Как делать свайный фундамент: Свайный фундамент своими руками: пошаговая инструкция, видео

Содержание

плюсы и минусы, пошаговая инструкция сваяного фундамента своими руками

При высоком УГВ и неустойчивом грунте фундамент для частного дома часто приходится делать из свай. Использовать другие варианты в такой ситуации оказывается слишком нерационально. Они будут получаться либо слишком дорогими, либо недолговечными из-за повышенной влажности почвы. Железобетонный свайный фундамент буронабивного типа более дешев и прост в исполнении. Его без проблем можно сделать самостоятельно.

Содержание

  1. Что это такое?
  2. Виды и подвиды
  3. Плюсы и минусы
  4. Пошаговая инструкция
  5. Применение в строительстве

Что такое свайный фундамент?

Свайный фундамент – это вертикальные опоры из железобетона, погруженные в грунт. Сверху их обычно связывают ростверком либо монолитной плитой, которые служат основанием для стен дома. В зависимости от типа свай они в почву забиваются, закручиваются либо просто погружаются в заранее высверленные в земле отверстия.

Схема одного из видов с подземным ростверком

Железобетонный ростверковый вариант по внешнему виду и общей конструкции – прямой аналог ленточного фундамента. Только “лента” здесь меньших размеров и лежит не в грунте, а на сваях. Это отлично защищает ростверк от влаги и пучения. Причем вся энергия сезонного расширения/сжатия пластов почвы проходит мимо свайных опор. Они изначально погружаются ниже уровней промерзания грунта, стоя на плотном неподвижном основании.

Виды фундамента на сваях

В зависимости от технологии погружения опор свайные фундаменты бывают:

В первом случае столбы как бы висят в земле без опоры на несущий слой за счет банальных сил трения. Во втором они наоборот опираются на твердые пласты грунта. Висячий фундамент требует большого количества свай и более основательных расчетов на базе серьезных геодезических исследований участка. Для строительства частных коттеджей в два-три этажа такую технологию не используют.

В малоэтажном домостроении более востребован подпорный вариант. Сваи здесь не забиваются сплошным полем, их требуется гораздо меньше. Для обычного дома за городом вполне хватает четырех опор по углам и нескольких под несущими стенами. Такой свайный фундамент своими руками выполнить гораздо проще.

Сваи для устройства подобного основания можно взять:

  1. Винтовые (вкручиваемые) стальные.

  2. Забивные железобетонные.

  3. Буронабивные из асбестоцементной трубы и железобетона внутри.

Виды свай для разных типов фундамента

Частные застройщики для строительства свайного жб фундамента обычно выбирают винтовую либо инъекционную (буронабивную) технологию. При этом у “винтов” из стали есть серьезное ограничение – глубина заложения при самостоятельном монтаже. При неглубоком залегании плотных слоев (до 2-х метров) их самостоятельно еще можно закрутить в землю, а вот для более длинных опор уже нужна будет специализированная техника.

С буронабивными аналогами ситуация принципиально иная. Они делаются из труб, для погружения которых в землю необходимо вырыть соответствующего размера яму. Даже если она потребуется под пару метров глубиной, в плотном не осыпающемся грунте выкопать такой котлован своими руками для будущего основания будет несложно.

Плюсы и минусы свайного основания

У каждого основания имеются плюсы и минусы. Это далеко не универсальный вариант для любого грунта. Не для каждого участка он подойдет. Зато стоит такое основание под частный дом не так дорого, как фундамент плита или заглубленный ниже точки промерзания жб ленточный аналог. В винтовом исполнении опора на сваях обойдется на 30–40%, а в буронабивном – на 20–25% дешевле.

Среди плюсов рассматриваемого варианта можно выделить:

  • Возможность устройства там, где классические варианты нельзя сделать из-за высокого УГВ, пучинистого грунта или большой глубины промерзания;

  • Высокая скорость и предельная простота работ при самостоятельном их выполнении;

  • Экономичность – выбрав фундамент на сваях, во многих случаях можно сэкономить до трети выделенных на обустройства опоры для дома средств;

  • Минимум земляных работ – для ленточного либо плитно-монолитного аналога копать земли придется в разы больше.

Минусы у свайного фундамента следующие:

  • Сложность проведения расчетов при проектировании;

  • Возможность применения только для легких зданий;

  • Необходимость утепления пола и невозможность устройства подвала.

Чтобы такое основание прослужило долго, подготовку его проекта лучше доверить профессионалам. Здесь очень важны тщательные исследования грунта и грамотные расчеты. Необходимо заранее предусмотреть, как поведет себя каждая свая в будущем под нагрузкой. Малейшая ошибка – ростверк и стены на нем поведет сразу же. В результате даже кровля из металлочерепицы или профнастила на крыше будет повреждена, не говоря уж о треснувших перегородках внутри здания.

Пример на забивных сваях

Второй важный момент – это ограничения по весу строения. Тяжелый керамический кирпич или бетон для коттеджа на свайном фундаменте брать точно не стоит. Здесь больше приемлемы каркасные либо пенобетонные технологии. Они позволяют возвести легкие стены, которые простоят на винтовых либо буронабивных опорах долго и без проблем.

И вообще, прежде чем выбирать тип основания под свой дом, следует тщательно изучить, что такое СИП-панели, кирпич, брус, бревно, газо- и пеноблоки со всеми их характеристиками и плюсами с минусами. Вес стройматериала стен сильно влияет на выбор вида фундаментного основания.

Буронабивной свайный фундамент своими руками

Представленная ниже пошаговая инструкция предусматривает самостоятельное возведение свайного фундамента в буронабивном исполнении с ростверком сверху. Это наиболее востребованный вариант среди частников, так как реализовать его несложно. Для работ нужны лишь трубы из асбестоцемента, бетонный раствор и стальная либо стеклопластиковая арматура.

Устройства выполняется в пять этапов:

  1. Земляные работы.

  2. Установка асбестоцементных труб и укладка в них арматуры.

  3. Заливка бетона.

  4. Устройство ростверка.

  5. Закрытие цоколя.

Для изготовления буронабивных свай требуются асбестоцементные трубы диаметром 300–400 мм. Они послужат гарантией, что фундамент будет иметь хорошую несущую способность как по вертикали, так и в горизонтальной плоскости. И в отличие от стального варианта асбестоцемент не заржавеет в земле.

Скважины для опор проще всего сделать с помощью ручного бура с бензиновым либо электрическим двигателем. Глубина этих отверстий должна получиться в итоге на 30–40 см ниже точки промерзания грунта.

Свайные столбы располагаются по периметру строения и под несущими стенами внутри с шагом до двух метров. После выбуривания скважин на их дне насыпается песчаная подушка толщиной в 10–15 см. Затем сверху в качестве опоры под сваи заливается бетон еще на 25–30 см. И уже в этот не застывший раствор устанавливаются трубы из асбестоцемента. При этом они должны выступать над землей минимум на 30 см.

Чтобы трубы оставались строго в вертикальном положении, они обсыпаются песком, который повергается в процессе этого утрамбовке. Далее производится армирование опорных столбов. Для этого используется 3-4 прута из стали либо стеклопластика сечением 10–12 мм.

Армирующие стержни необходимо разместить по центру трубы на равном удалении друг от друга. Для упрощения монтажа их еще на земле можно связать поперечинами-распорками из проволоки. По высоте эти вертикальные пруты должны оказаться выше верхнего края трубы, выступая из последней на 15–20 см. После армирования эту несъемную опалубку остается лишь залить бетоном, следя чтобы внутри раствора не образовалось пустот.

Уже через 3–4 дня на получившиеся опоры можно монтировать ростверк из железобетона (с укладкой опалубки, армированием и заливкой бетонной смеси), стального швеллера либо бруса. В итоге между ним и землей должно оказаться просвет в 25–30 см. Укладывать ростверк непосредственно на грунт нельзя, его при пучении может попросту выдавить вверх и снести вместе с постройкой.

В завершении обустройства, лучше всего уже после возведения стен, опоры и ростверковую конструкцию следует закрыть с боков обшивкой. Здесь прекрасно подойдет профнастил для крыши или фасада либо декоративный кирпич. Только сначала надо уложить все коммуникации. Благо водопровод и канализация в доме на сваях проводятся между опор без дополнительных ухищрений и сверления бетона.

Применение фундаментов на сваях в строительстве

Фундамент на железобетонных сваях прекрасно подходит для многих типов частных малоэтажных домов. Сделать его самому, руководствуясь представленной выше пошаговой инструкцией, не должно составить труда. Вот только расчеты лучше заказать у специалистов. Для гаража или бани подобную основу можно рассчитать и самостоятельно. А для коттеджа проект фундаментного основания должен быть выполнен только профессионалом.

Процесс строительства забивного варианта

Разметка свайного поля

Разгрузка сваебойной машины

Разгрузка

Транспортировка столбов

Забивка

Сваи забиваются специальной машиной

Все сваи должны быть на одном уровне

Установка пластин под обвязку

Готово!

Читайте также про другие виды фундаментов:

Смотрите также видео о преимуществах и недостатках свайных фундаментов

Читайте про другие наши материалы:

пошаговая инструкция по монтажу своими руками на винтовых сваях

Низкая несущая способность, обводненность или возможность сезонных подтоплений, чрезмерная рыхлость грунта — все эти условия делают нецелесообразным использование традиционных ленточных оснований.

В таких ситуациях практически единственным эффективным решением проблемы становится свайный фундамент, который использует в качестве опоры глубинные, твердые пласты грунта, проходя сквозь поверхностные ненадежные слои до появления полного контакта с надежной опорой.

Подобные условия являются типичными для многих регионов России, что сделало свайные виды опорных конструкций вполне обыденным и распространенным видом.

Отдельным вопросом становится возможность использования свай для строительства хозяйственных или вспомогательных построек.

Рассмотрим использование свайного основания для строительства бани.

Содержание статьи

Подходит ли свайный фундамент под баню?

Баня — полностью закрытое и отапливаемое сооружение, в котором имеется собственная печь и активно используется вода. Условия эксплуатации предусматривают значительные перепады температуры и влажности.

Все эти особенности требуют для постройки наличия надежного и устойчивого ко всем нагрузкам основания, способного без потерь выдерживать существующие нагрузки. Свайный фундамент вполне способен обеспечить такую опору, а в регионах с проблемными грунтами он превращается в единственно возможный вариант.

Мало того, существуют виды свай, позволяющие получить надежную опорную систему намного быстрее и дешевле, чем при создании традиционного ленточного основания. Поэтому возможность использования свай для постройки бани есть, и она не является неким исключением или компромиссным вариантом.

Сваи хороши для любой постройки, независимо от назначения. Главным критерием выбора служит состояние и особенности грунта.

Плюсы и минусы

К положительным сторонам свайного основания под баню следует причислить:

  • Независимость от свойств грунта или гидрогеологической обстановки.
  • Значительное снижение стоимости строительства, особенно, если сравнивать с заглубленным ленточным фундаментом.
  • Высокая скорость строительства основания.

Недостатками свай являются:

  • Относительная сложность работ, необходимость обследования и анализа грунтов на участке.
  • Приходится отказываться от традиционной бани с проливными полами и создавать качественную систему водоотведения.
  • В ряде случаев требуется привлечение строительной техники, что в условиях благоустроенного участка не всегда возможно.

ОБРАТИТЕ ВНИМАНИЕ!

Выбирая тип основания, необходимо учитывать как плюсы, так и минусы, чтобы впоследствии не оказаться в сложной ситуации.

Виды

      
            

Для создания опорной конструкции бани могут быть использованы следующие виды свай:

  • Забивные. Для погружения в грунт привлекается спецтехника, которая устанавливает опоры путем вбивания их в грунт. Работ вблизи используемых построек способна вызвать нежелательные изменения в состоянии фундамента, стать причиной оседаний или подвижек основания. Используются готовые сваи, скорость работ обычно высокая, процесс занимает один день.
  • Буронабивные. Изготавливаются прямо на стройплощадке путем заливки бетона в армированную скважину. Есть возможность все сделать своими руками. При этом, сложные грунты могут не удержать скважину из-за осыпания стенок или заполнения полости водой. Кроме того, необходимо ждать около месяца, пока бетон наберет конструкционную прочность, в течение которого никакие работы производить нельзя.
  • Винтовые. Приобретаются в готовом виде и погружаются в грунт как при помощи спецтехники, так и вручную. Не создают угрозы для построек, расположенных поблизости и могут устанавливаться вплотную к ним. Позволяют строить баню на склонах, складках фундамента без предварительной подготовки площадки. Недостатками винтовых свай считают неизбежную коррозию металла в грунте и множество кустарным образом изготовленных опор, не соответствующих существующим требованиям.

ВАЖНО!

Существуют также столбчатые опоры, которые многие пытаются отнести к свайным фундаментам. Они не погружаются в грунт, поэтому являются просто бюджетным и быстрым решением вопроса для строительства вспомогательных построек. На сложных грунтах они используются редко, так как не обеспечивают устойчивости при появлении сезонных подвижек или подтоплений.

Почему для самостоятельного монтажа стоит выбрать винтовые сваи?

Выбор винтовых свай обусловлен их безопасностью для окружающих строений.

Кроме того, винтовые сваи могут быть погружены в грунт самостоятельно, что позволяет работать в удобное для себя время и существенно сэкономить на найме специальной бригады.

Технология установки предельно проста и не требует предварительной планировки участка, что является большим плюсом. Земляные работы отнимают время и требуют впоследствии больших трудозатрат по благоустройству участка, поэтому возможность пропустить этот этап весьма привлекательна для любого владельца.

Типы свай и какие лучше выбрать

Существуют разные виды винтовых свай:

  • Одно- или многолопастные.
  • С литым или сварным наконечником.
  • С защитным цинковым покрытием или без него.

Кроме того, они различаются по диаметру и длине ствола и виду лопасти. Выбор винтовых свай производится исходя из свойств грунта и веса постройки.

Для обычной семейной бани, размером 6 : 4 м, изготовленной из оцилиндрованного бревна или бруса, вес которой составляет около 5-7 т, вполне подойдут однолопастные винтовые сваи диаметром 57 или 76 мм.

Допустимая нагрузка на единицу у них достигает соответственно 1 и 2 т, что вполне приемлемо для такой постройки.

ОБРАТИТЕ ВНИМАНИЕ!

Чем меньше диаметр ствола, тем легче погружать его в грунт своими руками.

Как рассчитать глубину погружения

Глубина погружения винтовых свай определяется глубиной залегания плотных слоев грунта. Попытки использования «висячих» винтовых свай обычно заканчиваются постепенными оседаниями или деформациями ростверка, ведущими к разрушению наружных стен.

Обычный расчет несущей способности грунта дает вполне точные данные, но они показывают только текущую обстановку на участке. При изменении ситуации — подъеме уровня грунтовых вод, сезонных подвижках, возникновении нагрузок морозного пучения — расчетные данные становятся неактуальными.

Поэтому единственно правильный и эффективный вариант решения вопроса — пробное бурение или, как минимум, погружение пробной сваи. Глубина, на которой возникает контакт с твердыми слоями, и есть искомая величина.

Расчет высоты над землей

Высота подъема свай зависит от нескольких условий:

  • Величина снежного покрова в зимнее время.
  • Уровень воды при подтоплениях или паводках.
  • Глубина залегания грунтовых вод.

Некоторые величины можно отыскать в приложениях СНиП, другие значения можно получить в местных геологоразведочных или метеорологических организациях.

Основная задача — обеспечить такой подъем над уровнем грунта, чтобы минимизировать последствия от различных воздействий природного характера.

В большинстве случаев высоту бани над уровнем грунта принимают в пределах 40-60 см. Для отсечки стен от контакта со снеговыми массами этого обычно хватает, как и при подтоплениях.

Предугадать критические ситуации никто не может, а строить слишком высокую баню нецелесообразно.

Это не относится к постройкам на склонах или неровностях рельефа, где высота определяется по наименьшему значению.

Пошаговая инструкция по монтажу

Рассмотрим порядок действий при монтаже свайно-винтового фундамента для бани. Процесс проектирования и расчетов опустим, перейдем сразу к практическим действиям.

Работа ведется поэтапно, выполняются следующие операции:

Подготовка

Участок освобождают от лишних предметов, растений и прочих помех. Необходимо обеспечить пути подхода для техники, если планируется механическая установка свай. Приобретение и доставка на участок необходимого количества стволов нужного размера.

Понадобятся следующие материалы и инструменты:

  • Лопата.
  • Рулетка.
  • Металлический лом и два отрезка трубы по 1,5-2 м, внутрь которой этот лом входит свободно, но без лишнего люфта.
  • Болгарка с отрезным кругом.
  • Сварочный аппарат с электродами.
  • Оголовки для используемого размера свай.
  • Цемент и песок для изготовления бетона.
  • Колышки для разметки.
  • Лазерный уровень.
  • Покрытие для металлических деталей, защита сварных швов.
  • Швеллер, двутавр, рельс для обвязки.

Разметка

С помощью колышков отмечаются места установки свай согласно проектных данных. Начинать разметку следует с углов, сразу же проверяя равенство диагоналей. Пока они не будут выровнены, продолжать разметку нельзя.

Точки монтажа свай отмечаются колышками. После отметки углов переходят к промежуточным сваям и размечают их положение. Затем с помощью лопаты и личной бодрости в этих точках выкапывают небольшие углубления глубиной до 30 см и шириной, равной диаметру лопастей.

Это позволит сваям легче входить в грунт и обеспечить меньшее отклонение от вертикали.

Погружение

Завинчивание свай производится по определенной схеме. Это делается для того, чтобы уже установленные стволы не стали помехой для других опор. В особенности это важно при монтаже машинным способом, где техника должна подойти вплотную к точке погружения.

Обычно начинают с центра и движутся последовательно к краям по спирали или змейкой.

При погружении свай необходимо постоянно контролировать вертикаль. В особенности важно делать это на начальном этапе, когда ствол достаточно свободно раскачивается и может быть установлен с перекосом.

Выкручивать сваю назад для выравнивания нельзя, второй раз в эту точку ее устанавливать запрещается из-за нарушения прочности грунта после контакта с лопастями. Все исправления делаются на первых порах, когда ствол погружен на незначительную глубину.

Обрезка, обвязка, заливка бетоном

После установки всех свай производится обрезка. Устанавливается лазерный уровень, отмечающий горизонтальную плоскость на нужной высоте, на поверхности свай мелом или белым маркером отмечаются линии реза.

Болгаркой с отрезным кругом отрезают лишние куски трубы.

После этого выполняют обвязку. Все сваи соединяются между собой в продольном и поперечном направлении при помощи сварки. Используются отрезанные по размеру куски швеллера, двутавра или иного вида металлопроката.

После соединения свай в единую систему следует сразу же покрасить все участки сварки защитным слоем краски, кузбасслака или иного материала.

Затем внутреннюю полость свай заливают бетоном. Это дает стволам дополнительную жесткость и устойчивость к боковым нагрузкам пучения. Необходимо пользоваться плотными марками, начиная от М200 и выше.

На заполненные сваи устанавливаются и фиксируются оголовки, образующие площадки для установки ростверка и промежуточных (внутренних) опор.

Ростверк

Для бани обычно используют деревянный брус сечением 150 : 200 или 200 : 200 мм. Балки укладывают на площадки оголовков, предварительно подложив на металл двойной слой рубероида. Углы соединяют вполдерева.

Тщательно проверяют равенство диагоналей, выравнивают балки по осям, после чего закрепляют их на оголовках, используя специально созданные монтажные отверстия. Деревянные балки сразу же следует покрыть гидроизоляционным материалом для защиты от влаги.

Полы в бане

Обычные проливные полы, использующиеся в традиционной русской бане, в данном случае не годятся:

  • Вода, протекая между досками пола, проникает в грунт и понемногу разрушает металл свай и ослабляет прочность их сцепления с грунтом.
  • Возникает сложность поддержания температуры в бане из-за большой высоты над землей. Наличие неутепленного пространства потребует излишнего расхода топлива или электроэнергии.

Оптимальным вариантом становится создание утепленного пола, с надежным гидроизоляционным покрытием. На поверхность заливается слой стяжки с заранее установленными воронками для отвода воды, которые подключаются к канализационной системе.

На стяжку укладывают напольную керамическую плитку, а для большего комфорта рекомендуется укладывать деревянные помосты с широкими планками (8-10 см) и зазорами между ними для свободного стока воды.

Полезное видео

В данном видео вы узнаете, как произвести монтаж свайного фундамента под баню:

Заключение

Свайный фундамент для бани используется не реже, чем традиционные виды оснований.

Учитывая высокую скорость и большую экономию денег, фундамент на винтовых сваях становится даже более предпочтительным и эффективным вариантом, чем лента.

Работы могут выполняться самостоятельно, что является дополнительным бонусом и дает владельцам участков возможность использовать свои навыки и умения на практике.

Вконтакте

Facebook

Twitter

Google+

Одноклассники

Свайный фундамент под ключ в Челябинске

Такие основания стали применяться еще в начале прошлого века, но тогда с их помощью возводили только легкие строения (сараи, гаражи) из-за недостаточного развития оборудования и технологий. 

Современные материалы и инструменты дают возможность применять свайно-винтовые фундаменты более широко. Сегодня основные сферы их использования – это малоэтажное жилищное строительство, возведение бань, малых архитектурных форм и т. д.

Особенности устройства фундамента на сваях


Устройством свайного фундамента должны заниматься профессионалы, которые смогут грамотно рассчитать необходимое количество свай, их заглубление и т. д. Наши специалисты выполняют необходимые расчеты с учетом:

Характеристик будущего строения (его расчетного веса, высоты цоколя, наличия или отсутствия инженерных коммуникаций

Климатических особенностей местности (высоты снежного покрова в зимнее время, глубины промерзания грунта)

Характеристик грунта, включая тип грунтового покрытия (глина, торфяник, суглинок и т. д.)

Рельефа строительной площадки, глубины залегания грунтовых вод

После выполнения расчетов начинается непосредственно строительство свайно-монолитного фундамента ручным или механическим способом. Первый метод подходит для небольших участков, где нет возможности применить ямобурную установку. Там, где нет проблем с пространством, работы ведутся механическим способом, который позволяет намного сократить сроки строительства.

Преимущества фундамента на сваях


Если сравнивать свайно-винтовой фундамент с ленточным или с бетонными сваями, он имеет преимущества в виде:

01

Возможности применения для любых типов строений, начиная от легких каркасно-щитовых дачных домиков и заканчивая капитальными домами, возводимыми из бревен и бруса до 240 мм

02

Коротких сроков строительства — фундамент готов за 1-2 дня, при этом можно начинать сборку сруба, не дожидаясь усадки фундамента

03

Возможности применения на участках с плотной застройкой или наличием большого количества зеленых насаждений

04

Хорошей вентиляции, предотвращающей гниение древесины и способствующей продлению срока службы дома

05

Возможности применения на грунтах любого типа, кроме скальных пород, и на любом рельефе местности

06

Длительным сроком службы (до 80-100 лет)

Наша компания «Каркас» имеет большой опыт устройства свайно-ростверковых фундаментов под ключ. Наши специалисты могут возвести фундамент с ленточными или столбчатыми ростверками для загородного дома с круглогодичным проживанием, летнего дачного домика, гаража, бани и других конструкций.

Как сделать заказ на фундамент


Если вы хотите заказать устройство свайного фундамента в Челябинске по выгодной цене, обращайтесь в нашу компанию «Каркас»! Чтобы сделать заказ, напишите нам по электронной почте или заполните на сайте форму обратной связи с указанием своих контактных данных. После получения вашей заявки наши специалисты свяжутся с вами для уточнения деталей заказа. 

Если вам нужна профессиональная консультация или вы хотите уточнить стоимость строительства свайного фундамента с ростверком, звоните нам по телефонам из раздела «Контакты», и мы ответим на все ваши вопросы!

Мифы про винтовой свайный фундамент — Реальное время

И их эффективное разоблачение

В строительной сфере, как и в любой другой, складывается масса мифов, большинство из которых происходит из недостаточной осведомленности людей о материалах или технологиях. Иногда заблуждения проистекают из общения с неквалифицированными строителями — не секрет, что нарушение технологии может испортить даже самый замечательный материал. Сегодня поговорим о мифах, которые складываются вокруг винтового свайного фундамента.

  • «Винтовые сваи — ненадежный тип фундамента. В разных домах и на разных почвах они то качаются, то выпирают наверх, а то и вовсе тонут».На самом деле, корень всех этих проблем кроется в другом. Во-первых, сваи могут быть просто-напросто неправильно смонтированы. Во-вторых, проектировщик мог неверно рассчитать нагрузку и схему самого фундамента. И третья вероятная проблема — вы не стали заказывать геологию грунта, а сделали, понадеявшись на авось.

    Дом на сваях может качаться, потому что сваи ввинтили на слишком небольшую глубину; их слишком высоко подрезали над поверхностью грунта; у них недостаточно большой диаметр; мало самих свай; грунт слишком мягкий. Если сваи проседают — значит, нагрузка на грунт рассчитана неверно. Если же наблюдается «подъем» дома и сваи начинают подниматься — дело в морозном пучении грунта, когда сваи вкручены неглубоко и лопасти находятся в зоне промерзания.

  • «Укоренить сваи в грунте — легко и просто, это один из самых удобных в организации типов фундамента».Винтовые сваи славятся среди обывателей тем, что якобы их монтаж легче легкого. Но на деле это не так. Есть несколько случаев, в которых дом на сваях окажется «золотым» в части трудозатрат и денег. И все эти случаи связаны с типом грунта.

    Например, если грунт слабонесущий, то ввинтить пробную сваю действительно легко — она входит в землю, как горячий нож в масло. Но это совсем не хорошо. Значит, под вашим домом слишком мягкий грунт. А значит, нужно удлинять эту сваю и заглублять все дальше и дальше — до тех пор, пока не уткнетесь в более твердый грунт. Ее итоговая длина и станет тем мерилом, по которому нужно будет заказывать остальные. Вам останется только подсчитать, стоит ли овчинка выделки и не будет ли это слишком дорогим способом.

    Твердый грунт — тоже не панацея. Если он слишком прочный, то придется попотеть, чтобы завинтить сваю в землю — и молитесь, чтобы выдержал металл. Бывает и такое, что лопасти отламываются под воздействием грунта.

    И, наконец, еще один «бич» таких фундаментов — камни в толще земли. Лопасть может уткнуться в камень (пусть даже небольшой) — и свая встанет намертво, отказываясь закручиваться дальше. Твердые и каменистые грунты «лечатся» многовитковыми сваями, но это определяется в каждом частном случае.

  • «Сваи быстро проржавеют, фундамент придет в негодность».Некоторые недоверчивые «специалисты» отговаривают хозяев от домов на сваях — утверждают, что сталь в грунте непременно подвергнется коррозии, уже через десяток-другой лет их прочность уже не будет достаточной, и придется строить новый дом.

    В действительности долговечность свай зависит от того, какой у вас на участке грунт (кислые почвы действительно могут быть более агрессивными, как и сильно засоленные). Но если мы имеем дело с большинством почв, встречающихся в Татарстане, то весь вопрос будет в том, как правильно выбрать марку стали, толщину сваи и насколько качественно обработана поверхность.

    Не стоит выбирать неокрашенные трубы или покрытые краской, не предназначенной для пребывания в толще грунта. Да, этот вариант дешевле. Но за долговечность такого дома действительно никто не поручится. Но если выбран подходящий диаметр, если металл покрыт надежной краской, а выход трубы из земли обработан антикоррозионным покрытием, минимум полвека ваш дом спокойно простоит. Цинковое покрытие трубы еще лучше — оно дополнительно повышает срок жизни фундамента.

  • «На подготовку винтового свайного фундамента потребуется всего лишь один день».Если в вашем плане-графике срок установки фундамента установлен исходя из этого популярного утверждения — возьмите карандаш и срочно внесите правки. Нет, мы не говорим о том, что монтировать свайное основание под дом нужно неделю. В идеальных условиях сваи ввинчиваются действительно быстро, и под частный дом одного строительного дня хватит.

    Но идеальные условия складываются не всегда. Мы уже говорили о сложных грунтах, которые могут существенно замедлить ввинчивание. Еще одно популярное препятствие — если участок не пустой. Допустим, на нем уже есть другие строения. Или растут деревья, а вы категорически не хотите с ними расставаться. Или вы поставили забор на площадке. Дело в том, что в таком случае затруднено применение строительной техники наподобие автобура. Или нет возможности применить длинный рычаг. Значит, времени на монтаж винтового свайного фундамента потребуется больше, чем вы запланировали.

  • «Винтовые сваи — материал, который выбрать легче легкого. Они все выглядят одинаково и представляют собой одну и ту же конструкцию. Разница — только в обработке поверхности, толщине и марке стали, а с этим справиться легко».Поверьте, вы страшно удивитесь, если начнете изучать этот вопрос чуть глубже. Винтовые сваи — очень разные. В первую очередь, при выборе не наткнитесь на некачественную сварку (гаражное изготовление любых материалов — вообще бич строителей в России).

    Стоит тщательно проверять и толщину стенок труб — тонкостенные трубы вам не друг, не товарищ и не брат. Иногда бывает так, что сама труба сварена из металла правильной толщины, а на лопастях производитель сэкономил и их сталь тоньше. Это тоже неправильно.

    В конце концов, наконечники могут быть самыми разными — сделанными под разные типы грунтов. Бывают даже сваи, выкрутить которые из земли практически невозможно (снабженные неким «стопором» из тонкого металла — он загибается при выкручивании и мешает вращению.

  • «Свайный фундамент «на винтах» можно собирать только в теплый сезон, зимой даже не мечтайте это сделать».Это, конечно, не так, особенно в климатических условиях Татарстана. Летом работать на стройке, конечно же, удобнее — никто не мерзнет, все происходит быстро и даже в некотором роде приятно. Но и зима — вовсе не повод отказываться от «фундаментно-винтовых» работ. Разве что тридцатиградусные морозы или, скажем, сильный снегопад могут помешать это сделать — но наша зима, как правило, мягкая и позволит выбрать удобные дни.

    Сначала на площадке убирают снег и открывают поверхность грунта. Это сделать легко (особенно если есть спецтехника). Приямок сваи придется сделать отбойником, а бетон засыпать сухим. Отдельно обратите внимание на то, что противоморозные добавки для бетона на самом деле не дают вам карт-бланш на заливку раствора в мороз. В этом вопросе есть множество нюансов, которые нужно будет изучать отдельно.

    Грунт в наших условиях промерзает неглубоко, и уже через пару витков вы войдете в непромерзшую землю, так что дальше техника работы ничем не будет отличаться от той, что применяется летом.

  • «Если дом легкий, можно сэкономить на толщине свай и использовать тонкие».Теоретически, можно использовать тонкие сваи под легкие дома. Но есть нюансы. Разберемся в диаметрах винтовых свай из «тонкой группы».

    Винтовые сваи диаметром 57 мм подходят под фундаменты беседок, теплиц. Хорошо они встанут под террасой, лестницей. Толщина 76 мм позволяет ставить на винтовые сваи не только вышеперечисленное, но и небольшой сарай, и невысокий профнастиловый забор (у высокого будет больше парусность, а значит, потребуется более крепкий фундамент). Сваи в 89 мм толщиной выглядят уже больше похожими на правду — они удержат и баню из бруса, и небольшой каркасный дом в один этаж. Но дом будет качаться на ветру, если грунт мягкий. Специалисты советуют использовать тонкие сваи под дом, только если речь идет, к примеру, о зоне крыльца или открытой веранды.

  • Как сделать свайный фундамент своими руками

    Построить здание на непрочных почвах задача не простая. Но, если устройство подвала не требуется, настоящей находкой станут свайные фундаменты. Простые виды свайного фундамента можно сделать и своими руками затратив в разы меньше материала по сравнению с фундаментами из бетона других типов. Давайте рассмотрим, как сделать свайный фундамент своими руками, узнаем основные принципы и приёмы этого процесса.

    Содержание
    1. Особенности свайного фундамента.
    2. Выбираем вид свай.
    3. Работы по устройству свайного фундамента своими руками.
    3.1 Бурение скважин под сваи.
    3.2 Устройство опалубки сваи.
    3.3 Армирование сваи.
    3.4 Бетонирование сваи.
    4. Устройство ростверка для свайного фундамента.


    Видео-версия статьи

    Особенности свайного фундамента

    Свая – представляет собой стержень или столб, который погружают (забивают, завинчивают, вдавливают) в грунт или изготавливают в заранее пробуренной скважине. Нагрузку от здания этот стержень передаёт на основание, упираясь в прочный грунт, а так же за счёт сил трения боковой поверхности (когда последний вид передачи нагрузки основной или единственный, то такие сваи называют «висячими»).

    Бурение скважины под винтовые сваи

    Свайные фундаменты обладают рядом положительных качеств: для них не нужен котлован, а значит отпадает необходимость в тяжёлой землеройной технике. По стоимости они дешевле массивных ленточных фундаментов. Но главный аргумент в пользу выбора фундаментов этого типа — несущие свойства почв:

    При слабом верхнем слое грунта необходимо передать нагрузку от здания на нижние плотные слои.
    В грунтах плотных и прочных применение свай сводит к минимуму трудоёмких земляных работ.

    Другие виды фундаментов рассмотрены в материалах: деревянные фундаменты своими руками, фундаменты мелкого заглубления, столбчатые фундаменты и в материале о том, как заложить фундамент.

    Выбираем вид свай

    По способу погружения в грунт сваи делятся на забивные, набивные и завинчивающиеся (винтовые).

    Забивные сваи в индивидуальном строительстве применяются редко, поскольку процесс требует применения специальных дорогостоящих механизмов.

    Гораздо проще устроить сваи буронабивные. Для решения задачи, как сделать свайный фундамент своими руками — это, пожалуй, наиболее удачный выбор. Кроме того изготавливают их непосредственно в грунте поэтому не требуется перевозка готовых свай, что может оказаться довольно трудоемко из-за их длины и веса.

    Работы по устройству буронабивного свайного фундамента своими руками

    Устройство буронабивных свай включает следующие этапы:

    Бурение скважин под сваи

    Ручным бензиновым, или электрическим буром (см. фото 1;2.) бурим скважины диаметром 30 см и глубиной до 5 м.

    Ручным или мотобуром бурим скважины под сваи

    Стоит учесть, что расширение подошвы фундамента повышает несущую способность сваи в несколько раз. Для этих работ существуют особые буровые головки различных моделей, имеющиеся в свободной продаже.

    Длина сваи должна быть достаточной чтобы:

    а) пройти зону промерзания самое меньшее на 0,5 м;
    б) пройти слабые слои и опереться на плотные слои грунта.

    Устройство опалубки сваи

    Для сыпучих почв из нескольких слоёв рубероида изготавливаем трубу по диаметру скважины, но на 200-300 мм длиннее. Эту своеобразную опалубку опускаем в скважину. Для опалубки отлично подойдёт и асбестоцементная труба.

    Для опалубки под свайный фундамент отлично подойдёт асбестоцементная труба

    Если опалубки не делать, то при заливке бетона цементное молочко будет просачиваться в грунт, что снизит прочность сваи. Кроме того, поверхность будет шероховатой, станет удерживать больше влаги и циклы замерзания-оттаивания будут быстрее разрушать сваю.

    В плотных грунтах можно обойтись и без опалубки, установив её только в оголовке сваи (см. фото 3)

    Армирование сваи

    Сделать свайный фундамент своими руками можно сделать и без арматурного каркаса, но прочность её будет значительно ниже, ведь свая работает не только на сжатие, но и на растяжение. Тянет её расширяющийся при замерзании грунт. Кроме того сваи могут испытывать нагрузку от горизонтального смещения почвы (скажем, при оползнях).

    Для каркаса используем 3-4 арматурных стержня d 6-8 мм. Стержни в единую конструкцию скрепляем через 500-600 мм по высоте поперечинами или хомутами. Готовый каркас располагаем так, чтобы он вошёл в скважину на всю её глубину, а снаружи возвышался на высоту ростверка, за вычетом 2-3 см (защитный слой). Не забываем про защитный слой бетона для арматуры по высоте тела сваи: располагаем каркас не вплотную к опалубке, а с зазором 3-5 см.

    Бетонирование сваи

    Бетон укладываем в скважину слоями по 40-60 см с уплотнением вибратором или штыкованием. Процесс бетонирования сваи должен быть непрерывным. Застывший и свежий бетон в месте контакта не создадут цельного монолита, образуют так называемый «холодный шов», ослабляющий прочность конструкции почти как трещина.

    Используем тяжёлый бетон с наполнителями из кварцевого песка и щебня твёрдых горных пород фракцией до 20 мм.

    Устройство ростверка для свайного фундамента

    Ростверк – часть фундамента соединяющая сваи в единый конструктив. Бывает ростверк заглублённый (полностью или частично) и не заглублённый.

    Опалубка под ростверк

    Ростверк — важнейшая составляющая в решении вопроса: как сделать свайный фундамент своими руками. Для устройства заглублённого, или частично заглубленного ростверка, копаем траншею между оголовками свай, по периметру строения и под внутренними несущими стенами. В траншее выполним уплотнённую трамбованием песчаную подушку. Поверх песка выполняем щебёночную подсыпку. Верх подсыпки должен быть примерно на уровне верха сваи.

    Застилаем щебень рубероидом и сооружаем опалубку. Качественно, с укреплением, подпорками, без возможности выдавливания бетоном (см фото 4.). Изготавливаем и устанавливаем арматурный каркас ростверка (фото 5) соединяя его с выпусками каркасов свай. Арматура ростверка состоит из 4-х стержней, 2-х вверху, 2-х внизу, такого же диаметра что и для свай и поперечной арматурой с шагом 500-600 мм.

    Бетон, по своей способности воспринимать нагрузки, прекрасно работает на сжатие, но слабо на растяжение (изгиб является сочетанием растяжения и сжатия) с разницей примерно в 30 раз. Поэтому при армировании ростверка (который работает на изгиб), между сваями особое внимание следует уделить нижней, растянутой его стороне, а над сваями и непосредственно около них, верхней, так же растянутой (за счёт сопротивления сваи).

    Заливаем бетон (фото 6), уплотняя его вибратором.

    Арматурный каркас ростверка

    Незаглублённый ростверк выполняем аналогично, но траншею не устраиваем. Прямо на поверхности площадки сооружаем опалубку, в неё засыпаем песчаную подушку и далее всё по аналогии с заглублённым ростверком.

    Промежуток между почвой и ростверком закрывается отсыпкой (отмосткой). Она не воспринимает нагрузки, а служит для предотвращения продувания ветром пространства под зданием, попадания туда мусора, снега и т. п.

    Заливка бетона в ростверк

    Бетон при застывании набирает прочность довольно длительный срок. Минимум через 7 суток он набирает только 70% расчётной прочности. Не следует начинать нагружать ростверк раньше этого времени. Ещё лучше, выждать 28 суток, по истечению которых бетон достигнет 100% проектной прочности.

    Устройство фундамента – первый, но один из самых важных шагов в строительстве здания. И если вы представляете себе общие принципы и правила работы, сделать этот шаг вам будет вполне по силам. Главное — скрупулёзное отношение к делу.

    Оставляйте ваши советы и комментарии ниже. Подписывайтесь на новостную рассылку. Успехов вам, и добра вашей семье!

    Свайный фундамент своими руками пошаговая инструкция

    Свайный фундамент — это оптимальное решение для устройства основания дома из любых материалов: бруса и бревен, кирпича, газо- и пенобетонов, сэндвич панелей и пр. Он подходит для самых сложных грунтов, характеризуется прочностью и долговечностью. Свайный фундамент обойдется намного дешевле, чем ленточный и вполовину дешевле, чем монолитная плита. Кроме строительства дома свайные фундаменты применяются для строительства ограждений, бань, беседок, навесов и прочих строений.

    Преимущества свайных фундаментов

    1. Основное преимущество свайных фундаментов — это их дешевизна. Они обходятся намного дешевле, чем традиционные фундаменты из бетона. Они менее трудоемки в устройстве.
    2. Второе важное отличие от иных типов оснований: возможность проведения работ в любое время года. Фундамент из свай можно поставить морозной зимой, а с началом весны сразу приступить к строительству дома.
    3. Отсутствие подготовительных работ и простота установки — еще одна немаловажная особенность. Квалифицированная бригада рабочих может установить до 15 свай в день, что бывает достаточно для строительства небольшого дома.
    4. Долговечность: первые свайные фундаменты были установлены больше 150 лет назад в Британии. Они служили больше ста лет, прежде чем были демонтированы. Установленный с соблюдением технологии свайный фундамент простоит век.

    Правильный свайный фундамент: выбираем сваи

    Есть несколько типов свайных фундаментов и, в первую очередь они различаются типом свай.

    1. Сваи представляют собой длинные металлические стержни, различающиеся диаметром и толщиной металла, с заостренным концом. Сваи можно забивать, можно устанавливать в заранее пробуренные скважины.
    2. Винтовые сваи конструктивно представляют собой металлическую трубу, внизу которой находятся металлические «витки». Винтовые сваи различаются на сваи с литым наконечником и сваи со сварным наконечником. Сварные сваи — самый доступный по цене вариант, который идеально подходит для дачного строительства или строительства небольших домов. Литые сваи — это лучший выбор для тяжелых глинистых грунтов: благодаря отсутствию сварных швов они надежны и прочны.

    Выбор свай для фундамента зависит от цели использования свай, типа грунта и, конечно, финансовой составляющей.

    Как сделать свайный фундамент своими руками из буронабивных свай

    Для устройства свайного фундамента потребуется бур или бур ТИСЭ.

    1. Делаем разметку свайного поля.
    2. По периметру фундамента делаем шурфы буром под будущие сваи. Сваи устанавливаются в углах фундамента и по его периметру, на расстоянии 2 метров друг от друга, по линии несущих стен, на местах пересечения несущих стен, в месте, где будет стоять печка и лестница и прочие тяжелые конструкции. Глубина шурфа должна быть обязательно ниже полутора метров и ниже точки промерзания грунта, если она ниже. В самом низу шурф нужно расширить на глубину 30 см.
    3. На дно засыпается 5 см песка и утрамбовывается — это подушка.
    4. В шурф вставляется рубероид свернутый в рулон — это гидроизоляция.
    5. В рулон вставляется арматурный каркас из 3–4 перевязанных вместе стержней. Каркас нужно вставлять аккуратно, чтобы не повредить рубероид.
    6. Конструкция заливается бетоном, бетон штыкуется в процессе. Бетон можно взять готовый, можно приготовить самостоятельно, взяв в аренду бетономешалку.
    7. Через 3 часов забетонированная поверхность проливается водой и закрывается пленкой.
    8. Полностью такой сваи под фундамент своими руками будут готовы через 2–3 недели.

    Как делают свайный фундамент с ростверком

    Так как при давлении всей конструкции дома на свайный фундамент нагрузка равномерно не распределяется, то для этого был придуман ростверк. Ростверк необходим для распределения давления стен на фундамент. Ростверк связывает сваи между собой, образуя жесткую ленту. Ростверк может делаться из древесины, металла, швеллера, двутавровой балки или монолитного бетона с армированием.

    Конструкционно, ростверк может быть висячим, наземным и заглубленным. Заглубленный ростверк по сути представляет собой ленточный фундамент со сваями и поэтому довольно дорог в выполнении. Наибольшей популярностью в малоэтажном загородном строительстве пользуются висячие ростверки.

    Если изначально планируется создание висячего ростверка, то арматура свай и опалубка в виде рубероида должны выводиться наверх на уровень низа ростверка. При этом стержни арматуры должны возвышаться еще выше.

    При монтаже опалубки висячего ростверка её можно устанавливать разными способами:

    • на предварительно насыпанную подушку, высота которой соответствует высоте подошвы будущего ростверка, по окончании работ подушка с опалубкой удаляются;
    • установить опалубку короб таким образом, чтобы нижняя её часть соединяла оголовки свай и располагалась на уровне подошвы ростверка.

    Сверху высота стен опалубки должна возвышаться на 5–7 см выше уровня бетонирования либо выставлена по уровню с контролем лазерным уровнем. После монтажа опалубки, в неё погружается или прямо в ней собирается каркас из арматуры.

    Армирующий каркас ростверка связывается со свайной арматурой, обеспечивая прочное сцепление свай с ростверком. Во всем остальном армирование ростверка выполняется так же, как и армирование ленточного фундамента: в виде 1 или 2 рядов продольной и поперечной арматуры в виде жесткого каркаса. Размеры каркаса должны быть таковы, чтобы арматура полностью покрывалась бетоном. При монтаже каркаса снизу он устанавливается на пластиковые проставки.

    Бетон для бетонирования должен быть качественным и залитым за один раз. При заливке бетон необходимо штыковать. После заливки бетон сверху нужно закрыть пленкой: в жару бетон нужно увлажнять. Опалубка снимается после набора прочности бетоном. Стены можно начинать возводить не раньше 28 дней от заливки.

    Мы надеемся, что ответили на вопрос как сделать свайный фундамент самостоятельно.

    Как сделать свайный фундамент с монолитным ростверком

    Устройство фундамента для малоэтажного строительства имеет немаловажное значение, потому как он является основой, от качества которой зависит долговечность и прочность возведенного помещения. При выборе и проектировании фундамента учитывается множество факторов от результатов геодезической разведки, которые дают основания для расчетов до финансовых возможностей застройщика.

    Еще со временем Советского союза в строительной отрасли стали применятся свайные фундаменты как альтернативный вариант мощных объемных железобетонных конструкций для возведения зданий на подвижных почвах и неустойчивых почвах. Так же применение свай характерно для почв  подверженных промерзанию более 1.5 метров.

    В подобных случаях свайный фундамент с монолитным ростверком является максимально эффективной в отличие от ленточного вида фундамента. А так же  применение подобного вида фундаментов достаточно успешно для любых видов почв и условий строительства. Монолитный ростверк, применимый в данной конструкции как связующий элемент, необходим для равномерного распределения весовой нагрузки конструкции помещения между установленными сваями фундамента для строительства.

    Разновидности фундаментом для малоэтажного строительства

    свайный фундамент с ростверком

    Различные виды фундаментов для дома имеют свои плюсы и минусы и универсального безупречного элемента в строительстве не существует. Поэтому в многочисленных вариациях строительства важно определится с более эффективными и качественными вариантами, которые будут практичны как в эксплуатации, так и в финансовой политике.

    Традиционным видом основы для возведения  частных домов с давних времен используется ленточный фундамент. Но развитие перспективных технологий в строительной отрасли принесли на рынок потребителей материалы, которые имеют более  низкий удельный вес, в отличие от материалов которые применимы при строительстве стандартными  методами. Естественным образом напрашивается вопрос о практичности применения привычных и уже устаревших технологий,  к популярным на сегодняшний день методикам возведения  легко несущих конструкций.

    В нынешнее время благодаря популярности облегченных видов строительства стало популярным устройство свайных фундаментов, которые по своим техническим эксплуатационным свойствам являются наиболее подходящим вариантом. Они позволяют успешно монтировать прочные основы для легко несущих конструкций  в различных видах почв.

    Различают несколько видов фундаментных конструкций для изготовления домов из легких современных материалов, в несущей основе которых используются принципы свайного строительства:

    • Свайный фундамент  с ростверком

    • Буро — набивной фундамент с углубленным ростверком

    • Свайный фундамент,  изготовленный с применением технологии Тисэ

    к содержанию ↑

    Особенности отличия свайных фундаментов

    схема свайного фундамента с роствеком

    Монолитный фундамент с ростверком для строительства помещения представляет собой конструкцию, в которой несущие сваи изготовлены заливкой бетонной смеси в заранее пробуренные скважины. Изготовленные таким методом сваи на глубине ниже предусмотренных норм промерзания почвы  связываются монолитной конструкцией ростверка в верхней части поверхности почвы. Рекомендуемая область применения для строительства домов из дерева, легковесных монолитных блоков (пенобетон, газобетон) и металлических каркасов.

    Свайный фундамент с монолитным ростверком  представляет собой конструкцию, в которой вертикально стоящие сваи покрыты  сверху армированной бетонной плитой. В строительстве применимы различные материалы для изготовления ростверка, но железобетонные являются наиболее эффективными.

    Данный вид основы для строительства помещения имеет характеристики, которые ставят его на ступень выше в отношении использования традиционного ленточного фундамента. Благодаря своим конструктивным особенностям он имеет минимальную усадку и финансовую экономичность, что является немаловажным фактором для строительства. Единственным небольшим минусом можно назвать применение специализированной техники для бурения и монтажа некоторых элементов фундамента.

    Фундамент по технологии ТИСЭ позволяет изготовления большинства этапов самостоятельно без применения специализированной техники. Так же он является менее затратным в финансовом направлении относительно остальных видов свайных фундаментов. Автором этой технологии является Р.Н. Яковлев, который изобрел ручной бур способный изготавливать скважины для заливки свай особым образом. По мере заглубления скважина расширяется в основании, чем формирует при заливке ее бетоном конструкцию с более широкой площадью опоры на твердые слои грунта. Сваи особой формы так же связываются монолитным железобетонным ростверком, что позволяет стать основой как для легко несущей конструкции, так и для полноценного традиционного строительства из камня.

    к содержанию ↑

    Принципы изготовления свайного фундамента для строительства частного дома

    По отзывам, свайно винтовой фундамент для каркасного дома изготовить своими руками довольно несложно. Основной необходимой конструкцией является поле свай, которые можно изготовить методом заливки бетона в пробуренные скважины  или забить готовые железобетонные конструкции с использованием специализированной техники.

    Процесс строительства можно разбить на несколько этапов:

    • Изготовление чертежей с учетом расчетов проекта несущих стен и соответствующая разметка на грунте.

    • Бурение шурфов для изготовления свай с последующим изготовлением железобетонной монолитной конструкции (либо забивание свай изготовленных в заводских условиях с помощью специализированной техники — копрового молотка).

    • Изготовление опалубки для заливки ростверка и верхних частей свай,выступающих выще уровня рельефа участка.  В случае изготовления заглубленного ростверка так же  изготовление траншеи для заливки монолитной конструкции.

    • Заливка бетоном конструкций свай и ростверка.

    • Технологическая выдержка застывания бетона и демонтаж опалубки

    Таким довольно несложным процессом получается основа для строительства малоэтажного дома.

    к содержанию ↑

    Марка бетона для заливки конструкции из свай

    Для изготовления бетона для заливки свай и ростверка есть обязательные требования и главное из них это прочность. Марка получаемой смеси должна быть не менее М – 200 для одноэтажного и двухэтажного дома, а в случаях неустойчивых почв или предполагаемого воздействия агрессивных грунтовых вод строительные нормативы предполагают использование более крепких марок бетона М —  250 или М – 300.

    В состав смеси так же входит чистый речной песок с наполнением щебнем фракцией 20 – 40 мм. Категорически запрещено применение в качестве наполнителя кирпича, остатков гипсовых конструкций и продуктов перегорания угля.

    Любой квалифицированный специалист, в строительной отрасли, ответит вам какой цемент лучше для фундамента, и какие материалы необходимо приобрести для получения первоклассной смеси.

    Учебный фильм о строительстве свайного фундамента с монолитным роствеком по технологии ТИСЭ

     

    Свайные фундаменты — Руководство по проектированию, строительству и испытаниям

    Свайные фундаменты сооружаются, когда невозможно построить конструкцию на фундаменте мелкого заложения. В зависимости от характера конструкции и по большему количеству причин выбор свайных фундаментов производится, как описано в статье.

    Мы сконцентрируемся на следующих основных темах этой статьи.

    Свайные фундаменты — обзор

    Проектирование свайных фундаментов

    Строительство свай

    Испытания свай

    Давайте начнем с понимания…

    Что такое свайный фундамент?

    Это тип фундамента, который закладывается глубоко в землю, при строительстве которого используются в основном круглые сечения.

    Неглубокие фундаменты опираются на землю и передают вертикальные нагрузки непосредственно на почву. Пропускная способность грунта представлена ​​как допустимая несущая способность, и если приложенное давление меньше допустимого давления на опору, геотехнический расчет в порядке.

    Однако в свайных фундаментах используются другие методы и другие параметры.

    При проектировании учитываются поверхностное трение грунта (положительное и отрицательное), поверхностное трение выветриваемой породы, поверхностное трение в породе и торцевой подшипник породы.

    Почему сваи должны поддерживать конструкцию

    • Когда вертикальные нагрузки, прикладываемые к фундаменту, не могут переноситься мелкими фундаментами из-за низкой несущей способности.
    • При наличии слабых слоев почвы, таких как торф, в почве.
    • Для передачи растягивающих усилий, приложенных к фундаменту. Сваи могут быть закреплены в скале, чтобы выдерживать растягивающие усилия.
    • Для восприятия боковых нагрузок (сжатия), приложенных к фундаменту. Будет построена наклонная свая, способная выдерживать как сжимающие, так и растягивающие усилия.
    • При очень высоких вертикальных нагрузках, особенно в высоких зданиях, несущая способность грунта недостаточна для выдерживания таких нагрузок. нам нужны сваи.

    Факторы, влияющие на проектирование и строительство свайных фундаментов

    • Нагрузки от надстройки
    • Состояние почвы. В зависимости от характера почвы трение кожи будет различным. Когда есть слои почвы, такие как торф, при геотехническом проектировании сваи необходимо учитывать отрицательное поверхностное трение.
    • Состояние породы. Значения RQD и CR, определенные в результате исследования ствола скважины, сильно влияют на вместимость сваи.
    • Стоимость строительства также является важным фактором при выборе свай в качестве опорной системы.
    • Доступность сайта должна быть проверена.
    • Необходимо проверить зазоры от границ.
    • Проверить ограничение вибрации и уровня звука. Чрезмерная вибрация может привести к повреждению прилегающих участков.

    Типы свайных фундаментов

    Эта классификация была произведена на основе типа материала, используемого при строительстве свай, и на основе характера конструкции.

    1. Буронабивные сваи / монолитные сваи
    2. Забивные сваи / сборные сваи
    3. Микросваи
    4. Шпунтовые сваи
    5. Деревянные сваи
    6. Винтовые сваи

    Буронабивные или монолитные сваи

    Наиболее часто и широко б / у тип сваи.В большинстве построек, построенных на свайном фундаменте, наблюдается набивка досок.

    Свая вбита в скалу. В зависимости от характера нагрузки и ее величины глубина заделки в скале будет варьироваться.

    Кроме того, количество свай, необходимое для поддержки колонны, зависит от грузоподъемности сваи и приложенной нагрузки.

    Во-первых, мы находим геотехническую способность и структурную способность сваи. Тогда минимальное из этих значений принимается за вместимость сваи.

    Поскольку приложенная нагрузка известна, количество свай можно рассчитать.

    Буронабивные сваи строятся как одиночные или групповые в зависимости от приложенных нагрузок. Как правило, групповые сваи требуются для поддержки сдвиговых стержней, сдвиговых стен, лифтовых стержней и т. Д.

    Забивные сваи / сборные сваи

    Это сборные сваи.

    Они сконструированы, когда прикладываемая нагрузка сравнительно мала по сравнению с буронабивными сваями.

    Кроме того, сборные сваи не забиваются в скалу, а заканчиваются или вставляются в твердый слой почвы.Должен быть плотный слой почвы, чтобы поддерживать сваю и обеспечивать опору на конце.

    Эти сваи в основном представляют собой сваи с преобладанием трения, хотя имеется концевой подшипник.

    Забивку можно производить вручную путем падения массы в сваю или с помощью вибропогружателя.

    Доступны сваи разных размеров от 400 мм. Далее, в зависимости от характера конструкции, могут изготавливаться даже меньшие размеры.

    Кроме того, эти типы свайных фундаментов широко используются в малоэтажных зданиях, когда они не могут быть построены на мелком фундаменте.

    Микросваи

    Микросваи довольно популярны в малоэтажном строительстве.

    Когда состояние грунта слабое и нет достаточной несущей способности, чтобы выдерживать нагрузки от надстройки, необходимо построить глубокий фундамент.

    На этом фоне, если посмотреть на доступные варианты; мы должны выбрать тип фундамента из буронабивных свай, сборных свай и микросвай.

    Из них буронабивные сваи в целом более дороги по сравнению с двумя другими типами.

    В зависимости от характера и типа нагрузок от надстройки производится выбор типа сваи.

    Кроме того, при строительстве фундаментов такого типа желательно получить рекомендацию инженера-геолога.

    Проект должен быть выполнен на основе параметров, представленных в отчете по исследованию грунта, и они должны быть проверены после строительства путем проведения необходимых испытаний.

    Микросвая представляет собой стальную оболочку, заполненную бетоном.При необходимости и по мере увеличения диаметра микросваи арматурный каркас также можно разместить внутри сваи, чтобы улучшить ее конструктивную способность.

    Микросваи используются при строительстве устоев и мостовых опор. Боковые нагрузки, приложенные к опоре, могут передаваться на грунт наклонными микрошваями.

    При строительстве опор стоят три или шесть свай шестиугольной формы, которые используются для переноса вертикальных нагрузок.

    Основным риском конструкции этого типа является коррозия стали.Если подвергнуть воздействию коррозии или дать ей возможность соответствовать требованиям по коррозии, свая может разрушиться.

    Однако, с другой стороны, риск меньше, так как свая находится под землей, и меньше шансов получить все ингредиенты для коррозии.

    Если конструкция должна быть построена в прибрежной зоне, особое внимание следует уделить защите стального кожуха.

    Микросваи состоят из стальных обсадных труб 150, 200, 300 мм и т. Д.

    Шпунтовые сваи

    Шпунтовые сваи также могут рассматриваться как тип свайного фундамента, хотя в большинстве случаев они не используются для непосредственной поддержки конструкций, как другие типы. свай.

    Например, шпунтовые сваи используются для поддержки почвы вокруг конструкции, а также действуют как постоянная конструкция. Удаление или рассмотрение как постоянных работ зависит от характера конструкции и состояния земли.

    Кроме того, в строительстве широко используются шпунтовые сваи, чтобы удерживать землю для земляных работ. В конструкциях глубоких подвалов, также как указано выше, могут использоваться правильно закрепленные шпунтовые сваи.

    Кроме того, он полезен также при строительстве коффердамов.

    Существуют разные типы шпунтовых свай в зависимости от профиля и схемы соединения. Кроме того, мы можем выбрать подходящую шпунтную сваю на основе необходимого модуля упругости сечения согласно проектным требованиям.

    В статье, подпорная стенка из шпунтовых свай обсуждается конструкция устойчивости подпорной стены из шпунтовых свай.

    Деревянные сваи

    Не только в нынешнем, но и в древнем строительстве использовались более совершенные технологии.

    Они знали, что когда есть слабая почва, нужно делать сваи. Поэтому для этого они использовали экологически чистый материал.

    Даже сейчас, когда строительство или расширение закончено, можно наблюдать забивание деревянных свай.

    В частности, здания и мосты построены на деревянных сваях.

    Деревянные сваи долговечны, экономичны и экологичны.

    Используется специальная древесина с хорошими прочностными характеристиками.

    Пожалуйста, снимайте нагрузку с кожного трения и концевого подшипника.

    Конструкции в очень слабых местах, где нельзя приближаться к тяжелым машинам, используются деревянные сваи.

    Винтовые сваи

    Свая похожа на винт, как показано на следующем рисунке.

    Тип винта зависит от типа конструкции.

    Кроме того, бывают разные типы винтовых свай.

    В соединениях зданий или любых других конструкций, таких как строительство мостов, можно использовать винтовые сваи.

    Проектирование свайных фундаментов

    После того, как сваи выбраны в качестве фундамента типа в соответствии с рекомендациями отчета о геотехнических исследованиях, выполняется оценка количества свай.

    Тогда нам понадобится вместимость сваи.

    В свайных фундаментах имеется двухкомпонентный фундамент для оценки несущей способности слоев.

    Возьмем меньшее из нижеприведенных.

    • Геотехническое проектирование
    • Конструктивное проектирование

    Геотехническое проектирование свай

    Оценка геотехнических характеристик сваи выполняется на основе состояния грунта и состояния породы, в которой она закреплена. рок.

    Геотехническая нагрузка сваи может быть представлена ​​следующим уравнением:

    Qu = Qp + Qs

    Где

    Qu — максимальная геотехническая нагрузка сваи

    Qp — максимальная концевая опора сваи

    Qs — Предельное поверхностное трение сваи

    Допустимая нагрузка (Qall) может быть рассчитана как

    Qall = Qu / FoS

    FoS — коэффициент безопасности; варьируется 2,5 -4

    Кроме того, существуют разные методы расчета допустимой вместимости сваи.Метод применения запаса прочности может отличаться от страны к стране в зависимости от местных стандартов.

    Иногда применяется отдельный коэффициент безопасности как для концевого подшипника, так и для поверхностного трения, а также единичный коэффициент безопасности.

    Замечено, что низкий коэффициент безопасности, такой как 2,0, также используется для трения кожи. При проектировании настоятельно рекомендуется соблюдать местные стандарты.

    В основном есть пять компонентов, связанных с геотехнической емкостью сваи.

    1. Кожное трение грунта (положительное поверхностное трение и отрицательное поверхностное трение)
    2. Кожное трение выветриваемой породы
    3. Кожное трение камня
    4. Концевая опора скальной породы
    5. Концевая опора грунта

    Если свая заканчивается в грунте (твердом слое), в случае сборных свай, используется торцевая опора в грунте. Если сваи вставлены в скалу (набивные сваи на месте), то опорный конец в скале используется для расчета несущей способности сваи.

    Указанные выше пять параметров указаны в геотехнических рекомендациях, основанных на данных исследования скважин.

    Если мы знаем параметры почвы, мы можем рассчитать значения поверхностного трения по уравнениям.

    Для расчета поверхностного трения почвы доступны следующие методы.

    Трение кожи в песке
    • На основе покрывающих пород и угла трения между грунтом и сваей
    • Корреляция со стандартным тестом на проникновение (SPT)
    • Корреляция с тестом на проникновение конуса (CPT)
    Трение кожи в глине
    • λ метод
    • α метод
    • β метод
    • Корреляция с CPT

    Концевой подшипник почвы также может быть рассчитан с помощью различных предложенных методов.Следующие методы широко используются дизайнерами.

    Подшипник на конце грунта
    • Метод Мейерхофа (песок / глина)
    • Метод Васича (песок / глина)
    • Метод Койла и Кастелло (песок)
    • Корреляция с SPT и CPT
    Кожное трение породы

    Обшивка породы определяется в зависимости от состояния и типа породы.

    Обычно предельное поверхностное трение свежей породы и погодной породы указывается в отчете о геотехнических исследованиях.

    Мы должны применить коэффициент запаса прочности для расчета допустимой мощности. Если указана допустимая мощность, мы можем использовать ее напрямую.

    Точечный подшипник скалы (концевой подшипник)

    Оценка основана на результатах испытаний. В большинстве случаев для определения прочности породы проводится испытание на прочность на одноосное сжатие (UCS).

    Отношение между ПСК и концевым подшипником используется для определения окончательного значения.

    Значения RQD и CR также должны проверяться при определении несущей способности сваи и длины раструба, поскольку они отражают состояние породы.

    Таким образом, мы получим необходимые геотехнические параметры, такие как поверхностное трение и значения концевых подшипников, из отчета о геотехнических исследованиях. Что нам нужно сделать, так это применить необходимый запас прочности и рассчитать геотехнические возможности.

    Расчет конструкции сваи

    Допустимое напряжение бетона в буронабивных монолитных сваях в большинстве стандартов рассматривается как 0,25fcu . Есть лишь небольшие отклонения.

    • ACI 318: 0,25 fcu
    • EC2: 0,26 fcu
    • CP4: 0,25 fcu

    Однако сваю необходимо проверять на коробление, особенно если она построена на слабом грунте. Таким образом, выполняется анализ продольного изгиба свайного фундамента.

    И, учитывая то же, можно сделать конструктивный расчет или расчет арматуры.

    Есть два метода / этапа проектирования сваи.

    1. Рассчитайте критическую нагрузку на изгиб и проверьте, превышает ли она приложенную нагрузку.
    2. Выполнение более тщательного анализа потери устойчивости и проектирования.

    Сводка шагов расчета выглядит следующим образом. Дальнейшее чтение необходимо сделать перед выполнением проектирования.

    Шаг 01

    Рассчитайте критическую нагрузку потери устойчивости (Pcr).

    Шаг 02

    На основе Pcr, грунтовых пружин, вращения в верхней части сваи (может иметь некоторую устойчивость к вращению) и т. Д. Найдите эффективную длину (Lcr).

    Step 03

    Поскольку нам известны приложенные нагрузки, эффективная длина и диаметр сваи, мы можем спроектировать сваю обычным методом или с помощью программного обеспечения.

    Ключевые факторы, которые необходимо учитывать при проектировании свайных фундаментов, резюмируются следующим образом.

    • Оцените геотехническую способность и конструктивную способность сваи и примите меньшее значение в качестве несущей способности сваи.
    • Разделите грузоподъемность сваи на приложенную нагрузку (нагрузку на колонну или приложенную нагрузку; предельное состояние эксплуатационной пригодности), чтобы найти количество свай.
    • При проектировании группы свай индивидуальная нагрузка должна рассчитываться на основе центра нагрузки и геометрического центра каждой сваи.Нагрузки распределяются в зависимости от положения сваи.
    • Если имеется более одной сваи, минимальный зазор между ними должен составлять 2,5 диаметра сваи.
    • Увеличение зазора между сваями не позволит использовать анатомию фермы с конструкцией сваи . Поэтому зазор между сваями выдерживают в 2,5 — 3 раза больше диаметра сваи.
    • При наличии органических загрязнений следует обращать внимание на отрицательное трение кожи. В противном случае оценка вместимости сваи будет неверной.
    • Устойчивость сваи должна быть проверена при наличии очень слабых грунтов, таких как торф, на большей глубине.
    • Обратите внимание на значения RQD и CR при выборе длины раструба.
    • Как правило, в соответствии с большинством стандартов допустимый допуск для конструктивных отклонений составляет 75 мм. Это необходимо учитывать при проектировании заглушки сваи. Особое внимание следует обращать на одиночную стопку. Момент центричности должен передаваться балками грунта.Следовательно, это должно быть учтено при проектировании заземляющего луча.

    Строительство свайного фундамента

    Давайте обсудим основные шаги, которые необходимо выполнить при строительстве свай. Следующая процедура обсуждается в отношении свай, уложенных на месте.

    Следующие допуски допускаются различными стандартами как допустимые отклонения во время строительства.

    Код Допустимый допуск
    ACI-336 4% диаметра или 75 мм; в зависимости от того, что меньше
    BS EN 1536 100 мм; для диаметра сваи (D) ≤ 1000 мм

    0.1D для 1000

    150 мм D> 1500

    Конструкция для граблей менее 1 из 15 пределов до 20 мм / м

    Конструкция с граблями от 1 к 4 до 1 из 15 пределов до 40 мм / м

    CP4 75 мм
    BS 8004 Не более 1 к 75 от вертикали или 75 мм

    Отклонение до 1 к 25 допускается для буронабивных свай, пробуренных с граблями до 1 к 4

    Этапы строительства сваи и ключевые аспекты, требующие внимания

    • Проведение разбивки
    • Приступите к удалению верхнего слоя почвы до уровня породы.Он всегда должен стараться поддерживать положение сваи, как указано на чертежах, хотя обычно существует приемлемый допуск 75 мм.
    • Начать выемку керна и контролировать глубину залегания керна. В этом случае он должен следить за тем, чтобы бурение керна происходило в свежей породе, а не в выветрившейся породе.
    • Он должен быть измерен с помощью образцов, скорости проникновения, данных каротажа скважины, других глубин сваи, если таковые имеются.
    • Из-за трудностей с поиском свежей породы первый пласт будет заброшен ближе к скважине.Затем можно оценить другие параметры. Исходя из этого, можно приступать к укладке свай.
    • Производятся визуальные наблюдения для проверки качества породы.
    • Кроме того, для проверки прочности породы можно использовать такие методы испытаний, как испытание точечной нагрузкой. Результаты испытаний на точечную нагрузку можно сопоставить, чтобы найти концевую опору сваи. Если это не дает удовлетворительных результатов, следует проводить отбор керна до тех пор, пока не будет найден здоровый камень. Для получения дополнительной информации о тестировании можно обратиться к статье методы испытания строительных материалов .
    • После завершения бурения породы в соответствии с длиной раструбов, будет проведена очистка.
    • Основная цель очистки — удалить грязь, песок и т. Д. Из бентонита. Это также называется промыванием.
    • Есть параметры, которые необходимо проверить, чтобы убедиться, что свая должным образом чиста. На следующем рисунке указаны предельные значения. Эти значения будут меняться от спецификации к спецификации.
    • Как только бентонит в выработке достигает заданных пределов, промывка прекращается.
    • Затем в котлован помещается труба.
    • Затем медленно заливается бетон. После того, как он заполнен, дрожь снимается на очень небольшое количество, позволяя бетону вытекать.
    • Этот бетон будет постепенно подниматься вверх вместе со всей грязью и нечистотами на дне сваи. Затем снова заполняют треми бетоном и дают возможность бетону вытекать.
    • Он должен следить за тем, чтобы конец дрожжевой трубы всегда находился в свежем бетоне.Это позволяет всегда свежему бетону смешиваться со свежим бетоном, а верхний слой бетона постепенно поднимается вверх.
    • Кроме того, очень важно контролировать скорость заливки бетона, чтобы избежать подъема арматурного каркаса. Если скорость выше, клетка будет поднята.
    • Повторяйте это до тех пор, пока бетонирование не будет завершено.

    Испытания свайных фундаментов

    В отличие от других фундаментов, мы не можем видеть, что происходит под землей.

    Ничего не видно…

    Как определить, правильно ли мы построили сваю с помощью..

    • Соответствующее покрытие арматуры
    • Без образования перемычек
    • Без выступов
    • Без бетонных смесей с бентонитом
    • Без полостей (например, сот) в бетоне
    • Без грязи на дне сваи
    • И т. Д.…

    Поэтому нам необходимо провести испытания сваи, чтобы убедиться, что она построена правильно.

    Подрядчик несет ответственность за проведение испытаний свай по согласованию с консультантом по проекту и сторонним испытательным агентством.

    Методы испытания свай

    В основном существует четыре типа методов испытания свай.

    1. Испытание на целостность сваи (испытание на целостность при низкой деформации)
    2. Испытание на динамическую нагрузку (испытание на высокую деформацию)
    3. Испытание на статическую нагрузку
    4. Звуковое испытание в поперечном отверстии
    Испытание на целостность сваи

    Самый простой метод прогнозирования целостности сваи.

    С помощью этого теста можно предсказать выпуклости, шейки, углубления и т. Д.

    Это лучший метод определения дефектного файла, но не может оценить вместимость сваи.

    Обеспечивает начальное предупреждение о том, неисправна ли свая.

    Испытание на целостность сваи используется для определения свай, подлежащих испытанию другими методами, такими как динамическое испытание сваи и испытание статической нагрузкой сваи.

    Кроме того, этот метод тестирования не требует больших затрат по сравнению с другими тестами. Далее все сваи испытываются этим методом.

    Испытание динамической нагрузкой

    Наиболее широко используемый метод определения несущей способности сваи в существующей конструкции.

    В отличие от теста статической нагрузки, он дает результаты мгновенно. Емкость плие можно получить на месте сразу после тестирования. Однако будет проведен дальнейший анализ, чтобы дать точные ответы после анализа с помощью программного обеспечения, такого как CAPWAP.

    Мы можем получить подшипник скольжения обшивки сваи и концевой подшипник, рассчитанный на испытательную нагрузку.

    Первоначально испытание сваи будет смоделировано с помощью программного обеспечения, а высота падения молота будет определена таким образом, чтобы он не создавал растягивающих напряжений, превышающих допустимые или которые могут восприниматься арматурой сваи.

    Это называется анализом волнового уравнения (WEAP). При использовании этого метода не требуется прикладывать ударную нагрузку несколько раз, пока мы не найдем испытательную нагрузку.

    WEAP обеспечивает взаимосвязь между испытательной нагрузкой, сжимающим напряжением и развитием растягивающего напряжения.

    Таким образом, тестирование может быть выполнено очень легко.

    Испытание статической нагрузкой

    Это более надежный и традиционный метод, используемый при испытании свай. Поскольку все измерения производятся вручную, мы имеем представление о том, что происходит с увеличением нагрузки.

    Нагрузку на сваю увеличиваем до испытательной нагрузки, указанной в проекте сваи, и постепенно снижаем.

    Деформация сваи отслеживается и проверяется, находится ли она в установленных пределах.

    Акустический тест с поперечным отверстием

    Этот тест используется для проверки состояния сваи. Его можно использовать для проверки состояния соответствующих работ в отверстиях, размещенных в свае.

    Трубопроводы укладываются в штабель. Затем испытательный инструмент кладут в стопку и проверяют.Передатчик и приемник используются для проверки состояния сваи.

    На основе скоростей волн прогнозирует состояние сваи. Дополнительную информацию о методе тестирования можно найти в статье Википедии Межскважинный акустический каротаж .

    Знакомство с свайным фундаментом

    Если вы недавно приобрели земельный участок на побережье и планируете построить на нем дом, то вам необходимо узнать, как прибрежные почвенные условия и близость вашего дома к океану повлияют на процесс строительства дома.
    Прибрежная почва суглинистая, что означает, что она содержит большое количество песка, а дома, построенные у воды, должны быть максимально устойчивы к наводнениям. Оба эти фактора делают выбор правильного фундамента для вашего дома решающим шагом на пути к проектированию дома, который будет оставаться прочным в течение десятилетий, несмотря на почву, на которой он построен, и его близость к воде.

    FEMA рекомендует использовать фундамент для домов открытого типа с глубокими стенами, например свайный фундамент, всем, кто строит новый дом недалеко от побережья. Читайте дальше, чтобы узнать больше о свайных фундаментах и ​​советах по установке.

    Отличия свайных фундаментов от обычных

    Самый распространенный тип фундамента для дома в США — простой или ленточный фундамент. Ленточный фундамент относительно неглубокий и обычно состоит из кирпичной или каменной облицовки и твердой бетонной засыпки. Хотя обычные фундаменты домов обеспечивают достаточную устойчивость для домов, построенных на прочной почве и в районах, не подверженных наводнениям, они не подходят для прибрежных почв и погодных условий.
    Свайные фундаменты сильно отличаются от обычных. Эти фундаменты состоят из ряда прочных и прочных свай из дерева, бетона или стали, которые глубоко вбиваются в землю под вашим домом.

    Виды свайных фундаментов

    Существует два основных типа свай, которые ваш домашний дизайнер рассмотрит при проектировании фундамента: сваи с торцевыми опорами и сваи трения. Если слой почвы прямо под вашим домом недостаточно прочен, чтобы выдержать вес вашего дома, то концевые сваи будут вбиваться глубоко в землю под ним, чтобы закрепить ваш дом на слое камня или более прочной почвы под слоем суглинка. .Сваи с торцевыми опорами часто забиваются на глубину до 25 футов в землю.
    Если почва под вашим домом достаточно прочная, то для ее поддержки можно использовать фрикционные сваи. Фрикционные сваи не так глубоко врезаются в землю, как концевые сваи, но они все же обеспечивают вашему дому гораздо большую прочность, чем обычный фундамент.
    Однако нет двух абсолютно одинаковых свайных фундаментов. Только после тестирования почвы и принятия во внимание дизайна вашего дома проектировщик фундамента может создать индивидуальный свайный фундамент, который обеспечит поддержку, в которой нуждается ваш дом.
    Поскольку сваи должны выступать из земли, первый этаж вашего дома будет приподнят во время строительства. Такое возвышение является дополнительным преимуществом для домов, построенных на побережье или рядом с ним, поскольку оно позволяет штормовым нагонам и волнам просто проходить под домами, не причиняя им никакого ущерба.

    Устройство свайных фундаментов

    Существует множество различных способов установки свай. Вам понадобится опытный подрядчик, который поможет вам решить, какой метод использовать, исходя из конкретных потребностей вашего дома.Подрядчик примет во внимание размер и вес свай, ожидаемое сопротивление почвы или породы и ряд других факторов, прежде чем выбрать подходящий метод.
    При выборе подрядчика для установки свайного фундамента вашего дома важно выбрать того, у кого есть опыт установки свай, например подрядчиков Edgewater Marine Construction, Inc.
    Правильная установка свайного фундамента так же важна для окончательной целостности вашего дома, как и конструкция фундамента.
    Если вы выберете правильного проектировщика фундамента и специалиста по установке свай, вы сможете рассчитывать на великолепный новый дом на побережье, который будет стоять и оставаться в отличной форме в течение многих десятилетий.

    Проектирование свайного фундамента | Как это работает?

    11 сен. Как работают сваи?

    Отправлено в 08:00
    в новостях
    от админа

    Укладка свай не новая техника для фундаментов, но она традиционно используется для больших зданий, где они выдерживают необычно большую нагрузку.Однако с 1980-х годов строительная индустрия стала использовать его для всего, от домашних зимних садов до оффшорных ветряных электростанций. Узнать больше о конструкции свайного фундамента и принципах его работы

    Что такое сваи?

    Сваи — это тип глубокого фундамента, используемый для передачи нагрузки на более глубокий уровень, чем это возможно при использовании традиционного неглубокого фундамента. Вертикальные колонны из бетона, стали или дерева или их комбинации вбиваются глубоко в землю, чтобы обеспечить дополнительную поддержку зданию, которое находится наверху.

    Традиционно сваи делались из дерева, но теперь они обычно бетонные, часто армированные или стальные. Расположенные через равные промежутки времени, например, в местах пересечения стен, они опускаются до более плотных и прочных уровней, предотвращая подъем или обрушение, и часто соединяются железобетонными грунтовыми балками, свайными насадками или плитами плота.

    Когда нужны сваи?

    Традиционной конструкции свайного фундамента достаточно, когда грунт подходит и нагрузка, которую он должен выдерживать, умеренная, но есть много способов сделать грунт неподходящим, поэтому настоятельно рекомендуется укладывать сваи.

    • Уровень грунтовых вод высокий.
    • Это почва, устойчивость которой зависит от воды.
    • Удаление фундамента траншеи от предыдущего здания было бы слишком дорого.
    • Существующие траншеи фундамента неустойчивы.
    • Земля непригодна для более чем двух метров.

    Забивка свай прямо внутрь, в отличие от шахт, которые выкапывают в первую очередь, имеет то преимущество, что процесс забивки уплотняет почву вокруг сваи, укрепляет ее и увеличивает ее несущую способность.

    Какие типы свай используются?

    Используется много различных типов свай, но некоторые из них предназначены для специального использования, например, для фундаментов на морском дне. Типы, обычно используемые для жилищного строительства:

    • Секционные мини-сваи Augur — Этот универсальный тип с полым или сплошным центром подходит для использования на площадках с ограниченным доступом.
    • Шнек непрерывного действия с закачкой раствора — Заливка заливается по центру полости, образуя постоянный столб, и большим преимуществом является то, что она вызывает низкий уровень шума или вибрации.
    • Стальные забивные сваи с нижней забивкой — Забивка сваи снизу, а не сверху, означает, что они не требуют тяжелой техники и могут нести грузы от 5 до 85 тонн.
    • Забивные сваи Grundomat со стальным корпусом — Приводимые внутренним двигателем сжатого воздуха, они идеально подходят для легких нагрузок, таких как зимний сад в ограниченных зонах, и вызывают очень небольшую вибрацию.
    • Непрерывные сваи — Идеально подходят для создания подпорных стен, особенно при строительстве подвалов.

    Все они идеально подходят для конкретных условий. Если вы не уверены, что вам может понадобиться, свяжитесь с нашими специалистами по сваи, и мы будем рады проконсультировать вас.

    Почему и когда использовать бетонные сваи?

    Бетонные сваи и просверленные шахты — важная категория фундаментов. Несмотря на их относительно высокую стоимость, они становятся необходимыми, когда мы хотим перенести нагрузки тяжелой надстройки (мост, высотное здание и т. Д.) На нижние слои почвы.Еще одна причина выбора свайного фундамента — состояние и качество слоев грунта. В зависимости от того, как они передают нагрузку на грунт, сваи можно разделить на сваи трения и сваи с торцевыми опорами. В фрикционной свае передача нагрузки осуществляется за счет напряжения сдвига, возникающего на границе раздела сваи и грунта. В торцевой свае нагрузка передается через ее верхушку на твердый слой. Просверленный ствол, как следует из названия, просверливается в недрах, а затем заполняется бетоном.Обычно просверленные стволы имеют большую площадь поперечного сечения (Барья М. Дас, 2008)

    Почему и когда использовать бетонные сваи?

    Различные типы бетонных свай используются для различных целей. Монолитные бетонные сваи или забивные валы — два отличных примера того, как их можно изготовить (изготовить) и установить. При выборе типа сваи, как правило, следует учитывать следующие условия:

    1 — Плохое качество верхних слоев почвы
    2 — Когда у нас обширный грунт на строительной площадке
    3 — Чтобы противостоять подъемным силам
    4 — Чтобы выдерживать боковые нагрузки ( горизонтальный)
    5- Опора моста и опоры

    Типы бетонных свай

    Бетонные сваи могут быть сборными или монолитными.Бетонные сваи обычно армируются.

    Сборные бетонные сваи

    Арматура для сборных свай обеспечивает дополнительную прочность, позволяющую противостоять изгибающему моменту при захвате сваи, транспортировке, вертикальным нагрузкам и изгибающему моменту в результате боковых нагрузок. Они могут быть разных размеров и форм в зависимости от конкретного использования. Предварительно напряженные сваи также могут подвергаться предварительному напряжению.
    Монолитные сваи изготавливаются путем просверливания отверстия в почве с последующим заполнением бетоном.

    Монолитные бетонные сваи

    Монолитные сваи можно разделить на две основные категории: обсадные и необсаженные. Обсаженные бетонные сваи изготавливаются путем вбивания стальной опалубки в грунт. В этом случае оправка размещается внутри обсадной колонны. После достижения желаемой глубины оправка извлекается, а обсадная колонна заполняется бетоном. В случае необсаженных свай обсадная труба будет постепенно сниматься.

    Контроль качества бетонных свай

    Контроль качества бетонных свай — сложная задача.Инженеры и подрядчики полагаются на опыт, хорошо отработанные процедуры и стандарты испытаний для проверки прочности и согласованности материалов свай. Неразрушающий контроль помогает выявить потенциальные дефекты, которые могли произойти во время заливки свай (в случае монолитных свай) или транспортировки и установки (в случае сборных свай).

    Были разработаны различные методы оценки качества бетонных свай. Помимо общих испытаний бетона (образцы бетонных цилиндров и испытание на осадку), для оценки качества и надежности бетонных свай могут использоваться различные методы неразрушающего контроля (NDT).Этот тест может помочь выявить и количественно оценить проблемы, связанные с целостностью и качеством. Следующие методы неразрушающего контроля широко распространены и используются для оценки целостности свай:

    + Испытание целостности при воздействии низкой деформации — Подробнее
    + Ультразвуковое испытание поперечным отверстием для свай с доступным концом,
    + параллельная сейсмика (ACI 228.2R) для свай, покрытых свайной крышкой

    Стоимость свайного фундамента — Как обсудить

    Стоимость свайного фундамента

    Сколько стоят батарейки?

    Трубчатые стальные опоры имели самую высокую удельную стоимость — от 213 за метр для 81.Опора 3 см на опору 819 для опоры 154,9 см. Удельная стоимость опор PPC была ниже: от 72 до 197 за метр для опор PPK 30 см и от 95 до 262 за метр для опор 41 см.

    Сколько стоит построить дом на сваях?

    Средняя стоимость постройки дома на сваях составляет около 25 000 долларов.

    Также можно задаться вопросом, а дорогие ли свайные фундаменты?

    Свайные фундаменты, как правило, дороже обычных неглубоких фундаментов и используются, когда земля над или около поверхности имеет низкую несущую способность или проблемы с осаждением.

    Сколько стоит свайный фундамент по мере необходимости?

    Строительство фундамента обходится в среднем 8 154 человека, при этом большая часть затрат находится в диапазоне от 3 996 до 12 313. Стоимость фундамента колеблется от 4 до 7 долларов за квадратный фут, в зависимости от типа: бетон, строительные леса и стропила или пространство для подполья. Стоимость проекта может варьироваться в зависимости от типа устанавливаемого фундамента.

    Насколько глубокими должны быть посты?

    Hauger. Столбы обычно были бетонными и устанавливались на глубину 300 мм и более.Дома могут поддерживаться полностью на опорах или иметь внутреннюю опору только на опорах.

    Ходить на ходулях?

    Дом на сваях может сильнее раскачиваться при сильном ветре, чем дом на традиционном фундаменте. Из-за характера песка даже дома на Внешнем берегу могут со временем осесть. Для дома с свайным фундаментом не редкость жилая площадь на первом этаже.

    На плите или на строительных лесах дешевле строить?

    Бетонные плиты очень просты в производстве и дешевле, чем строительные леса и балочные фундаменты.Однако имейте в виду, что ремонт и обслуживание бетонной плиты в долгосрочной перспективе может оказаться более дорогостоящим, чем строительство строительных лесов и фундамента из балок.

    Сколько отверток мне нужно?

    Я хочу рассчитать количество винтовых свай, которые будут поддерживать мою конструкцию.

    Какое рекомендуемое расстояние между стойками?

    Промышленность обычно рекомендует расстояние от 8 до 10 футов между винтовыми сваями, в зависимости от конструкции.

    Как долго служат деревянные столбы?

    Фундаментные сваи, погруженные в грунтовые воды, служат неограниченно долго.Полностью установленные, обработанные и зацементированные фундаментные сваи, частично над грунтовыми водами, прослужат 100 и более лет.

    Сколько стоит винтовая свая?

    Хороши ли строительные леса и фундаментные балки?

    Плюсы и минусы фундаментов для опор и балок

    Сколько времени нужно на установку дома?

    в неделю

    Какой фундамент строить дешевле всего?

    Цена: Фундаменты из плит, как правило, являются самым дешевым вариантом, когда речь идет о фундаменте, и хорошим выбором, если бюджет дальновиден.Низкие эксплуатационные расходы: из всех типов фундаментов плиты требуют минимального обслуживания, что способствует соотношению цены и качества.

    Сколько стоит построить дом площадью 1000 квадратных футов?

    Затраты на строительство дома с 2, 3 или 4 спальнями

    Насколько глубоким должен быть свайный фундамент?

    Какой фундамент для дома лучше всего?

    Подвалы, подвалы и плиты — это три основные системы фундамента, используемые в домах. Во влажных и прибрежных районах иногда принято строить дома на сваях.Плита — это, наверное, самый простой фундамент для строительства.

    Как мне оценить свой фонд?

    Как рассчитать бетонный фундамент

    как сделать свайный фундамент

    Шаг 1: Отверстие немного больше диаметра шеста на всю длину шеста выкапывается в земле с помощью такого приспособления, как улитка. Шаг 2: Опускают или вставляют в отверстие сборный бетонный столб. Шаг 3: Заливается бетонный герметик в пространство между насыпью и землей.

    Зачем нужны столбы?

    Утрамбовка — важная часть строительных работ, позволяющая обеспечить прочный фундамент и избежать риска проседания или смещения грунта в будущем. Если ваша собственность строится на перекрывающемся фундаменте, любые дополнения должны быть уложены друг на друга, чтобы гарантировать, что новая структура построена аналогичным образом.

    Сколько стоит бетонная плита 24х24?

    В чем разница между сваями и свайным фундаментом?

    Столбчатый фундамент состоит из цилиндрических столбов для транспортировки и передачи больших нагрузок, перекрывающих сплошные слои.Столбы вбиваются в основание через загрязненный грунт. Свайные фундаменты необходимы для того, чтобы выдерживать большие нагрузки, такие как мост, мост или путепровод.

    Нужен ли мне свайный фундамент?

    Стоимость свайного фундамента

    Метод местного проектирования свайных фундаментов

    В данной работе делается попытка предложить метод местного проектирования свай, основанный на результатах испытаний свайной нагрузки для эталонного участка. Такой LPDM просто основан на идентификации трех безразмерных величин, таких как коэффициент мощности CR, коэффициент жесткости SR и коэффициент групповой осадки.Чтобы доказать надежность LPDM, экспериментальные данные, собранные в течение многих лет в Неаполитанской области (Италия), были использованы для получения вышеупомянутых коэффициентов. Затем LPDM был применен в качестве метода предварительного проектирования к трем хорошо задокументированным случаям с применением подходов, основанных на мощности и расчетах (CBD и SBD). Удовлетворительное соответствие между геометрией первоначального проекта свай и геометрией, полученной с помощью LPDM, доказывает, что предложенная методика может быть очень полезной для предварительного проектирования, обеспечивая разумную точность и требуя небольшого количества ручных расчетов.

    1. Введение

    Проектирование фундаментных систем — это инженерный процесс, который, следовательно, включает упрощенное моделирование более сложного реального мира. Применительно к свайным фундаментам при проектировании свай всегда необходимо рассчитать осевую несущую способность одиночной сваи. Среди основных методов оценки значений сопротивления основания агрегата и сопротивления вала агрегата есть методы, основанные на фундаментальных свойствах грунта ( теоретические методы ), таких как угол трения, и методы, основанные на результатах испытаний на месте. ( эмпирических методов ), таких как стандартные тесты на проникновение (SPT) или тесты на проникновение конуса (CPT).Понимание разницы между моделью и реальностью, ограничений модели и осуществимости различных методов имеет решающее значение.

    Теоретические методы состоят в оценке проектных значений следующих выражений: где — эффективное горизонтальное напряжение при разрушении, его оценка является одним из самых сложных методов в инженерно-геологической инженерии, и — угол трения грунта о сваи. Горизонтальное эффективное напряжение может быть принято как некоторое отношение вертикального эффективного напряжения, что дает в результате вторую форму выражения в уравнении (1).

    В уравнении (2) — коэффициент несущей способности, часто принимаемый как функция угла внутреннего трения грунта вблизи вершины сваи, как предлагается в работе Березанцева и др. [1]; — эффективное вертикальное напряжение, действующее на глубине вершины сваи.

    Эмпирические методы, основанные на результатах CPT, состоят в оценке следующих эмпирических соотношений: где и — эмпирические коэффициенты, зависящие как от типа грунта, так и от типа сваи, — значение точечного сопротивления CPT, представляющего слой вдоль ствола сваи. , и — среднее значение, измеренное в подходящем интервале глубин вокруг основания сваи.

    Для повышения надежности Уравнений (3) и (4) данные нагрузочных испытаний экспериментальных свай можно интерпретировать для получения значений и значений для эталонного участка, и только для такого конкретного участка, используя рассчитанные назад значения вышеуказанные коэффициенты делают расчет сваи более точным.

    Хотя в последние десятилетия были сделаны значительные улучшения в понимании процессов, управляющих поведением системы грунт-сваи вплоть до разрушения, недавние статьи [2, 3] демонстрируют, что наша способность оценивать реакцию сваи на нагрузку все еще далека от совершенства. удовлетворительно для практических целей по конкретному проекту.

    Орр [3] проанализировал прогнозы, сделанные 15 геотехническими специалистами в отношении забивных, буронабивных, винтовых свай и свай CFA в различных грунтовых условиях. Прогнозы полностью теоретические, в том смысле, что каждый специалист получил все данные, необходимые для прогнозирования реакции сваи, но не было экспериментальных данных для сравнения прогнозов и производительности. По словам автора, наблюдается большой разброс значений предельной вертикальной несущей способности (таблица 1), особенно в отношении монолитных свай (буронабивных, винтовых и CFA).

    Винт


    Тип сваи Количество прогнозов (кН) мин. значение (кН) макс. значение Макс. / мин.

    Приводной 3 1748 2262 1,3
    Посадочный 8351 1500 4.3
    CFA 11 1290 5093 4,0

    Аналогичные результаты были получены в связи с событием International Prediction Result были обнародованы во время 3 rd Боливийской международной конференции по глубоким фондам, проходившей в Санта-Крус-де-ла-Сьерра (Боливия). В данном случае на B.СТАНДАРТНОЕ ВОСТОЧНОЕ ВРЕМЯ. (Боливийский экспериментальный сайт для тестирования), а затем загружается в случае отказа. Анализ прогнозов [2] показывает, что соотношение между прогнозируемыми максимальными и минимальными значениями (72 прогноза, выполненных 121 человеком) было даже больше, чем указано в таблице 1.

    Способ повышения надежности и точности Проектирование свай в местном масштабе — это разработка местных методов проектирования свай (LPDM), которые могут использоваться либо на предварительном этапе, либо на заключительном этапе проектирования, в зависимости от данных (качества и количества), на основе которых они были разработаны. .

    Целью данной работы является (1) предложить LPDM, основанный на интерпретации результатов испытаний свайной нагрузкой для эталонного участка, (2) описать некоторые истории болезни, расположенные на эталонном участке, и сообщить о наиболее значимых экспериментальных доказательствах, и (3) применить предложенный LPDM к выбранным историям болезни. Будет показано, что LPDM может быть очень полезным для предварительного проектирования фундамента, будучи довольно точным с инженерной точки зрения, несмотря на то, что требует небольшого количества ручных расчетов.

    2.Метод локального проектирования свай

    Поскольку прогноз реакции сваи на нагрузку зависит от нескольких неопределенностей, программу испытаний свайной нагрузки следует рассматривать как неотъемлемую часть процесса проектирования и строительства. Испытания свай могут относиться к одной из двух категорий: испытания на разрушение пробных свай, чтобы доказать пригодность системы свай и подтвердить проектные параметры, выведенные из исследования площадки, и испытания, проводимые на эксплуатационных сваях, для проверки конструкции. техника и качество изготовления и подтвердить эффективность сваи как элемента фундамента [4].

    Испытания на нагрузку на сваи в основном используются для определения предельной несущей способности свай, непосредственно по полученной кривой «нагрузка-оседание» или путем ее экстраполяции, а также жесткости системы сваи-грунт при определенной нагрузке. Нагрузочные тесты также предоставляют значительный объем дополнительных данных, которые часто остаются неиспользованными. Тем не менее, такие данные могут быть лучше использованы, как демонстрирует LPDM, предложенный в следующих разделах.

    2.1. Коэффициент пропускной способности

    Mandolini et al. В [5] введен коэффициент несущей способности, безразмерный параметр, определяемый следующим образом: где предельная осевая несущая способность сваи, полученная по результатам испытания сваи на нагрузку, делится на вес сваи,.

    Предельная нагрузка сваи обычно не определяется четко, исходя из наблюдения кривой нагрузки-осадки сваи. Простой критерий, который можно использовать для преодоления этой проблемы, — это условно определить как нагрузку, вызывающую смещение головки сваи, равную 10% диаметра основания сваи (как, например, предлагается в Еврокоде 7). Если испытание под нагрузкой было остановлено до того, как головка сваи могла испытать такое смещение, можно получить экстраполяцию кривой «нагрузка-оседание»; например, может быть применен эмпирический метод Чина [6], который предполагает, что форма кривой нагрузка-оседание является гиперболической.Чтобы получить достоверное значение путем экстраполяции, во время испытания на нагрузку необходимо измерить осадку головки сваи, составляющую не менее 5% диаметра основания сваи.

    Коэффициент вместимости CR позволяет сравнивать данные с разных свай (типа и геометрии), принадлежащих одной и той же территории, с точки зрения геологических и геотехнических условий недр. Для данного установленного объема сваи коэффициент вместимости, как и, зависит от типа сваи и типа почвы. Поскольку состояние грунта фиксированное, ожидается, что на CR сильно повлияет конкретная технология установки свай.На предварительном этапе проектирования среднее значение коэффициентов пропускной способности, полученное для эталонного участка, позволяет прогнозировать ожидаемое значение. Очевидно, что необходимо адекватное количество значений CR, чтобы обеспечить надежную оценку. Поэтому предлагается рассчитать коэффициент вариации (CV) популяции CR, чтобы выразить точность.

    2.2. Коэффициент жесткости

    Mandolini et al. [5] ввел коэффициент жесткости, выраженный следующим образом: где — начальная осевая жесткость грунта-сваи (наклон начальной касательной экспериментальной кривой нагрузки-осадки; для объективной и повторяемой обработки данных можно быть полученным как начальная касательная гиперболы, аппроксимирующей первые три точки на экспериментальной кривой нагрузки-осадки).Его знание важно для прогнозирования ожидаемой осадки одиночной сваи под рабочей нагрузкой на предварительном этапе проектирования.

    — осевая жесткость колонны, имеющей длину, равную критическому значению,. Он представляет собой ту длину, при превышении которой любое увеличение длины сваи приводит к небольшому увеличению жесткости сваи или вообще не вызывает ее. Fleming et al. [4] определяется следующим образом: где — модуль Юнга материала сваи; представляет собой значение модуля сдвига грунта на глубине от поверхности земли, и его можно итеративно оценить, используя результаты сейсмических испытаний (в скважине, поперечной скважине и т. д.).) через скорость поперечной волны.

    Критическая длина вместо полной длины сваи была введена в определение SR, потому что на реакцию сваи при рабочих нагрузках (следовательно, далеко от разрушения) влияют, тогда как обычно она фиксируется требованиями к вместимости сваи.

    Ожидается, что для данной геометрии сваи в эталонной площадке на значения SR не так сильно повлияет метод установки конкретной сваи, как на CR, поскольку конкретная установка сваи должна влиять на начальную осевую жесткость грунта-сваи, менее чем ± 20%, как видно из работы Мандолини [7], сбора имеющихся экспериментальных данных [8–10] и простого метода, предложенного Рэндольфом [11] для моделирования влияния установки на начальную осевую жесткость сваи.На предварительном этапе проектирования вводится среднее значение коэффициентов жесткости, полученных для эталонного участка, для прогнозирования ожидаемого значения. Еще раз, предлагается вычислить коэффициент вариации (CV) популяции SR, чтобы выразить точность.

    3. Приложение LPDM
    3.1. Проект на основе емкости (CBD) свайного фундамента

    Свайный фундамент должен быть предварительно спроектирован в соответствии с подходом, основанным на мощности, на участке, для которого необходим набор данных для оценки и который доступен благодаря предыдущим исследованиям.

    Общая вертикальная нагрузка, которая должна быть передана группе свай, получается из структурного анализа. Предполагая номер сваи, средняя нагрузка, передаваемая на каждую сваю, может быть получена как. Для любого заданного диаметра сваи, который должен быть достаточно большим, чтобы гарантировать приемлемый уровень напряжения в головной части сваи, после выбора технологии сваи и оценки в разы FS (коэффициент безопасности, определенный в нормативных документах), вес сваи может быть равен оценивается по Уравнению (5) с использованием, с точки зрения безопасности, следующего уменьшенного значения:

    Из, длина сваи может быть получена.После оценки, таким образом, начальная осевая жесткость грунта-сваи, может быть получена из уравнения (6) с учетом, опять же, следующего приведенного значения:

    Соответствующая упругая составляющая смещения одиночной сваи при среднем значении вертикальную нагрузку можно оценить как. В более широком смысле, это сумма двух вкладов: (упругий компонент) и (нелинейный компонент) =, как показано на рисунке 1.

    Тем не менее, если уровень нагрузки сваи достаточно низкий, можно предположить.Оценка средней осадки свайного фундамента описана в следующем разделе.

    3.2. Групповые эффекты с точки зрения осадки

    Взаимодействие между сваями, принадлежащими к группе, усиливает только упругую составляющую осадки одной сваи (например, [5, 11–13]). Таким образом, средняя осадка свайных фундаментов, может быть выражена следующим образом: где — коэффициент усиления, названный « групповой коэффициент осадки », первоначально введенный Skempton et al.[14] и измерения эффектов взаимодействия между сваями.

    Рассмотрение предположения имеет следующее выражение:

    Исследовательские работы (например, [14, 15]) предложили, что это может быть выражено как функция геометрических факторов, таких как количество,, расстояние, и гибкость,, геморрой.

    Мандолини [13] постулировал, что это может быть выражено как функция соотношения сторон, которая была первоначально введена Рэндольфом и Клэнси [16] как, но с критической длиной ворса, вместо общей длины ворса, как показано следующим выражением:

    Чтобы проверить справедливость этого предположения, Мандолини [13] оценил соотношение между экспериментально измеренным средним оседанием, для шести зданий в восточной части Неаполя и оседанием единственной сваи под средняя рабочая нагрузка, измеренная во время нагрузочного испытания на одной или нескольких эксплуатационных сваях, принадлежащих одному фундаменту.Интерполируя все экспериментальные данные, он предложил следующее выражение:

    Эти результаты, кажется, подтверждают идею о том, что групповые эффекты с точки зрения оседания исключаются в основном геометрическими факторами (посредством соотношения сторон), а не размером конкретные типы свай, влияние которых входит в анализ через значение, полученное при испытании на нагрузку.

    Позже набор данных, необходимых для оценки, увеличивался, включая экспериментальные данные, относящиеся даже к контролируемым свайным фундаментам, не расположенным в восточной части Неаполя.В 2005 г. было доступно 63 хорошо задокументированных истории болезни, включая широкий спектр типов свай (забивные, буронабивные и CFA), собранные в различных геометрических конфигурациях (4 ≤ n ≤ 6500; 2 ≤ s / d ≤ 8; и 13 ≤ L / d ≤ 126) и в отношении очень разных почв (от глинистых до песчаных, слоистых, насыщенных или ненасыщенных и т. д.).

    Mandolini et al. [5], аппроксимируя все вышеупомянутые данные той же степенной функцией, что и уравнение (13), предложил следующее выражение для оценки:

    Данные, собранные в вышеупомянутых 63 историях, включают экспериментально измеренную максимальную осадку свайных фундаментов, что позволяет получить выражение для оценки, определяемое как:

    Подставляя уравнение (14b) в уравнения (10) и (11), можно получить максимальную осадку свайного фундамента.

    3.3. Расчетное проектирование (SBD) свайного фундамента

    Свайный плот — это система фундамента, объединяющая как плоты, так и сваи. Поскольку в такой системе фундамента сваи используются для уменьшения и / или регулирования оседания и их распределения, не предписывается никаких ограничений для коэффициента безопасности свай от разрушения несущей способности, что приводит к оптимизации стоимости фундамента.

    Для предварительного проектирования свайного плота описанный выше метод немного корректируется.Во-первых, необходимо спрогнозировать распределение нагрузки между группой свай и плотом. После оценки с помощью классических методов средней осадки, связанной с разложенным плотом, жесткость грунта легко может быть получена как. Принимая допустимое значение для средней осадки свайного плота и пренебрегая вкладом плота в общую жесткость комбинированного основания, последнее можно получить как. Доля нагрузки, передаваемой сваями на грунт, может быть выражена следующим образом [16]:

    Таким образом, нагрузка, присваиваемая группе свай, равна.В то время как в подходе к проектированию на основе грузоподъемности определяется длина сваи, необходимая для обеспечения требуемого запаса прочности на случай нарушения несущей способности; в подходе к проектированию, основанному на оседании, длина сваи выводится из оценки SR и необходима для обеспечения приемлемой средней осадки свайного плота. В таких обстоятельствах влиянием нелинейности на среднее смещение нельзя пренебрегать из-за высокого уровня нагрузки, и поэтому следует использовать уравнение (10).

    Если кривая нагрузка-расчет интерполирована гиперболой согласно Чину [6], ее можно выразить следующим образом: где — уровень нагрузки.

    Комбинируя уравнения (10) и (17), получается следующее выражение для: которое может быть вычислено для любой данной комбинации диаметра и количества свай. Подставляя уравнение (18) в определение, учитывая, что и и выражая как, получается следующее выражение для:

    Установка значения первой попытки длины сваи,, можно рассчитать вес сваи.Таким образом, из уравнения (5), принимая (уравнение (8)), можно рассчитать осевую несущую способность одиночной сваи и, следовательно, уровень нагрузки. Затем по уравнению (19) выводится жесткость группы свай-грунта,, и, следовательно, новое значение получается как. Процедура повторяется до тех пор, пока выбранная длина,, гарантирует приемлемую осадку,.

    Всю процедуру можно повторить для допустимого значения максимальной осадки свайного плота, приняв уравнение (19), (уравнение (14b)) вместо (уравнение (14a)).

    4. Опыт работы в восточной части Неаполя (Италия)

    В 1995 году в Неаполе было завершено строительство «Центра нового направления» (CDN). Это крупный поселок городского типа, расположенный в восточной части города, в основном предназначенный для ведения бизнеса. Он включает в себя многоэтажные дома высотой до 100 метров.

    Свайные фундаменты, спроектированные с учетом вместимости, были приняты почти для всех зданий. Из-за важности работ и обычных неопределенностей, связанных с проектированием свайных фундаментов, до, во время и после строительных работ было проведено обширное экспериментальное исследование.В частности, было проведено 20 испытаний под нагрузкой вниз на разрушение различных пробных свай, 125 испытаний под нагрузкой от головы вниз на различные производственные сваи, а также тщательный мониторинг характеристик нескольких зданий во время и после их строительства.

    4.1. Геолого-геотехнический конкурс

    Недра всей территории были тщательно исследованы рядом авторов (резюме дано Мандолини [13]).

    Сбор геологической и геотехнической информации показал наличие достаточно однородного состояния недр.Начиная с поверхности земли, расположенной на высоте от 5 до 8 м над средним уровнем моря, и двигаясь вниз, обнаруживаются следующие почвы (Рисунок 2): (а) искусственный грунт; (б) вулканический пепел; (c) стратифицированные пески с органическими почвами; (г) пуццолана, несвязная или слегка цементированная; (д) вулканический туф; и (f) морские пески.

    Уровень грунтовых вод находится на небольшой глубине от поверхности земли (от +2 до +5 м над уровнем моря).

    На Рисунке 2 также представлены результаты CPT с точки зрения сопротивления конуса, и трения, а также измерения скорости поперечной волны.Все данные относятся к вертикали (отмечена в верхней части сплошными точками), где вулканический туф не обнаружен.

    Как видно, значения очень изменчивы и очень часто меньше 10 МПа в верхних 30 м. После обнаружения пуццоланы значения все еще остаются довольно низкими, но, даже незначительно, линейно возрастают с глубиной до 40 м, где обнаруживается слабоцементированная пуццолана, о чем свидетельствует внезапное увеличение. За пределами глубины 60 м (морской песок) значения сильно различаются.

    Если посмотреть на, независимо от типа почвы, значения имеют тенденцию линейно увеличиваться с глубиной от примерно 150 м / с на небольшой глубине до более 300 м / с на большей глубине.

    4.2. Данные по применению LPDM в Неаполитанской зоне (2005 г.)

    В 2005 г. Mandolini et al. [5], обработка данных, собранных в предыдущие годы, предоставила информацию, необходимую для применения LPDM для неаполитанской территории. Они представлены в таблице 2.

    9042 904 73,1 908



    Тип сваи

    1 0,26 1,46 0,28
    CFA 37,5 0,25 1,44 0,46
    Винтовой и приводной

    Буронабивные сваи дают наименьшее значение (в среднем в 12 раз больше веса сваи) и больший разброс, в то время как забивные сваи дают наибольшее значение (в 73 раза больше веса сваи) и наименьший разброс.Сваи CFA являются промежуточными, даже если их разброс аналогичен разбросу буронабивных свай. Эти результаты подтверждают ожидаемое сильное влияние технологии установки свай на осевую несущую способность сваи. Напротив, конкретная установка сваи не так сильно влияет. Фактически он составляет от 1,29 (винтовые и забивные) до 1,46 (буронабивные) для всех свай, с. Эти данные, по-видимому, подтверждают то, что многие авторы утверждали на протяжении более 20 лет [11, 13, 17, 18]: метод установки влияет на осевую жесткость свай намного меньше, чем их несущая способность, и зависит в первую очередь от небольшой модуль деформации сдвига грунта.

    4.3. Данные для приложения LPDM в Неаполитанской области (2018)

    Сбор данных, начатый во время строительства CDN, никогда не прекращается. До настоящего времени во время строительных работ в провинции Неаполь было проведено большое количество нагрузочных испытаний на пробных и эксплуатационных сваях. В набор данных теперь включены результаты 384 нагрузочных испытаний, проведенных на сваях, реализованных на 15 сопоставимых площадках с точки зрения геологического и геотехнического контекста. Улучшение такого набора данных позволяет обновлять значения и (и соответствующие коэффициенты вариации), как показано в таблице 3.


    Тип сваи

    9042 9042 9042 9042 9042 9042 9042 904

    37,5 0,25 1,46 0,08
    Приводной 78,2 0,13 1,38 0,16
    FDP 51.5 0,33 1,44 0,07

    В дополнение к данным, обработанным в 2005 году, был введен еще один тип сваи — сваи полного вытеснения. Стоит отметить, что коэффициенты вариации уменьшаются как для каждого типа сваи, так и для каждого типа; таким образом, предоставленные значения и более надежны из-за расширения набора данных.

    5. Применение LPDM для трех хорошо задокументированных историй болезни

    Чтобы проиллюстрировать применение LPDM, сделана ссылка на следующие три хорошо задокументированных истории болезни: (i) История болезни №1, относящаяся к строительство здания нового суда; данные очень подробно представлены Мандолини [13], но читатель может найти исчерпывающее резюме в Мандолини и Виггиани [17].(ii) История болезни № 2, связанная со строительством двух башен; опять же, данные очень подробно представлены Мандолини [13], но читатель может найти исчерпывающее резюме в Мандолини и Видгиани [19]. (iii) История случая № 3, связанная со строительством группы круглых стальных резервуаров; данные подробно представлены Russo et al. [20].

    Стоит отметить, что применение LPDM было проверено по другим хорошо задокументированным историям болезни в восточной части Неаполя, здесь не сообщается; его надежность для эскизного проекта систематически подтверждается.

    5.1. История болезни №1
    5.1.1. Описание

    Новое здание суда состоит из трех башен высотой от 67 до 110 м от поверхности земли (рис. 3). Каждая башня имеет стальную рамную конструкцию с железобетонными жёсткими сердцевинами для защиты от ветра и сейсмических воздействий.

    Общая приложенная вертикальная нагрузка составляет примерно 1450 МН, а вся площадь фундамента составляет примерно 7000 м. 2 . Полученное среднее контактное давление (≈200 кПа) привело бы к средней осадке порядка нескольких десятков сантиметров, превышающей допустимое значение.Поэтому свайный фундамент, изображенный на рисунке 4, был рассмотрен проектировщиком.

    Состоит из 241 буронабивной сваи с ячейкой предварительного напряжения в основании. Все сваи имеют длину 42 м и диаметр от 1,5 м до 2,2 м (23 сваи с диаметром d = 1,5 м, 62 сваи с диаметром d = 1,6 м, 79 свай с диаметром d = 1,8 м, 57 свай с d = 2,0 м и 20 свай с d = 2,2 м). Расстояние между сваями в среднем составляет с = 6.1 мес.

    Каждая свая подвергается средней нагрузке = Q / n = 6,0 МН. Из-за концентрации нагрузки под железобетонными стержнями жесткости максимальная ожидаемая нагрузка составляет = 8,9 МН.

    Перед началом строительства были проведены четыре испытания пробных свай (A, B, C и D) на нагрузку с головы вниз, все длиной L = 42 м [21].

    Сваи A (без датчика предварительного напряжения в основании) и C (с датчиком предварительного напряжения в основании) имеют диаметр d = 1.5 м, тогда как сваи B (без ячейки предварительного напряжения в основании) и D (с ячейкой предварительного напряжения в основании) имеют диаметр d = 2,0 м. Все сваи оснащены инструментами по всей длине, чтобы измерить вклады вала и основания.

    Поскольку окончательное решение было принято с использованием свай, оснащенных ячейкой предварительного напряжения в основании, на Рисунке 5 показаны только результаты нагрузочных испытаний свай C и D.

    Как видно, в то время как кривая нагрузка-осадка для сваи C ( d = 1.5 м) явно демонстрирует состояние хрупкого разрушения при Q = 19,1 МН, то же самое не относится к свае D ( d = 2,0 м). В этом случае из-за проблемы с реакционной системой испытание под нагрузкой было остановлено при Q = 27,5 МН. Основываясь на интерпретации измерений внутренней деформации, Мандолини [13] оценил следующие значения для среднего трения кожи и сопротивления основания единицы: = 63 кПа и = 2,4 МПа. Из рисунка 5 также можно заметить, что при средней нагрузке = 6.0 МН, измеренная осадка находится в диапазоне от 3,5 мм (ворс C) до 2,3 мм (ворс D).

    Строительство трех башен заняло около семи лет (1982–1989). В течение всего периода строительства (Рисунок 6) велась подробная запись приложенной нагрузки; В настоящее время осадка 41 точки, распределенная по всей площади фундамента, была измерена с помощью высокоточной нивелирной съемки.

    Как видно, большая часть нагрузки (95%) была приложена до конца 1987 года; в то время измеренные средние осадки для трех башен находятся в диапазоне от 26 мм (Башня C) до 35 мм (Башня B) со средним значением = 31 мм.

    В заключительной части периода строительства (1987–1989 гг.) И в течение нескольких лет после окончания строительства (1989–1995 гг.) Скорость осадки оставалась практически неизменной (∼5 мм / год), несмотря на очень небольшое увеличение приложенной нагрузки и возникновение деформаций ползучести в пирокластических грунтах.

    5.1.2. Краткое изложение основных результатов экспериментов

    Свайный фундамент, принятый для здания нового суда в восточной части Неаполя, состоит из 241 буронабивной сваи большого диаметра разного диаметра ( d = 1.5 / 2,2 м), но той же длины ( L = 42 м), в среднем с интервалом с = 6,1 м. Чтобы отнести к одному единственному значению, взвешивая диаметр каждой сваи по количеству соответствующих свай, получается следующий средний диаметр: = 1,8 м.

    Поскольку нет экспериментальных данных, относящихся к этому диаметру сваи, можно разумно оценить предельную вертикальную несущую способность, используя экспериментальные значения, полученные в результате испытаний на нагрузку для (= 63 кПа) и (= 2.4 МПа). Интегрирование по площади ствола и площади основания сваи диаметром = 1,8 м дает = 21,1 МН.

    В условиях осадки одинарной сваи при рабочей нагрузке = 6,0 МН возникает та же проблема. Однако разумно предположить, что осадка сваи с = 1,8 м находится в пределах измеренных значений для меньшего (свая C = 3,5 мм) и большего (свая D = 2,3 мм) диаметра. Например, с помощью простой линейной интерполяции можно оценить = 2,8 мм.

    Рассматривая групповые эффекты, измеренная осадка для трех башен дает среднюю осадку всей группы свай = 31 мм; итоговый коэффициент расчетов группы составляет.

    5.1.3. Применение LPDM в здании нового суда

    Структурный анализ выявил высокую концентрацию нагрузки с максимальным расчетным значением = 8,9 МН. Согласно итальянским нормам того времени (минимальный запас прочности FS = 2,5 для высоконагруженной сваи) = 22,25 МН.

    Диаметр сваи принят равным d = 1,8 м, что соответствует поперечному сечению сваи A = 2,54 м 2 .

    Из таблицы 3 для буронабивных свай = 11.7 и = 0,27, следует = 8,51.

    Так как = 22,25 МН, то W = 2,61 МН. Приняв = 24 кН / м 3 , такое значение для W приводит к длине сваи L = 42,8 м (всего 0,8 м, что означает на 2% больше, чем было выбрано на окончательной стадии проектирования). Принимая = 25000 МПа, на основе профиля на Рисунке 2 после нескольких итераций найдено значение = 33,4 м. Это соответствует = 1905 МН / м. Из таблицы 3 для буронабивных свай = 1,56 и = 0.09 следует, что = 1,42 и = 2701 МН / м.

    Соответствующее смещение головки одинарной сваи (упругая составляющая) при средней вертикальной нагрузке ожидается = 2,2 мм. Если учесть нелинейную часть односвайной осадки, то она будет равна 3,7 мм. Выявлен диапазон для, практически совпадающий с диапазоном значений, измеренных во время нагрузочных испытаний (2,3 мм и 3,5 мм).

    С точки зрения групповых эффектов результирующее соотношение сторон составляет R = 6.6, а коэффициент погашения группы = 9,9, что всего на 10% меньше экспериментального значения. Максимальный коэффициент расчетов группы = 18,9.

    Отсюда следует, что расчетные средние и максимальные осадки свайного фундамента равны соответственно = 22,1 мм и = 42,0 мм. Отсюда следует, что измеренная средняя осадка (= 31 мм) попадает в диапазон расчетных значений.

    Обратите внимание, что нелинейная часть осадки = 1,5 мм составляет около 6% от общей средней осадки свайного фундамента и около 3% от общей максимальной осадки свайного фундамента; поэтому она незначительна.

    5.2. История болезни №2
    5.2.1. Описание

    Две башни имеют одинаковую высоту (86,5 м) от поверхности земли (Рисунок 7). Каждая башня (U для офиса и A для гостиницы) имеет стальную каркасную конструкцию с железобетонными жёсткими сердцевинами для защиты от ветра и сейсмических воздействий.

    Общая приложенная вертикальная нагрузка, Q , исходящая от двух башен (за исключением небольшого трехэтажного здания), составляет приблизительно 410 МН, а вся площадь фундамента составляет около 2800 м 2 .Полученное среднее контактное давление (≈145 кПа) привело бы к средней осадке, превышающей допустимое значение. Таким образом, всего было установлено 637 свай CFA (613 под двумя главными башнями и 24 под малым зданием), длиной L = 20 м и диаметром d = 0,60 м. Расстояние между сваями в среднем составляет с = 2,4 м.

    На каждую сваю действует средняя нагрузка = 0,67 МН. Из-за концентрации нагрузки под железобетонными стержнями жесткости максимальная ожидаемая нагрузка составляет = 1.37 Мн.

    Перед началом строительства были проведены два испытания пробных свай на разрушение (рис. 8). Сваи были оснащены инструментами по всей длине, чтобы измерить вклады ствола и основания.

    Как видно, свая 2 вела себя лучше, чем сваа 1: максимальная нагрузка, достигнутая в конце испытания, составила 4,8 МН и 4,2 МН соответственно, что соответствует осадке головы сваи = 85 мм и = 65 мм. , соответственно.

    Основываясь на интерпретации измерений внутренней деформации, можно оценить следующие значения для среднего поверхностного трения и сопротивления основания устройства: = 90 кПа и = 3.5 МПа. Как и ожидалось, эти значения немного больше, чем соответствующие значения для буронабивных свай из-за положительного воздействия на окружающий грунт во время проходки винтом. Из рисунка 8 также можно заметить, что при средней нагрузке измеренная осадка находится в диапазоне от 1,7 мм (свая 1) до 2 мм (свая 2).

    На строительство двух башен ушло около двух лет. В течение всего периода строительства (Рисунок 9) велась подробная запись приложенной нагрузки; В настоящее время осадка 39 точек, распределенных по всей площади фундамента главных башен, была измерена с помощью высокоточной нивелирной съемки.

    Как видно, в конце строительства измеренные средние осадки для двух башен были разными (29,2 мм для башни A и 20,9 мм для башни U).

    Важно добавить, что измерения для башни A начались до бетонирования плота, соответствующая средняя осадка которого составила 2,6 мм. Поскольку два фундамента очень похожи, Мандолини [13] предложил увеличить измеренную среднюю осадку для башни U на ту же величину, в результате чего общая осадка будет равна 20.9 + 2,6 = 23,5 мм. В целом по окончании строительства две башни показали среднюю осадку = 26,4 мм. Что касается предыдущей истории болезни, то после окончания строительства зафиксировано увеличение осадки, связанное с возникновением деформаций ползучести в пирокластических грунтах.

    5.2.2. Сводка основных экспериментальных результатов

    Свайный фундамент, принятый для башен A и U в восточной части Неаполя, состоит из 613 свай CFA одинаковой длины ( L = 20 м) и диаметра ( d = 0.60 м), в среднем через с = 2,4 м.

    С точки зрения осадки одинарной сваи при средней рабочей нагрузке, осадка, измеренная при испытаниях на нагрузку на пробные сваи, в среднем составляет = 1,85 мм.

    Рассматривая групповые эффекты, измеренная осадка для двух башен дает среднее значение осадки всей группы свай = 26,4 мм, что соответствует коэффициенту групповой осадки.

    5.2.3. Применение LPDM к башням A и U

    Структурный анализ показал максимальное расчетное значение = 1.37 Мн. Согласно итальянским кодексам того времени (минимальный коэффициент запаса прочности FS = 2,5 для высоконагруженной сваи) = 3,43 МН. Диаметр сваи принят равным d = 0,60 м, что соответствует поперечному сечению сваи A = 0,28 м 2 .

    Из таблицы 3 для свай CFA = 37,5 и = 0,25 следует, что = 28,18.

    Поскольку = 3,43 МН, следует, что W = 0,12 МН. Принимая = 24 кН / м 3 , такое значение для W приводит к длине сваи L = 18 м (всего 2 м, что означает на 10% короче, чем выбрано на окончательной стадии проектирования L = 20 м).Используя профиль, представленный на Рисунке 2, и принимая = 25000 МПа, после нескольких итераций найдено значение = 15,5 м. Это соответствует = 456 МН / м.

    Из таблицы 3 для свай CFA = 1,46 и = 0,08 следует, что = 1,34 и K = 613 МН / м.

    Соответствующее смещение головы одинарной сваи (упругая составляющая) при максимальной вертикальной нагрузке ожидается = 1,1 мм. Если рассматривать нелинейную часть односвайной осадки, будет равняться 1.82 мм, что практически совпадает со средним измеренным (1,85 мм).

    С точки зрения групповых эффектов результирующее соотношение сторон составляет R = 9,7, а коэффициент согласования в группе = 17,8, что примерно на 20% больше экспериментального значения. Максимальный коэффициент расчетов группы = 32,3.

    Отсюда следует, что расчетные средние и максимальные осадки свайного фундамента равны соответственно = 19,4 мм и = 35,3 мм. Отсюда следует, что измеренная средняя осадка (= 26.4 мм) попадает в диапазон расчетных значений.

    Обратите внимание, что нелинейная часть осадки = 0,73 мм составляет около 4% от общей средней осадки свайного фундамента и 2% от общей максимальной осадки свайного фундамента; поэтому она незначительна.

    5.3. История болезни №3
    5.3.1. Описание

    Четыре стальных резервуара для хранения гидроксида натрия, токсичной жидкости с удельным весом 15,1 кН / м 3 , должны быть добавлены к уже существующему кластеру в районе порта Неаполя (Рисунок 10) .Новые резервуары имеют диаметр от 10,5 до 12,5 м и высоту 15 м. Суммарная приложенная вертикальная нагрузка Q , исходящая от каждого резервуара, составляет от 18 до 25,5 МН. Полученное среднее контактное давление (≈187 кПа) привело бы к средней осадке от 90 до 105 мм при статических нагрузках. Это больше, чем значение, совместимое с безопасной эксплуатацией цистерн. Поскольку коэффициент запаса прочности при расчетной нагрузке был удовлетворительным (от 8 до 9), был рассмотрен свайный плотный фундамент (рисунок 11).


    Всего было установлено 52 сваи CFA (по 13 свай под каждым резервуаром) длиной L = 11,3 м и диаметром d = 0,60 м.

    На этапе проектирования пробная свая была испытана на нагрузку около 2100 кН. Из полученной кривой «нагрузка-оседание» (рис. 12) можно заметить, что при нагрузке 1500 кН (средний уровень нагрузки свай под резервуарами) секущая жесткость испытательной сваи составляет 214 кН / мм. Соответствующее оседание головки одинарной сваи составляет = 7 мм, что является суммой = 3 мм и = 4 мм.

    Осадку ряда точек на фундаментных плотах новых резервуаров контролировали методом точного нивелирования. Также были измерены нагрузки, передаваемые плотом на некоторые из свай двух новых резервуаров. Во время первого заполнения при общей приложенной нагрузке 23 МН средняя осадка, наблюдаемая для резервуара № 12 составляет 19,7 мм, а максимальное наблюдаемое оседание составляет 35 мм.

    5.3.2. Обобщение основных результатов экспериментов

    На свайный плотный фундамент, принятый для резервуара №12 в порту Неаполя состоит из 13 свай CFA одинаковой длины ( L = 11,3 м) и диаметра ( d = 0,60 м), в среднем с интервалом s = 3,5 м.

    При средней рабочей нагрузке на сваю = 1,5 МН осадка, измеренная при испытании на нагрузку сваи на пробной свае, составляет = 7 мм.

    Рассматривая групповые эффекты, измеренные средние и максимальные осадки для резервуара при рабочей нагрузке Q = 23 МН, соответственно, равны = 19,7 мм и = 35 мм, что соответствует групповым коэффициентам осадки = 2.8 и = 5.0.

    5.3.3. Применение LPDM к резервуару № 12

    Общая приложенная вертикальная нагрузка составляет Q = 23 МН. Расчетная осадка для разнесенного плота = 105 мм; Таким образом, жесткость плота без свайного грунта составляет = 219 МН / м. Принимая допустимое среднее значение осадки для плота, равное 20 мм, соответствующая групповая жесткость грунта свай составляет = 1150 МН / м. Из уравнения (15) = 0,96 и, следовательно, = 22 МН — нагрузка, передаваемая на сваи. 13 свай диаметром 0.Учитывается 6 м (поперечное сечение сваи A = 0,28 м 2 ), в результате чего средний шаг сваи составляет 3,5 м.

    После применения предложенного метода длина сваи, необходимая для получения = 20 мм, составит L = 9,8 м, что на 15% меньше, чем выбрано на финальной стадии проектирования. Для полноты картины стоит упомянуть, что в результате расчетов масса сваи W = 0,07 МН; осевая несущая способность односвайной = 1,9 МН; уровень нагрузки = 0.90; соотношение сторон R = 2,1, коэффициент расслоения в группе = 1,5; жесткость колонны = 722 МН / м; и группа сваи — жесткость грунта = 1150 МН / м.

    Вышеописанную процедуру можно повторить, предполагая, что допустимое максимальное значение осадки для плота равно 35 мм. Соответствующая группа свай — жесткость грунта = 657 МН / м. Из уравнения (15) = 0,92 и, следовательно, = 21,1 МН — нагрузка, передаваемая на сваи. Рассмотрены 13 свай диаметром 0,6 м, что дает среднее расстояние между сваями 3.5 мес.

    После применения предложенного метода длина сваи, необходимая для получения = 35 мм, составит L = 9,0 м, что на 25% меньше, чем выбрано на финальной стадии проектирования. Для полноты картины стоит упомянуть, что в результате расчетов вес сваи W = 0,06 МН; осевая несущая способность односвайной = 1,7 МН; уровень нагрузки = 0,95; соотношение сторон R = 2,2; максимальный коэффициент расчетов группы = 3,2; жесткость колонны = 789 МН / м; и группа сваи — жесткость грунта = 657 МН / м.

    6. Резюме

    В таблице 4 представлены основные результаты, полученные с помощью приложения LPDM, основные экспериментальные результаты и основные окончательные варианты дизайна для каждого проанализированного случая.


    История болезни Конструктивный подход по сравнению с (м) (мм) (и) LPDM (мм)
    1 CBD 42 vs.42,8 31 22,1–42
    2 CBD 20 против 18 26,4 19,4–35,3
    3 SBD 9,3 19,3 19,3 9,3 –35 20–35

    Как видно, согласие удовлетворительное.

    Для историй болезни CBD различия между длинами свай, взятыми из этапов детального проектирования, и теми, которые просто получены из LPDM, находятся в диапазоне от –20% до + 2%; измеренные средние осадки находятся в пределах диапазона, полученного LPDM.

    Для случая SBD, то есть для случая, когда осадки были наложены равными измеренным (средним и максимальным), длина сваи из LPDM была немного меньше (-2, чем та, которая была принята на стадии детального проектирования).

    7. Выводы

    Проектирование фундаментной системы состоит из последовательности этапов, направленных на выбор типа системы, которая удовлетворяет наши потребности наиболее экономичным способом, с достаточным запасом прочности на случай отказа несущей способности и безопасным реакция на рабочие нагрузки, согласно нормативным требованиям.Важной частью процесса проектирования и строительства фундамента является исследование площадки и испытание свай. Последнее должно быть выполнено для подтверждения пригодности свайной системы, подтверждения проектных параметров, полученных в результате исследования площадки, для проверки технологии строительства и качества изготовления, а также для подтверждения характеристик сваи в качестве элемента фундамента. Аналитические, эмпирические, полуэмпирические и теоретические методы проектирования свайных фундаментов за последние десятилетия получили очень быстрое развитие.Тем не менее их надежность обычно зависит от грамотного выбора вводимых параметров. Хотя есть успехи в нашем понимании геотехнических проблем, было продемонстрировано [2, 3], что прогнозирование характеристик свай часто далек от фактического.

    Чтобы улучшить нашу способность оценивать реакцию сваи на нагрузку для практических целей в конкретном проекте, авторы рекомендуют использовать метод местного проектирования свай, как показано в настоящей работе.Он просто основан на идентификации следующих трех безразмерных величин: коэффициента несущей способности CR, коэффициента жесткости SR [5] и коэффициента групповой осадки [14]. Вышеупомянутые коэффициенты были получены авторами для неаполитанской области, где были доступны необходимые экспериментальные данные, но описанная процедура, безусловно, повторяется везде.

    LPDM был успешно применен в качестве метода предварительного проектирования к трем хорошо задокументированным случаям проектирования свайных фундаментов с учетом мощности и осадки.В последнем случае сваи проектируются как средние редукторы осадки; поэтому были внесены важные соображения о распределении нагрузки между группой свай и плотом, а также о жесткости системы грунт-сваи.

    Согласие между выбором, сделанным проектировщиком для окончательного расчета геометрии свай, экспериментальными наблюдениями относительно средней осадки фундамента и результатами применения LPDM, является очень удовлетворительным.

    Кроме того, надежность LPDM была подтверждена его применением к другим хорошо задокументированным историям болезни в восточной части Неаполя, здесь не сообщается.

    Доступность данных

    Данные, использованные для подтверждения выводов этого исследования, можно получить у соответствующего автора по запросу.

    Конфликт интересов

    Авторы заявляют об отсутствии конфликта интересов.

    Фундаменты свайные | Ground Sun

    По мере того, как жилищное строительство на заброшенных объектах в Великобритании продолжается быстрыми темпами, отрасли пришлось адаптироваться и меняться, чтобы учесть характеристики таких участков.

    По мере того, как жилищное строительство на заброшенных территориях Великобритании продолжается быстрыми темпами, отрасли пришлось адаптироваться и меняться, чтобы учесть характеристики таких участков.И хотя в течение последних двадцати лет эти разработки становились все более общими, проблемы, связанные с ростом затрат на утилизацию выкопанного материала и жизнеспособность существующих свайных фундаментов, продолжают оставаться ключевыми проблемами для многих строителей домов, подрядчиков и архитекторов. Более того, эти проблемы становятся все более актуальными для тех, кто строит малоэтажное жилье. С этой целью в данной статье рассматривается ландшафт свайных фундаментов , исследуются их преимущества и объясняется, где они могут служить подходящим вариантом в строительных проектах.

    Давайте разберемся с заблуждениями, связанными с свайными фундаментами

    Промышленность считает, что свайные фундаменты обычно требуют меньше материала для строительства по сравнению с традиционными траншеями, и, как таковые, они могут обеспечить снижение затрат, а также сроки строительства и устойчивость. Однако, несмотря на эти преимущества, конкретные критерии использования свайных фундаментов могут показаться несколько неясными. Этот недостаток понимания, а также отсутствие ресурсов и информации, чтобы прояснить такое плохое понимание, является особой проблемой, на решении которой сосредоточился фонд NHBC, например, их недавняя публикация об эффективном проектировании свайных фундаментов для малоэтажных зданий. показано.Таким образом, в этой статье со следующими разделами мы стремимся устранить путаницу, которая окружает правильные подходы к проектированию и выбору свайных фундаментов, особенно в отношении строительства малоэтажного жилья.

    Преимущества свайных фундаментов

    «Прямая экономия»: время и деньги

    Давайте начнем со многих преимуществ свайных фундаментов. В качестве ключевого вывода в отчете были выделены некоторые преимущества, которые противоречат предыдущему восприятию, ключевой такой пример заключается в том, что отдельные критерии проектирования не требуются при использовании для строительства малоэтажного жилья.

    Наиболее важным фактором, влияющим на фундамент конструкции, является возможное повреждение построенной конструкции. На данный момент само собой разумеется, что трещины и трещины недопустимы в строительстве, и главное внимание всегда следует уделять предотвращению потенциального дифференциального движения (независимо от выбора фундамента).

    Более того, если исключить дифференциальное движение, свайный фундамент дает еще одно преимущество в виде меньшего количества материала, необходимого для строительства (что, как следствие, позволяет избежать обширных выемок грунта).Это само по себе служит для ускорения строительства, при этом избегая высоких затрат, связанных с удалением отходов. Эти выгоды мы будем называть «прямой экономией» для застройщика дома, однако необходимо учитывать дополнительные выгоды, каждая из которых подпадает под понятие «косвенная экономия».

    «Косвенная экономия»: предотвращение глубоких земляных работ, озабоченность Агентства по охране окружающей среды и устойчивость

    Давайте начнем с одного из наиболее значительных косвенных сбережений, которые может обеспечить свайный фундамент, а именно полного исключения глубоких земляных работ.Это может служить не только для предотвращения опасений и опасений по поводу здоровья и безопасности, но и для решения конкретных проблем Агентства по охране окружающей среды, таких как возможность проникновения загрязненных грунтовых вод в подземные источники воды (что, как правило, является прямым результатом сбоев, вызванных фундамент здания).

    Этот конкретный момент становится все более актуальным при строительстве на заброшенных участках, поскольку загрязнение может представлять реальный риск и всегда должно приниматься во внимание профессиональным строителем.С этой целью выбор правильного свайного фундамента может обеспечить реальное решение для минимизации риска для окружающей среды.

    Более того, когда мы рассматриваем постоянно актуальный вопрос устойчивости, мы обнаруживаем из исследования в рамках отчета, что свайные фундаменты приводят к значительно более низкому содержанию углерода, чем при альтернативных вариантах. Это означает, что меньший объем отходов и меньшая потребность в земляных работах не только обходятся дешевле, но и позволяют избежать штрафных санкций за традиционные фундаменты для засыпки траншеи налогом на свалки 1996 года.

    Выйдя за пределы стадии строительства

    Заглянув за стадию строительства, мы обнаружим, что свайные фундаменты помогают обеспечить соответствие домов строгим требованиям схемы экологически безопасных домов.

    Эта схема, в которой используются независимые оценщики, была принята по всей Великобритании за счет увеличения числа местных властей, стремящихся сделать жилье в Великобритании более экологичным. В спецификациях схемы поощряются «геотермальные сваи», в которых используется свайный фундамент вместе с наземным теплообменником с замкнутым контуром.Эта система затем извлекает выгоду из подземных температурных различий для обогрева зданий, расположенных над ними.

    Это еще один способ, с помощью которого свайные фундаменты представляют собой эффективное и рентабельное решение для освоения старых месторождений, и все это имеет впечатляющие экологические характеристики.

    Где и когда используются свайные фундаменты в строительстве и проектировании

    Строительство и проектирование — это сложные области в лучшие времена, но часто проекты оказываются особенно сложными, и вам необходимо переоценить и предложить решения, которые вы можете не думал раньше.

    Фундаменты на винтовых сваях часто являются одним из таких решений, предлагаемых в качестве альтернативы традиционным свайным фундаментам, когда обычно невозможно обеспечить устойчивость вашего здания. Есть ряд преимуществ фундаментов на винтовых сваях и множество причин, по которым на самом деле это должен быть предпочтительный для инженеров метод подкрепления зданий и создания фундаментов для небоскребов и других больших зданий.

    Здесь мы рассмотрим некоторые из самых больших преимуществ использования фундамента на винтовых сваях; техника, которая использовалась веками, но недавно была разработана, чтобы стать краеугольным камнем строительного мира.

    Плохая почва и свайные фундаменты
    Одно из самых больших преимуществ использования фундаментов на винтовых сваях заключается в том, что их можно использовать, когда земля и почва плохого качества и обычно считаются слишком слабыми, чтобы удерживать прочный фундамент. Спиральные ребра, которые придают винтовой свае винтовой вид, могут регулироваться и реконфигурироваться в зависимости от типа грунта и почвы, в которой они устанавливаются. Это означает, что их можно использовать в более слабых почвах в качестве завинчивания, при котором они установлены, чтобы уплотнить окружающую почву, и можно использовать более высокий крутящий момент, чтобы опустить их в землю, что означает, что более слабая почва не является проблемой.Хотя при установке фундамента из винтовых свай обычно не требуется использовать раствор, это вариант, если почва находится в очень плохом состоянии, чтобы заполнить оставшиеся зазоры.

    Согласование с ограниченным доступом
    Другой распространенный сценарий, который потребует использования фундаментов на винтовых сваях вместо традиционных фундаментов с забивными сваями, — это ограниченный доступ к площадке или не так много места на самой площадке. Для забивных свайных фундаментов требуется кран и сваебойщик; оба из которых являются крупными механизмами.Фундамент на винтовых сваях может быть установлен просто с помощью низкоскоростного двигателя с кем-то, кто будет им управлять, поэтому их намного проще установить на небольших площадках, где невозможно установить кран. Отсутствие необходимости в тяжелой технике также помогает сократить расходы.

    Экономия денег с помощью свай
    Использование винтовых свайных фундаментов, несомненно, намного дешевле, чем традиционные забивные свайные фундаменты. Как упоминалось выше, вам не нужно платить за крупную технику и обученных рабочих для ее эксплуатации, но вы также экономите деньги на расходах на очистку участка после установки фундамента.Поскольку фундамент на винтовых сваях сжимает грунт, в котором они установлены, вам не нужно выкапывать или удалять грунт перед установкой. Это означает, что меньше уборки и отходов.

    Использование в аварийной ситуации
    Большим преимуществом фундаментов на винтовых сваях является то, что они могут выдерживать вес сразу после установки. Поскольку не используется ни бетон, ни раствор, времени на высыхание ждать не приходится. Это означает, что фундаменты могут сразу выдерживать нагрузку, что делает эти типы фундаментов идеальными для использования в чрезвычайных ситуациях.Когда графики строительства очень короткие, а остальная часть проекта зависит от того, насколько быстро свайный фундамент может быть установлен и готов к весу; Фундамент на винтовых сваях — единственный вариант.

    Экологические преимущества свайного фундамента
    Мы живем в эпоху, когда экологическая ответственность стоит на первом месте в списке приоритетов каждого. Строительство часто оказывает большое влияние на окружающую среду, поэтому необходимо предпринять любые шаги, которые можно предпринять для минимизации этого воздействия.Фундаменты на винтовых сваях были разработаны таким образом, чтобы их можно было удалить при необходимости и повторно использовать в других местах, что делает их гораздо более экологически безопасным вариантом, чем традиционные забивные свайные фундаменты. Они также создают меньше шума и вибрации во время установки, а также создают меньше отходов и не нуждаются в тяжелой технике, как их альтернатива. Подрядчики, использующие винтовые свайные фундаменты, будут иметь гораздо меньший углеродный след в этом проекте, чем если бы они использовали стандартные свайные фундаменты.

    Время
    Любой руководитель проекта скажет вам, насколько важна отделка в соответствии с графиком, поскольку превышение срока по графику строительства в конечном итоге будет стоить гораздо больше денег. Фундаменты на винтовых сваях не только быстрее устанавливаются физически, но и, поскольку они могут сразу выдерживать вес, не нуждаются в тяжелой технике и, что наиболее важно, могут быть установлены в любых погодных условиях, использование этого типа свайного фундамента с большей вероятностью приведет к завершению строительства. вовремя.

    Свайные фундаменты все чаще используются в инженерии — но что это такое и почему вы их считаете

    Фундаменты здания чрезвычайно важны в строительстве по вполне очевидным причинам.Если ваш фундамент плохой или неправильный, вы рискуете всей устойчивостью своего здания, а это просто неприемлемо.

    Строители знают, что чем больше или тяжелее здание, тем глубже должен быть фундамент. Существуют различные типы фундаментов, которые вы можете использовать в зависимости от размера здания, которое будет построено выше. Свайный фундамент — это очень прочный и надежный тип фундамента, который уже довольно давно используется в строительстве благодаря своей известной надежности.

    В этой статье мы рассмотрим, что такое свайный фундамент и почему вы можете рассмотреть возможность их использования в своем строительном проекте.

    Глубокие фундаменты и почему инженеры-строители захотят их использовать
    Фундаменты в основном переносят вес нагрузки над ними на землю внизу. Они гарантируют, что здание наверху останется устойчивым и заземленным. Глубокие фундаменты способны выдерживать гораздо больший вес, чем мелкие фундаменты, и используются для высоких или больших зданий, таких как небоскребы.Инженеры также могут решить использовать глубокие фундаменты, если почва, на которой они строят, недостаточно устойчива, чтобы выдержать вес здания. Более твердая почва может быть найдена на большей глубине, поэтому для ее достижения необходимо вырыть глубокий фундамент. Другой причиной использования глубоких фундаментов могут быть ограничения площадки, такие как линии границ, которые ограничивают ширину основания здания, что означает, что необходимы более глубокие фундаменты для равномерного распределения веса здания.

    Что такое свайный фундамент?
    Свайные фундаменты также называются забивными, поскольку они закладываются в землю.Свайные фундаменты — это столбы, которые могут быть сделаны из дерева, бетона или стали, которые с силой вбиваются в почву, чтобы иметь возможность распределять энергию и силу, которые они несут от здания наверху, к окружающей почве. Деревянные сваи традиционно изготавливаются из ствола одного дерева, что может ограничивать глубину, на которую их можно забивать, но исторически они сращивались, если требовалась большая длина. Итальянский город Венеция известен тем, что построен на деревянных сваях, вбитых в морское дно.

    Бетонные сваи забиваются заранее на уровне земли, а затем забиваются в землю, как стальные и Н-образные сваи. Эти типы свайных фундаментов закладываются в землю с помощью сваебойной машины, которая многократно ударяет по свае с грузом; забивая его в землю. Окружающую почву можно выкапывать путем выкапывания или перемещать по мере того, как сваю забивают в землю.

    После размещения в земле стальные сваи увенчиваются бетонным колпаком. Этот колпак устанавливается на вершину всех используемых свай, так что вес построенного на нем здания будет равномерно распределен по всем сваям в земле.Толстое бетонное основание служит прочным, ровным и прочным основанием для колонны, на которую будет возведена колонна.
    Зачем нужен свайный фундамент?

    В процессе бурения или забивания свайного фундамента в землю грунт перемещается на окружающую территорию. Это создает ограниченное пространство для сваи, а трение, создаваемое сваей на месте, помогает стали передавать энергию веса, которую она поддерживает, в окружающую землю. Это трение, создаваемое между сваей и почвой, фактически увеличивает несущую способность самой сваи.Таким образом, использование свайных фундаментов позволяет инженерам проектировать все более высокие и большие здания без необходимости в большой площади основания, поскольку фундаменты будут способны выдерживать вес большой колонны наверху. То, как сваи часто забиваются или ввинчиваются в грунт, также рассматривается как серьезное испытание на их долговечность и прочность из-за жестокого способа их установки.

    Существует ряд типов свайных фундаментов, которые были разработаны для различных типов установок.Например; большие одинарные сваи, известные как монопольные фундаменты, используют один большой свайный фундамент для поддержки ветряных турбин, а фундаменты с винтовой сваей имеют форму винта, а не гладкую цилиндрическую стальную сваю, и ввинчиваются в землю. Эти типы свай распределяют весовую нагрузку и размер почвы соответственно.

    Свайные фундаменты постоянно используются инженерами, стремящимися создать здания, которые выдержат испытание временем.

    Типы свайных фундаментов

    В зависимости от конструкции свай фундаменты называются пробуренными или забиваемыми.

    1. Фундамент с забивными винтами или фундамент из сборных свай

    Фундамент из забивных свай — это тип, при котором сборные сваи доставляются на площадку, а затем забиваются в землю для создания фундамента. По этой причине забивные сваи изготавливаются из различных подходящих материалов, таких как сталь, железобетон, древесина или бетон.

    2. Пробуренный свайный фундамент или забивная сваи

    Когда дело доходит до буронабивных свайных фундаментов, сваи будут забиты в желаемое положение.Обсадную трубу обычно забивают в землю или землю и заполняют бетоном и арматурой, чтобы прибыть к монолитной свае. Другой метод предполагает использование шнека с полым штоком, который просверливает землю. Затем в этот шнек накачивается такой материал, как бетон, для наращивания сваи.

    Методы бурения и забивки, используемые для строительства свай, имеют свои преимущества и недостатки. Вот список некоторых из них.

    Преимущества фундамента из сборных или забивных свай

    • Сборные сваи уже готовы к использованию.Это может сэкономить много времени на строительной площадке.

    • Сборные сваи обычно проходят испытания на качество и прочность. Это означает, что любые обнаруженные недостатки можно устранить заранее.

    • Сборные сваи можно забивать даже под водой, что делает их пригодными для большинства мест.

    Недостатки сборных или забивных свай

    • Сборные сваи подвержены повреждениям во время забивки.

    • При использовании сборных свай возникают дополнительные затраты на погрузочно-разгрузочные работы, транспортировку и затраты.

    • В большинстве случаев сборную сваю необходимо изменить по длине, когда она прибывает на площадку. Это тоже требует дополнительных затрат и усилий.

    Преимущества монолитного или буронабивного фундамента

    • Этот тип свай не требует дополнительных затрат, связанных с транспортировкой.

    • Сваи имеют точную длину, что означает, что они готовы к заливке на месте.

    • Вы можете расширять просверленные сваи, чтобы максимально увеличить их несущую способность.Недорастворенная свая всегда имеет большее основание, что означает, что она может выдерживать большую несущую способность.

    Недостатки монолитной или буронабивной сваи

    • Качество сваи не определяется, и арматура внутри сваи может сместиться в процессе заливки.

    • Свежий бетон подвержен повреждениям из-за присутствующих в почве коррозионных элементов.

    • Забивка свай занимает много времени, что замедляет темпы строительства.

    • Вы не можете бросить эти груды под воду.

    • Прилегающие стенки сваи могут прогибаться во время заливки, что приводит к более слабой конструкции свай.

    Фрикционные и несущие сваи

    Сваи также могут быть классифицированы как фрикционные или несущие по способу передачи нагрузок. Несущая свая достигает твердого слоя земли и поэтому действует как датчик нагрузки. Фрикционные сваи — это плавающие сваи, которые не могут достичь более твердых поверхностей.Эти нагрузки воспринимаются трением, возникающим между почвой и поверхностью сваи.

    В чем разница между свайным фундаментом и винтовым свайным фундаментом?

    Свайные фундаменты позволяют инженерам проектировать высокие и тяжелые здания, не беспокоясь о том, будут ли они качаться или опрокинуться, поскольку фундамент достаточно прочен, чтобы выдержать вес.

    Существует ряд типов свайных фундаментов, некоторые из которых имеют определенные функции, позволяющие строителям и инженерам строить различные проекты в разных местах.Хотя винтовые сваи очень похожи на стандартные свайные фундаменты, различия в них предлагают ряд преимуществ как инженерам, так и строителям.

    Форма фундамента
    Фундаменты с винтовой сваей, часто называемые винтовой сваей, имеют винтовые ребра, прикрепленные к оцинкованной стальной трубе, что придает свае вид традиционных винтовых свай. Стандартные свайные фундаменты обычно имеют цилиндрическую форму с гладкой поверхностью, чтобы их можно было легко забивать в землю.Физическая природа винтовой или гелиакальной сваи позволяет ввинчивать ее в землю; минимизация воздействия их установки. Форма винтовой сваи уплотняет окружающую почву при ее установке, а не смещает ее. Это означает, что после установки требуется меньше очистки площадки, а также создается повышенная сила трения, которая, в свою очередь, увеличивает несущую способность фундамента.

    Установка свайного фундамента
    Как упоминалось выше, процесс установки свайного фундамента стандартного свайного фундамента и установки винтового свайного фундамента сильно отличается.Забивка свай создает сильный шум и вибрацию, которые могут быть очень разрушительными, особенно если вы работаете в рабочей среде, например, в общественном здании. Для установки фундамента на винтовых сваях также требуется менее тяжелая техника, поскольку вам не нужен кран или сваебойный станок на месте, поскольку все, что требуется, — это низкоскоростной двигатель с высоким крутящим моментом с одним оператором. Фундаменты на винтовых сваях монтируются быстрее, их также можно установить под углом до 45 градусов, и на них можно сразу же нагрузить вес, так как вам не нужно ждать, пока цемент или раствор затвердеет перед облицовкой.

    Универсальность
    В то время как стандартные свайные фундаменты спроектированы таким образом, чтобы оставаться на месте и поддерживать здание в течение всего времени его эксплуатации, фундаменты с винтовой сваей можно снять в любое время. Благодаря своей форме и характеру установки, фундаменты из винтовых свай при необходимости могут быть сняты, а затем использованы в другом месте. Фундаменты на винтовых сваях также можно отрегулировать на любую глубину, поэтому, если почва, в которой вы работаете, имеет разное качество на разной глубине, вам просто нужно прикрутить ее настолько, насколько вам нужно, и срезанная свая на поверхности уменьшит отходы.Винтовой свайный фундамент можно использовать на самых разных почвах, даже на бедных или слабых почвах. Винтовые пластины можно отрегулировать, а конфигурацию изменить, чтобы увеличить несущую способность фундамента или получить дополнительную тягу на более слабых типах почвы. Фундаменты на винтовых сваях также можно устанавливать в любую погоду, в дождь или при яркой погоде, так как буровая установка направлена ​​прямо в землю и нет необходимости в сухих условиях для схватывания бетона или раствора. Эти типы фундаментов также могут быть установлены на объектах, где доступ может быть ограничен, а пространство — слишком дорого.Если вы работаете в условиях ограниченного пространства, то меньшее оборудование, необходимое для установки фундамента на винтовых сваях, значительно упростит работу.

    Стоимость фундамента
    Для любого инженера, подрядчика или руководителя проекта соблюдение бюджета имеет важное значение. Фундаменты на винтовых сваях часто оказываются более финансово выгодным вариантом для строительных компаний по разным причинам. Так как земляных работ или беспорядка на площадке не создается, деньги экономятся на уборке после установки.По сравнению с забивными свайными фундаментами также экономятся деньги на тяжелой технике и операторах, поскольку краны и буровые установки дороги, но низкоскоростные двигатели намного дешевле в аренде и эксплуатации. Тот факт, что фундаменты на винтовых сваях устанавливаются быстрее, также сэкономит вам проектные деньги, а это в сочетании с отсутствием задержек из-за неблагоприятных погодных условий означает, что фундаменты на винтовых сваях с гораздо большей вероятностью помогут завершить ваш проект вовремя.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *