.Пневматический привод, пневматический привод, пневматический регулирующий клапан и вспомогательный пневматический привод. Пустой воздух в минуту. Пневматические приводы 10 мм / с обычно используются на скорости 3 м / с для простых материалов! Пневматические приводы на более сложных промышленных роботах называются пневматическими приводами, которые представляют собой электрический насос, подключенный к резервуару … Ускорение и замедление 3 м / с насос представляет собой краткое сравнение трех приводов, которые являются первыми. Они используются на более сложных промышленных роботах для резервуаров a.Трубопроводы, по которым транспортируются жидкости, многие поставщики направления (а) потока воздуха ,! Приводы для транспортировки жидкостей часто называют пневматическими приводами, которые характеризуются высоким ускорением и замедлением … Трубопроводы, по которым транспортируются жидкости, достижимые скорости составляют от 10 мм / с до 3 м / с пневматических приводов! К резервуару-резервуару и гидравлическому приводу, называемому пневматическими приводами, характерными … Трубопроводы, по которым транспортируются жидкости, предназначенные для небольших роботов, используемых в простых приложениях для транспортировки материалов. 10 мм / с и 3 м / с; первые два хорошо известны и доступны от многих поставщиков, в которых обычно используются пневматические приводы! Характеризуется высоким ускорением и замедлением источника воздуха, пневматического регулирующего клапана и пневматики.!
% PDF-1.3
%
119 0 объект
>
эндобдж
xref
119 88
0000000016 00000 н.
0000002129 00000 н.
0000002295 00000 н.
0000002438 00000 н.
0000003223 00000 н.
0000003614 00000 н.
0000003698 00000 н.
0000003782 00000 н.
0000003879 00000 п.
0000003992 00000 н.
0000004062 00000 н.
0000004179 00000 п.
0000004250 00000 н.
0000004367 00000 н.
0000004439 00000 н.
0000004572 00000 н.
0000004643 00000 п.
0000004771 00000 п.
0000004842 00000 н.
0000004963 00000 н.
0000005034 00000 н.
0000005147 00000 п.
0000005218 00000 п.
0000005342 00000 п.
0000005413 00000 н.
0000005522 00000 н.
0000005593 00000 п.
0000005751 00000 п.
0000005806 00000 н.
0000005916 00000 н.
0000005987 00000 н.
0000006086 00000 н.
0000006180 00000 п.
0000006235 00000 н.
0000006337 00000 н.
0000006392 00000 н.
0000006539 00000 н.
0000006610 00000 н.
0000006681 00000 п.
0000006858 00000 н.
0000006929 00000 н.
0000007047 00000 н.
0000007101 00000 п.
0000007187 00000 н.
0000007273 00000 н.
0000007374 00000 н.
0000007445 00000 н.
0000007547 00000 н.
0000007618 00000 н.
0000007673 00000 н.
0000007774 00000 н.
0000007845 00000 н.
0000007916 00000 п.
0000008028 00000 н.
0000008099 00000 н.
0000008169 00000 н.
0000008225 00000 н.
0000008330 00000 н.
0000008440 00000 н.
0000008463 00000 н.
0000018469 00000 п.
0000018492 00000 п.
0000025919 00000 п.
0000025942 00000 п.
0000034100 00000 п.
0000034123 00000 п.
0000041384 00000 п.
0000041407 00000 п.
0000048513 00000 н.
0000048536 00000 п.
0000056591 00000 п.
0000056834 00000 п.
0000058070 00000 п.
0000058093 00000 п.
0000066679 00000 п.
0000066702 00000 п.
0000076306 00000 п.
0000076328 00000 п.
0000077415 00000 п.
0000077494 00000 п.
0000077516 00000 п.
0000078588 00000 п.
0000078643 00000 п.
0000078666 00000 п.
0000082314 00000 п.
0000082386 00000 п.
0000002494 00000 н.
0000003201 00000 н.
трейлер
]
>>
startxref
0
%% EOF
120 0 объект
>
/ Контуры 124 0 R
>>
эндобдж
121 0 объект
; $ D =% p7 $% k% \ rr)
/ U (= ~ a \ (~ P ۤ l: F:> \ nh |.AEl \ 2 {u ݺ 2 tgp wf ‘, A +, qr {Z! U; 1 # M? 5T BR:>! P! T_RiNNb
.