Площадь отопления одной секции радиатора отопления: Как рассчитать радиаторы отопления

Содержание

по площади, по объему, в зависимости от температурного режима, материалов и размеров

Для расчета количества радиаторов существует несколько методик, но суть их одна: узнать максимальные теплопотери помещения, а затем рассчитать количество отопительных приборов, необходимое для их компенсации.

Методы расчета есть разные. Самые простые дают приблизительные результаты. Тем не менее, их можно использовать, если помещения стандартные или применить коэффициенты, которые позволяют учесть имеющиеся «нестандартные» условия каждого конкретного помещения (угловая комната, выход на балкон, окно во всю стену и т.п.). Есть более сложный расчет по формулам. Но по сути это те же коэффициенты, только собранные в одну формулу.

Есть еще один метод. Он определяет фактические потери.  Специальное устройство — тепловизор — определяет реальные потери тепла. И на основании этих данных рассчитывают сколько нужно радиаторов для их компенсации. Чем еще хорош этот метод, так это тем, что на снимке тепловизора точно видно, где тепло уходит активнее всего. Это может быть брак в работе или в строительных материалах, трещина и т.д. Так что заодно можно выправить положение.

Расчет радиаторов зависит от потерь тепла помещением и номинальной тепловой мощности секций

Расчет радиаторов отопления по площади

Самый простой способ. Посчитать требуемое на обогрев количество тепла, исходя из площади помещения, в котором будут устанавливаться радиаторы. Площадь каждой комнаты вы знаете, а потребность тепла можно определить по строительным нормам СНиПа:

  • для средней климатической полосы на отопление 1м2 жилого помещения требуется 60-100Вт;
  • для областей выше 60о требуется 150-200Вт.

Исходя из этих норм, можно посчитать, сколько тепла потребует ваша комната. Если квартира/дом находятся в средней климатической полосе, для отопления площади 16м2, потребуется 1600Вт тепла (16*100=1600). Так как нормы средние, а погода постоянством не балует, считаем, что требуется 100Вт. Хотя, если вы проживаете на юге средней климатической полосы и зимы у вас мягкие, считайте по 60Вт.

Расчет радиаторов отопления можно сделать по нормам СНиП

Запас по мощности в отоплении нужен, но не очень большой: с увеличением количества требуемой мощности возрастает количество радиаторов. А чем больше радиаторов, тем больше теплоносителя в системе. Если для тех, кто подключен к центральному отоплению это некритично, то для тех у кого стоит или планируется индивидуальное отопление, большой объем системы означает большие (лишние) затраты на обогрев теплоносителя и большую инерционность системы (менее точно поддерживается заданная температура). И возникает закономерный вопрос: «Зачем платить больше?»

Рассчитав потребность помещения в тепле, можем узнать, сколько потребуется секций. Каждый из отопительных приборов выделять может определенное количество тепла, которое указывается в паспорте. Берут найденную потребность в тепле и делят на мощность радиатора. Результат — необходимое количество секций, для восполнения потерь.

Посчитаем количество радиаторов для того же помещения. Мы определили, что требуется выделить 1600Вт. Пусть мощность одной секции 170Вт. Получается 1600/170=9,411шт. Округлять можно в большую или меньшую сторону на ваше усмотрение. В меньшую можно округлить, например, в кухне — там хватает дополнительных источников тепла, а в большую — лучше в комнате с балконом, большим окном или в угловой комнате.

Система проста, но недостатки очевидны: высота потолков может быть разной, материал стен, окна, утепление и еще целый ряд факторов не учитывается. Так что расчет количества секций радиаторов отопления по СНиП — ориентировочный. Для точного результата нужно внести корректировки.

Как посчитать секции радиатора по объему помещения

При таком расчете учитывается не только площадь, но и высота потолков, ведь нагревать нужно весь воздух в помещении. Так что такой подход оправдан. И в этом случае методика аналогична. Определяем объем помещения, а затем по нормам узнаем, сколько нужно тепла на его обогрев:

Рассчитаем все для того же помещения площадью 16м2 и сравним результаты. Пусть высота потолков 2,7м. Объем: 16*2,7=43,2м3.

Дальше посчитаем для вариантов в панельном и кирпичном доме:

  • В панельном доме. Требуемое на отопление тепло 43,2м3*41В=1771,2Вт. Если брать все те же секции мощностью 170Вт, получаем: 1771Вт/170Вт=10,418шт (11шт).
  • В кирпичном доме. Тепла нужно 43,2м3*34Вт=1468,8Вт. Считаем радиаторы: 1468,8Вт/170Вт=8,64шт (9шт).

Как видно, разница получается довольно большая: 11шт и 9шт. Причем при расчете по площади получили среднее значение (если округлять в ту же сторону) — 10шт.

Корректировка результатов

Для того чтобы получить более точный расчет нужно учесть как можно больше факторов, которые уменьшают или увеличивают потери тепла. Это то, из чего с деланы стены и как хорошо они утеплены, насколько большие окна, и какое на них остекление, сколько стен в комнате выходит на улицу и т.п. Для этого существуют коэффициенты, на которые нужно умножить найденные значения теплопотерь помещения.

Количество радиаторов зависит от величины потерь тепла

Окна

На окна приходится от 15% до 35% потерь тепла. Конкретная цифра зависит от размеров окна и от того, насколько хорошо оно утеплено. Потому имеются два соответствующих коэффициента:

  • соотношение площади окна к площади пола:
    • 10% — 0,8
    • 20% — 0,9
    • 30% — 1,0
    • 40% — 1,1
    • 50% — 1,2
  • остекление:
    • трехкамерный стеклопакет или аргон в двухкамерном стеклопакете — 0,85
    • обычный двухкамерный стеклопакет — 1,0
    • обычные двойные рамы — 1,27.

Стены и кровля

Для учета потерь важен материал стен, степень теплоизоляции, количество стен, выходящих на улицу. Вот коэффициенты для этих факторов.

Степень теплоизоляции:

  • кирпичные стены толщиной в два кирпича считаются нормой — 1,0
  • недостаточная (отсутствует) — 1,27
  • хорошая — 0,8

Наличие наружных стен:

  • внутреннее помещение — без потерь, коэффициент 1,0
  • одна — 1,1
  • две — 1,2
  • три — 1,3

На величину теплопотерь оказывает влияние отапливаемое или нет помещение находится сверху. Если сверху обитаемое отапливаемое помещение (второй этаж дома, другая квартира и т.п.), коэффициент уменьшающий — 0,7, если отапливаемый чердак — 0,9. Принято считать, что неотапливаемый чердак никак не влияет на температуру в и (коэффициент 1,0).

Нужно учесть особенности помещений и климата чтобы правильно рассчитать количество секций радиатора

Если расчет проводили по площади, а высота потолков нестандартная (за стандарт принимают высоту 2,7м), то используют пропорциональное увеличение/уменьшение при помощи коэффициента. Считается он легко. Для этого реальную высоту потолков в помещении делите на стандарт 2,7м. Получаете искомый коэффициент.

Посчитаем для примера: пусть высота потолков 3,0м. Получаем: 3,0м/2,7м=1,1. Значит количество секций радиатора, которое рассчитали по площади для данного помещения нужно умножить на 1,1.

Все эти нормы и коэффициенты определялись для квартир. Чтобы учесть теплопотери дома через кровлю и подвал/фундамент, нужно увеличить результат на 50%, то есть коэффициент для частного дома 1,5.

Климатические факторы

Можно внести корректировки в зависимости от средних температур зимой:

  • -10оС и выше — 0,7
  • -15оС — 0,9
  • -20оС — 1,1
  • -25оС — 1,3
  • -30оС — 1,5

Внеся все требуемые корректировки, получите более точное количество требуемых на обогрев комнаты радиаторов с учетом параметров помещений. Но это еще не все критерии, которые оказывают влияние на мощность теплового излучения. Есть еще технические тонкости, о которых расскажем ниже.

Расчет разных типов радиаторов

Если вы собрались ставить секционные радиаторы стандартного размера (с осевым расстоянием 50 см высоты) и уже выбрали материал, модель и нужный размер, никаких сложностей с расчетом их количества быть не должно. У большинства солидных фирм, поставляющих хорошее отопительное оборудование, на сайте указаны технические данные всех модификаций, среди которых есть и тепловая мощность. Если указана не мощность, а расход теплоносителя, то перевести в мощность просто: расход теплоносителя в 1 л/мин примерно равен мощности в 1 кВт (1000 Вт).

Осевое расстояние радиатора определяется по высоте между центрами отверстий для подачи/отведения теплоносителя.

Чтобы облегчить жизнь покупателям на многих сайтах устанавливают специально разработанную программу-калькулятор. Тогда расчет секций радиаторов отопления сводится к внесению данных по вашему помещению в соответствующие поля. А на выходе вы имеете готовый результат: количество секций данной модели в штуках.

Осевое расстояние определяют между центрами отверстий для теплоносителя

Но если просто пока прикидываете возможные варианты, то стоит учесть, что радиаторы одного размера из разных материалов имеют разную тепловую мощность. Методика расчета количества секций биметаллических радиаторов от расчета алюминиевых, стальных или чугунных ничем не отличается. Разной может быть только тепловая мощность одной секции.

Чтобы считать было проще, есть усредненные данные, по которым можно ориентироваться. Для одной секции радиатора с осевым расстоянием 50см приняты такие значения мощностей:

  • алюминиевые — 190Вт
  • биметаллические — 185Вт
  • чугунные — 145Вт.

Если вы пока только прикидываете, какой из материалов выбрать, можете воспользоваться этими данными. Для наглядности приведем самый простой расчет секций биметаллических радиаторов отопления, в котором учитывается только площадь помещения.

При определении количества отопительных приборов из биметалла стандартного размера (межосевое расстояние 50см) принимается, что одна секция может обогреть 1,8м2 площади. Тогда на помещение 16м2 нужно: 16м2/1,8м2=8,88шт. Округляем — нужны 9 секций.

Аналогично считаем для чугунные или стальные баратери. Нужны только нормы:

  • биметаллический радиатор — 1,8м2
  • алюминиевый — 1,9-2,0м2
  • чугунный — 1,4-1,5м2.

Это данные для секций с межосевым расстоянием 50см. Сегодня же в продаже есть модели с самой разной высоты: от 60см до 20см и даже еще ниже. Модели 20см и ниже называют бордюрными. Естественно, их мощность отличается от указанного стандарта, и, если вы планируете использовать «нестандарт», придется вносить коррективы. Или ищите паспортные данные, или считайте сами. Исходим из того, что теплоотдача теплового прибора напрямую зависит от его площади. С уменьшением высоты уменьшается площадь прибора, а, значит, и мощность уменьшается пропорционально. То есть, нужно найти соотношение высот выбранного радиатора со стандартом, а потом при помощи этого коэффициента откорректировать результат.

Расчет чугунных радиаторов отопления. Считать может по площади или объему помещения

Для наглядности сделаем расчет алюминиевых радиаторов по площади. Помещение то же: 16м2. Считаем количество секций стандартного размера: 16м2/2м2=8шт. Но использовать хотим маломерные секции высотой 40см. Находим отношение радиаторов выбранного размера к стандартным: 50см/40см=1,25. И теперь корректируем количество: 8шт*1,25=10шт.

Корректировка в зависимости от режима отопительной системы

Производители в паспортных данных указывают максимальную мощность радиаторов: при высокотемпературном режиме использования — температура теплоносителя в подаче 90оС, в обратке — 70оС (обозначается 90/70) в помещении при этом должно быть 20оС. Но в таком режиме современные системы отопления работают очень редко. Обычно используется режим средних мощностей 75/65/20 или даже низкотемпературный с параметрами 55/45/20. Понятно, что требуется расчет откорректировать.

Для учета режима работы системы нужно определить температурный напор системы. Температурный напор — это разница между температурой воздуха и отопительных приборов. При этом температура отопительных приборов считается как среднее арифметическое между значениями подачи и обратки.

Нужно учесть особенности помещений и климата чтобы правильно рассчитать количество секций радиатора

Чтобы было понятнее произведем расчет чугунных радиаторов отопления для двух режимов: высокотемпературного и низкотемпературного, секции стандартного размера (50см). Помещение то же: 16м2. Одна чугунная секция в высокотемпературном режиме 90/70/20 обогревает 1,5м2. Потому нам потребуется 16м2/1,5м2=10,6шт. Округляем — 11шт. В системе планируется использовать низкотемпературный режим 55/45/20. Теперь найдем температурный напор для каждой из систем:

  • высокотемпературная 90/70/20- (90+70)/2-20=60оС;
  • низкотемпературный 55/45/20 — (55+45)/2-20=30оС.

То есть если будет использоваться низкотемпературный режим работы, понадобится в два раза больше секций для обеспечения помещения теплом. Для нашего примера на комнату 16м2 требуется 22 секции чугунных радиаторов. Большая получается батарея. Это, кстати, одна из причин, почему этот вид отопительных приборов не рекомендуют использовать в сетях с низкими температурами.

При таком расчете можно принять во внимание и желаемую температуру воздуха. Если вы хотите, чтобы в помещении было не 20оС а, например, 25оС просто рассчитайте тепловой напор для этого случая и найдите нужный коэффициент. Сделаем расчет все для тех же чугунных радиаторов: параметры получатся 90/70/25. Считаем температурный напор для этого случая (90+70)/2-25=55оС. Теперь находим соотношение 60оС/55оС=1,1. Чтобы обеспечить температуру в 25оС нужно 11шт*1,1=12,1шт.

Зависимость мощности радиаторов от подключения и места расположения

Кроме всех описанных выше параметров теплоотдача радиатора изменяется в зависимости от типа подключения. Оптимальным считается диагональное подключение с подачей сверху, в таком случае потерь тепловой мощности нет. Самые большие потери наблюдаются при боковом подключении — 22%. Все остальные — средние по эффективности. Приблизительно величины потерь в процентах указаны на рисунке.

Потери тепла на радиаторах в зависимости от подключения

Уменьшается фактическая мощность радиатора и при наличии заграждающих элементов. Например, если сверху нависает подоконник, теплоотдача падает на 7-8%, если он не полностью перекрывает радиатор, то потери 3-5%. При установке сетчатого экрана, который не доходит до пола, потери примерно такие же, как и в случае с нависающим подоконником: 7-8%. А вот если экран закрывает полностью весь отопительный прибор, его теплоотдача уменьшается на 20-25%.

Количество тепла зависит и от установкиКоличество тепла зависит и от места установки

Определение количества радиаторов для однотрубных систем

Есть еще один очень важный момент: все вышеизложенное справедливо для двухтрубной системы отопления, когда на вход каждого из радиаторов поступает теплоноситель с одинаковой температурой. Однотрубная система считается намного сложнее: там на каждый последующий отопительный прибор вода поступает все более холодная. И если хотите рассчитать количество радиаторов для однотрубной системы, нужно каждый раз пересчитывать температуру, а это сложно и долго. Какой выход? Одна из возможностей — определить мощность радиаторов как для двухтрубной системы, а потом пропорционально падению тепловой мощности добавлять секции для увеличения теплоотдачи батареи в целом.

В однотрубной системе вода на каждый радиатор поступает все более холодная

Поясним на примере. На схеме изображена однотрубная система отопления с шестью радиаторами. Количество батарей определили для двухтрубной разводки. Теперь нужно внести корректировку. Для первого отопительного прибора все остается по-прежнему. На второй поступает уже теплоноситель с меньшей температурой. Определяем % падения мощности и на соответствующее значение увеличиваем количество секций. На картинке получается так: 15кВт-3кВт=12кВт. Находим процентное соотношение: падение температуры составляет 20%. Соответственно для компенсации увеличиваем количество радиаторов: если нужно было 8шт, будет на 20% больше — 9 или 10шт. Вот тут и пригодится вам знание помещения: если это спальня или детская, округлите в большую сторону, если гостиная или другое подобное помещение, округляете в меньшую. Принимаете во внимание и расположение относительно сторон света: в северных округляете в большую, в южных — в меньшую.

В однотрубных системах нужно в расположенных дальше по ветке радиаторах добавлять секции

Этот метод явно не идеален: ведь получится, что последняя в ветке батарея должна будет иметь просто огромные размеры: судя по схеме на ее вход подается теплоноситель с удельной теплоемкостью равной ее мощности, а снять все 100% на практике нереально. Потому обычно при определении мощности котла для однотрубных систем берут некоторый запас, ставят запорную арматуру и подключают  радиаторы через байпас, чтобы можно было отрегулировать теплоотдачу, и таким образом компенсировать падение температуры теплоносителя. Из всего этого следует одно: количество или/и размеры радиаторов в однотрубной системе нужно увеличивать, и по мере удаления от начала ветки ставить все больше секций.

Итоги

Приблизительный расчет количества секций радиаторов отопления дело несложное и быстрое. А вот уточнение в зависимости от всех особенностей помещений, размеров, типа подключения и расположения требует внимания и времени. Зато вы точно сможете определиться с количеством отопительных приборов для создания комфортной атмосферы зимой.

Возможно, вам интересно будет прочитать про расчет мощности котла или определение диаметра труб для системы отопления.

 

 

Как подключить стальной радиаторо отопления, схемы подключения

Перед покупкой и установкой секционных радиаторов отопления (как правило это алюминиевые и биметаллические) у многих возникает вопрос — какое количество секций должно быть в радиаторе и как рассчитать это количество.

Более правильным, всегда будет расчет теплопотерь помещения. Однако в нем используется такое количество коэффициентов, что в результате может получиться, что-то завышенное или наоборот. Поэтому в большинстве случаев пользуются упрощенными способами.

Некоторые ЖЭКи не разрешают самостоятельно рассчитывать количество секций, и делают это для жителей на коммерческой основе. Это связано с тем, что дома во первых новые, и нельзя нарушать балансировку системы, а во вторых при регулировании температуры теплоносителя мощность радиатора сильно меняется. А если в новом доме температура теплоносителя, даже в самые холода, не превышает 70 °С, то стандартный расчет в данном случае не подходит.

Стандартный расчет для многоэтажного дома

Согласно «Строительным нормам и правилам» для компенсации теплопотерь пощения, на один квадратный метр площади требуется 100 Вт мощности радиатора отопления.

Этот расчет справедлив для любых радиаторов, в том числе алюминиевых и биметаллических.

В таком варианте требуемое количество секций вычисляется по формуле:

N = S*100/P, где S = площадь помещения, P = мощность одной секции радиатора отопления.

Пример, мощность одной секции радиатора GLOBAL STYLE PLUS 500 равняется 185 Вт, а площадь комнаты — 20 м.кв., в таком случае:

N=20*100/185=10,8.

Принимаем округление в большую сторону, и получаем 11 секций биметаллического радиатора GLOBAL STYLE PLUS 500.

Для высотных домов, часто пользуется еще более простым методом — делят площадь помещения на 2, и получают необходимое количество секций. В нашем примере их бы получилось 10. Но это не значит, что люди будут замерзать. В высотном доме соседи греют друг друга, и в реальной жизни 100 Вт на метр квадратный даже много.

Для торцевых и угловых комнат желательно ввести добавочный коэффициент 1,1 — 1,2, в этом случае необходимое количество секций для 20 метровой комнаты составит 12-13.

Характеристики радиатора GLOBAL STYLE PLUS 500

Зависимость мощности радиатора от теплового потока

Как видно из таблицы, при температурном напоре 70 °С мощность радиатора 185 Вт, при 50 — 114 Вт.

Температурный напор в 70 °С можно создать только в центральной системе отопления со стальными трубами, в частном же доме с пластиковым трубопроводом и настенным котлом, максимальный напор составляет 50 °С. Поэтому упрощенная формула «1 секция радиатора на 2 кв. метра» в частном доме не подходит.

Если же у вас в частном доме радиаторы посчитаны по упрощенной формуле, зимой при продолжительных низких температурах за окном (от -25 °С) в доме может быть прохладно.

Расчет количества секций в частном загородном доме

Если для квартир в многоэтажном доме, действует правило — на один квадратный метр площади требуется 100 Вт мощности радиатора отопления, то для частного дома не совсем так.

Для первого отапливаемого этажа эта мощность составляет 110 — 120 Вт (в зависимости от утепления пола), для второго и следующих этажей эта мощность составляет примерно 80 — 90 Вт. Поэтому многоэтажные дома всегда более экономичны (тепло поднимается на верх).

Тогда, для расчета количества секций радиаторов в частном доме, в формуле N = S*100/P, вместо 100 необходимо подставлять соответствующую мощность (120-80 Вт).

Наш совет — в частный дом лучше взять чуть больше секций (с запасом), это не значит, что от этого у вас в доме будет жарко, просто, как видно из рисунка выше, чем шире радиатор, тем меньше температуру нужно подавать на радиатор. Чем ниже температура теплоносителя — тем дольше прослужит вся система — и трубы и сам котел.

КАК РАСЧИТАТЬ КОЛИЧЕСТВО СЕКЦИЙ РАДИАТОРА НА ПОМЕЩЕНИЕ

Чтобы грамотно спроектировать отопление дома, нужно знать точное количество секций радиаторов отопления, которые будут установлены во всех помещениях. Расчетом количества секций радиатора мы сегодня и займемся, для этого нам необходимо знать площадь помещения, в котором будет установлен радиатор, и мощность радиаторов в кВт. Пусть, к примеру, это будет комната 20 квадратных метров, а мощность наших радиаторов 203 Вт (это мощный алюминиевый радиатор Royal Thermo Evolution 500).

Согласно «Строительным нормам и правилам» на 1 квадратный метр помещения нужно 100 ватт мощности радиаторов отопления. Таким образом общую площадь помещения в метрах (длину помещения умноженную на ширину помещения в метрах) умножаем на 100 ватт. И получаем количество ватт, необходимое для Вашей площади помещения. Для нашего примера — 20кв.м. умножаем на 100 ватт, получаем 2000 ватт. Полученное число разделим на мощность одной секции радиатора (как правило 170-210 Вт) и получим необходимое число секций радиатора отопления для данного помещения. Если число получилось дробное — округлите его в большую сторону. Для нашего примера 2000 ватт разделим на 203 ватта, получим 9,85 секций. Значит для нашего примера мы должны взять 10 секций радиатора Royal Thermo Evolution 500.

Также если помещение находится на углу дома или в торце, то данное число секций радиаторов умножают на коэффициент 1,2. Например, вместо 10 секций берут 12 секций на такое помещение. Также на этот коэффициент умножают число секций радиаторов для ванной комнаты.

Если вы не знаете мощность секций радиатора, в таком случае исходите из средних стандартных показателей, согласно которым для обогрева 1,8 кв.м помещения необходима 1 секция радиатора. В таком случае для расчета количества секций просто разделите площадь комнаты на 1,8, полученное число округлите в большую сторону. Для нашего примера 20кв.м. разделим на 1,8 и получим 11 секций — требуемое количество секций для нашего помещения.

Если у Вас все таки остались вопросы по расчету количества секций радиатора отопления для помещения звоните нам по тел. +7 3532 22-88-56 и +7 3532 23-04-03.

Как рассчитать количество секций радиаторов отопления для квартиры?

Как рассчитать количество секций радиаторов отопления для квартиры?

Если Вы решили поменять отопление в квартире то, несомненно, у Вас возникнет вопрос: «Сколько секций радиатора необходимо для обогрева помещения?». Узнать ответ на этот вопрос важно, так как этот параметр обеспечивает комфортную температуру помещения.

 Для того, чтобы рассчитать количеств секций, нам необходимы формулы. Чаще всего основой для вычислений является – площадь, либо объем. Конечно, профессиональные расчеты не так просты, а для точного значения необходимо большое количество критериев, но для стандартной квартиры можно использовать более простой метод, который мы с Вами рассмотрим ниже.


  Считается, что для создания нормальных условий в среднестатистическом жилом помещение достаточно 100 Вт на квадратный метр площади. Если у Вас квартира с высотой потолка до 2,7 м, то, следует всего, лишь вычислить площадь комнаты и умножить ее на 100. То есть, формула примет вид:


Q = S × 100


Q — требуемая теплоотдача от радиаторов отопления,


S — площадь обогреваемого помещения.


  Например, площадь комнаты, в которой Вы хотите установить радиатор отопления составляет 23 кв.м, умножаем 23 на 100, получаем 230. Итак, требуемая теплоотдача радиатора отопления равна 230 Вт/м*К.


  Если Вы планируете установить неразборный радиатор, то это значение и будет ориентиром для подбора необходимой модели. Если же, возможны изменение количества секций, то необходимо  провести следующий расчет:


К = S*100/P


К — число необходимых секций,


S — площадь отапливаемого помещения,


Р — мощность одной секции.


  Например, если брать среднюю мощность секции 150 Ватт и площадь комнаты 25 кв.м., то расчет будет выглядеть так 25х100/150=16,6666.


  Получается, что для эффективного отопления комнаты в 25 кв.м., нужно 16 секций. По такой формуле можно рассчитать объем необходимого количества секций для помещения любой площади.


  Для еще большего упрощения ниже мы привели приблизительные расчеты. Итак, усредненное значение тепловой мощности каждого вида радиатора:


  • Биметаллический — одна секция выделяет 185 Вт (0,185 кВт).
  • Алюминиевый — 190 Вт (0,19 кВт).
  • Чугунные — 120 Вт  (0,120 кВт). (Разница мощности может быть большой, так как есть батареи с тонкими или толстыми стенками).

  При помощи выше приведенных формул и примеров, Вы с легкостью сможете рассчитать необходимую теплоотдачу радиаторов отопления, именно для Вашего помещения, а также нужное количество секций для помещения. Но помните, что данные расчеты предназначены именно для стандартных жилых квартир.

Упрощенный расчет системы отопления дома

 

Вступление

Упрощенный расчет системы отопления достаточно точно позволяет произвести предварительный расчет мощности котла отопления и мощности радиаторов для каждой комнаты дома.

Поэтапный упрощенный расчет системы отопления

Начнем расчет с подсчета секций радиаторов.

Расчет радиаторов отопления

Пусть в доме 4 комнаты по 20 кв. метров.

Расчет радиаторов одной комнаты

  • Площадь комнаты 20 кв. метров.
  • Мощность одной секции купленного радиатора – 170 Вт. ( могут быть от 150 до 220 Вт). На 1 кв. метр площади нужно 100 Вт радиатора.
  • Делим 170 Вт на 100Вт и получаем коэффициент 1,7.
  • Далее делим 20кв. метров на коэффициент 1,7 получаем 11,8 секций радиаторов. Что на практике означает 12 секций радиаторов, нашей мощности (170 Вт). Добавляем 20% в запас, получаем 14 секций радиатора на комнату 20 кв. метров.

Примечание: обычно запас добавляется на угловую комнату.

Мощность котла

  • Мощность котла считаем по нормативной мощности отопления на 1 куб. метр помещения.
  • Площадь комнаты 20 кв. метров умножаем на высоту потолка H=2,60 м. Получаем объем комнаты, 52 куб. метра.
  • Для моего региона(европейской части СНГ) на 1 куб. метр помещения нужно 40 Вт энергии отопления.
  • Умножаем 52 куб метра на 40 Вт, получаем 2080 Вт. Добавляем 20% в запас, выходит 2500 Вт энергии отопления на комнату. Значит на комнату, нужен радиатор 2500 Вт.

Как видим это значение равно предварительному расчету радиатора по секциям.

Выбор труб отопления

По мощности радиатора подбираем трубы отопления по таблице:










Труба

Минимальная мощность радиаторов, кВт

Максимальная мощность радиаторов, кВт

Металлопластиковая труба 16 мм

2,8

4,5

Металлопластиковая труба 20 мм

5

8

Металлопластиковая труба 26 мм

8

13

Металлопластиковая труба 32 мм

13

21

Полипропиленовая труба 20 мм

4

7

Полипропиленовая труба 25 мм

6

11

Полипропиленовая труба 32 мм

10

18

Полипропиленовая труба 40 мм

16

28

Как видим, для рассчитанной системы отопления нужна полипропиленовая труба 25 мм.

В нашем доме, условно, 4 комнаты по 20 кв. метров. Значит суммарная мощность радиаторов 2500 Вт×4=10 кВт. По суммарной мощности можно было бы, подобрать котел отопления мощностью 10 кВт. Но для пиковых нагрузок увеличиваем мощность на 20%, получаем, что нужен котел отопления 12 кВт. Такие котлы есть в продаже.

Это весь упрощенный расчет системы отопления.

©Obotoplenii.ru

Другие стать раздела: Схемы отопления

 

 

Расчет радиаторов отопления. Расчет количества секций радиатора

При подготовке к ремонту или строительству дома следует провести грамотный расчет радиаторов отопления. Эти вычисления позволят точно узнать необходимое количество секций для создания комфортной температуры в комнате даже при сильных морозах за окном. От их правильности напрямую зависит не только равномерность обогрева помещения, отсутствие в нем холодных мест, но и экономия энергоресурсов. Необходимую мощность отопительных приборов можно определить различными способами самостоятельно.

Как произвести расчет радиаторов отопления частного дома?

Для правильного проведения расчета площади радиатора учитывают:

  • размеры помещения, которое планируется отапливать. Причем следует высчитывать данные для каждой комнаты индивидуально;
  • материал, из которого изготовлена батарея;
  • мощность одной секции (указывается производителем), их максимально допустимое количество.

Секционными бывают радиаторы:

Очень точный результат дает расчет секций радиаторов отопления по площади помещения. По стандартам считается, что вполне достаточно 100 Вт на 1 м.кв. Исходя из этого, вычисление делается по формуле:

Q=S×100, где Q – нужная теплоотдача, а S – площадь комнаты.

Узнать, сколько секций придется приобрести, поможет следующая формула:

N=Q/Qус, где N – необходимое количество секций батареи, а Qус – мощность одной, указанная производителем в техпаспорте.

Это очень простое вычисление применимо для комнат с высотой потолка 2,7 м. Если имеется индивидуальная высота, то более точные результаты расчета количества радиаторов поможет определить объем помещения. Здесь используется стандартный показатель – 41 Вт на 1 м.куб. (для панельного дома) или 34 Вт (для кирпичного). Исходя из этого, применяется формула:

Q=S×h×40 (34), где h – высота потолка, остальные значения те же, что и в формуле выше.

Еще более достоверный результат дают вычисления, учитывающие особенности комнаты, где планируется установить радиатор. В ее основе – площадь помещения и все те же 100 Вт на м.кв.:

Q= S×100×А×В×С×D×Е×F×G×H×I×J, где:

  1. А – количество стен, выходящих на улицу: одна – коэффициент 1; две – 1,2; три – 1,3; четыре – 1,4.
  2. В – расположение комнаты относительно сторон света: север или восток – 1,1; юг или запад – 1.
  3. С – уровень утепления стен: средний (два кирпича или поверхностное) – 1; без утеплителя – 1,27; высокий – 0,85.
  4. D – климатические особенности местности по данным самой холодной декады января: -35°С и ниже – 1,5; от -25 до -35 – 1,3; до -20 – 1,1; не ниже -15 – 0,9; не ниже -10 – 0,7.
  5. Е – высота потолков: до 2,7 м – 1; 2,8-3 – 1,05; 3,1-3,5 – 1,1; 3,6-4 – 1,15; более 4,1 м – 1,2.
  6. F – наличие помещения сверху, его тип: чердак без отопления – 1; утепленные кровля или чердак – 0,9; отапливаемая комната – 0,8.
  7. G – тип окон: простые двойные деревянные рамы – 1,27; однокамерный стеклопакет – 1; двойной или однокамерный, заполненный аргоном – 0,85.
  8. Н рассчитывается из соотношения площади окон к площади помещения: менее 0,1 – 0,8; 0,11-0,2 – 0,9; 0,21-0,3 – 1; 0,31-0,4 – 1,1; 0,41-0,5 – 1,2.
  9. I – схема, по которой подключается батарея: диагональное, подача сверху, обратка снизу – 1; одностороннее, подача сверху, обратка снизу – 1,03; двустороннее, подача и обратка снизу – 1,13; диагональное, подача снизу, обратка сверху – 1,25; одностороннее, подача снизу, обратка сверху – 1,28; одностороннее, подача и обратка снизу – 1,28.
  10. J зависит от того, насколько свободно нагретый воздух от батареи циркулирует: радиатор открыт со всех сторон – 0,9; над ним подоконник – 1; сверху стеновая ниша – 1,07; сверху подоконник, а с фронтальной стороны частично декоративный кожух – 1,12; полностью в декоративном кожухе – 1,2.

Благодаря этому, более сложному, вычислению и правильно подставленным в формулу коэффициентам, получится наиболее точный расчет мощности радиатора, когда все нюансы комнаты будут учтены. Чтобы узнать, сколько секций понадобится, останется лишь разделить полученное значение на мощность одной, которую указывает производитель.

Для того чтобы не приходилось производить все вычисления на бумажке, сейчас в интернете можно провести расчет радиаторов калькулятором, позволяющим просто прописать свои значения и получить точный результат.

Расчет радиаторов отопления по площади

Самым простым считается расчет радиаторов отопления по площади комнаты. Если высота ее потолков вписывается в рамки 2,7-3 м, то после вычисления ее площади получившийся результат просто умножается на 100 Вт (стандартный принятый показатель для обогрева 1 м.кв.). Возможные теплопотери компенсируются накидыванием еще 20% сверху. Чтобы узнать, сколько секций радиатора понадобится, итоговое значение делится на теплоотдачу одной. Если в помещении много окон, его стены граничат с улицей, то следует накинуть еще 15% тепловой мощности, а значит увеличить количество секций.

Дополнительные факторы влияющие на расчет

Если вы хотите получить наиболее точные данные по мощности требуемого радиатора для конкретного помещения, то обязательно учитывайте:

  • количество окон, их площадь, тип;
  • материал стен, их толщину;
  • местный климат;
  • высоту потолков;
  • сколько стен комнаты выходит на улицу, есть ли отапливаемые помещения сверху и снизу;
  • материал, из которого изготовлен сам радиатор.

Расчет мощности радиатора и количества его секций желательно проводить, принимая во внимание все эти факторы, влияющие на теплопотерю. Потратив чуть больше времени на сложные расчеты, вы сможете быть уверены в комфортных и уютных условиях проживания в доме или квартире даже самой холодной зимой.

Как рассчитать количество секций радиатора отопления

При реконструкции системы отопления, замене батарей или строительстве нового дома у владельцев возникает потребность оценить нужное число секций радиатора. Точность такого расчета важна, так как недостаточное число секций не позволит достичь желаемой температуры в помещениях. Превышение оптимального количества приведет к ненужному перерасходу тепла неоправданным денежным расходам. Расчет требуемого количества радиаторов не является сложной задачей. Для ее решения достаточно знаний арифметики.

Производя расчеты количества секций, учитывают следующие факторы:

  • площадь помещения;
  • высота потолков;
  • толщина и материал стен;
  • тип окон и размеры остекления;
  • климатические условия данной местности.

Самый простой расчет учитывает только площадь помещения. Согласно СНиП (строительным нормам и правилам) на каждый квадратный метр комнаты должно приходиться 100 Вт тепловой энергии. Умножив площадь помещения на это число, мы получим необходимую мощность источника тепла.

Например, если площадь нашей комнаты равна 15 квадратным метрам, то мощность радиаторов должна составлять 1500 Вт. Каждая секция радиатора отопления имеет определенную тепловую мощность, которую можно узнать из паспорта изготовителя или у продавца в магазине. Разделив требуемую мощность отопительной системы, которую мы получили ранее, на мощность одной секции с последующим округлением результата в большую сторону, получаем искомый результат.

Пусть мощность одной секции радиатора равна 150 Вт. В таком случае для отопления потребуется 10 секций. Иными словами, наша первая формула выглядит так:
число секций = (площадь помещения * 100)/мощность одной секции. При этом не забываем об округлении в большую сторону. Заметим, что приведенный выше расчет применим для любых систем отопления, будь то радиаторы, теплые полы или тепловые пушки.

Приведенный расчет применим при высоте потолков до 2,6 метра. В случае если потолки выше, количество секций определяют на основании объема помещения. На один кубический метр, согласно СНиП, должно приходиться около 40 Вт тепловой мощности. Таким образом, для помещений с высокими потолками расчет выглядит немного по-другому.

Объем помещения делится на мощность одной секции батареи и округляется в большую сторону. Теперь формула принимает следующий вид: число секций = (объем помещения * 40)/мощность одной секции.

Указанные выше формулы позволяют произвести грубую оценку нужного числа радиаторов в помещении. В большинстве случаев этого бывает достаточно. Для более точного расчета начальный результат умножается на поправочный коэффициент, учитывающий тот или иной фактор. Например, для угловой или торцевой комнаты, сурового климата такой коэффициент равен 1,2–1,3. Другие коэффициенты можно узнать из СНиП или проконсультироваться у опытного специалиста.

Основные принципы однотрубных паровых радиаторов

В однотрубных паровых установках пар проходит от котла к радиаторам, где вытесняет холодный воздух, выталкивая его через вентиляционное отверстие на радиаторе. Вентиляционное отверстие закрывается автоматически, когда радиатор наполняется паром. Тепловая энергия пара затем передается в комнату, при этом пар охлаждается и конденсируется в воду, которая собирается в нижней части радиатора. Затем этот конденсат снова течет обратно по той же единственной трубе.

Из-за того, что пар и вода протекают в противоположных направлениях по одной и той же трубе, диаметр этой трубы обычно больше 1 дюйма. Таким образом, однотрубные радиаторы легко отличить по одной, довольно большой трубе, присоединенной к ним, всегда на снизу и вентиляционное отверстие, прикрепленное к противоположной стороне, обычно на половине высоты радиатора (см. ниже).

Ознакомьтесь с нашей коллекцией паровых радиаторов здесь.

Ознакомьтесь с введением в двухтрубные паровые системы здесь.

Компоненты однотрубного парового радиатора

Впускной или регулирующий клапан должен иметь большое внутреннее отверстие: минимум 1 дюйм для радиаторов на 5000 БТЕ или меньше; минимум на 1 дюйма больше. На однотрубном паровом радиаторе он должен быть полностью открытым или полностью закрытым. Дросселирование клапана (оставление его наполовину открытым) может привести к очень шумному паровому удару. Тепло от однотрубного парового радиатора регулируется путем ограничения выхода воздуха.


Однотрубный клапан парового радиатора должен быть полностью открыт или полностью закрыт, а не между ними.


Отверстия для пара позволяют воздуху выходить из радиатора, но автоматически закрываются, когда радиатор заполняется паром. Вентиляционное отверстие использует два механизма. Первая представляет собой биметаллическую полосу, изготовленную из двух разных металлов, так как пар нагревает клапан, он заставляет один металл изгибаться больше, закрывая клапан, и настроен на пружинное закрытие чуть ниже точки кипения. Второй механизм — это привод, наполненный водой и спиртом, температура кипения которого чуть ниже температуры пара.Когда жидкость внутри исполнительного механизма закипает, она расширяется и, таким образом, закрывает вентиляционное отверстие, предотвращая выход пара из радиатора.

Установка термостатического клапана между радиатором и вентиляционным отверстием позволяет регулировать температуру, ограничивая выходящий воздух и, следовательно, пар, который может входить. Для паровых радиаторов с термостатическим управлением требуется прерыватель вакуума, чтобы конденсат всегда мог возвращаться в котел. Радиаторы Castrads для однотрубного пара поставляются в стандартной комплектации.

Какие радиаторы использовать с однотрубным паром?

Чугун — действительно проверенный временем материал для парового отопления. Пар подвергает систему большой нагрузке: большие перепады температуры заставляют металл расширяться и сжиматься при каждом цикле нагрева; кислотные или щелочные условия в зависимости от химического состава воды; и, если система плохо спроектирована или не обслуживается, сильные удары от парового молота. Чугун также образует пассивное покрытие ржавчины, защищающее основную часть материала от дальнейшего окисления.Все это идет вразрез с использованием стальных тонкостенных радиаторов со сварными стыками, они просто недолговечны.

Мы предлагаем только чугунные радиаторы для паровых систем, а не стальные. Что касается соединений клапана на паре, мы рекомендуем только резьбовые механические соединения со стальными или латунными трубами. Хотя компрессионные фитинги идеально подходят для гидравлических систем, мы предпочитаем проверенную временем надежность резьбового соединения.

Ознакомьтесь с нашей подборкой паровых радиаторов здесь.

Какой размер клапана?

Мы рекомендуем 1-дюймовый клапан для радиаторов мощностью до 5000 БТЕ или менее и клапаны на 1 ¼ дюйма выше этого.Читайте также: Как это работает: Гидравлическое отопление.

Дополнительная литература

Дэн Холохан: новый взгляд на утраченное искусство парового отопления
Дэн Холохан: озеленение паром

БЫСТРАЯ ПРОВЕРКА РАДИАТОРА МОЖЕТ Согреть ХОЛОДНУЮ КОМНАТУ

Это происходит каждый год.

Жара идет уже пару недель, а там еще одна комната или один этаж, там холодно.

Так в чем проблема? Это главное? Это дорого? Вам нужен сантехник?

Что ж, проблема довольно простая и может быть недорого, но вам может понадобиться сантехник.

Прежде чем позвонить кому-либо, убедитесь, что клапаны радиатора (в месте, где трубы входят в радиатор) открыты, чтобы внутрь могла попасть вода. Тогда, если тепла по-прежнему нет, есть две вещи, которые могут быть неправильными.

* В радиаторе может быть воздух, который препятствует циркуляции воды. Это наиболее вероятно, если есть только один радиатор, который не нагревается, или если есть радиатор, который только наполовину нагревается.

Если это так, из радиатора следует «стравить воздух», то есть открыть клапан на дальнем конце для выхода воздуха.В большинстве хозяйственных магазинов есть «ключи», которые упрощают эту работу. Медленно поверните ключ, не более чем на один оборот, и поставьте чашку под клапан — вы не хотите, чтобы выходило много воды, только крошечный кусочек

, который указывает на отсутствие воздуха.

* Если задействовано более одного радиатора или если стравливание не помогает, возможно, в системе недостаточно воды, поэтому давление слишком низкое для обеспечения циркуляции воды ко всем радиаторам.

«В первую очередь отсутствие давления проявляется на верхних этажах, — говорит Дэвид Калвер из компании Bryan Plumbing and Heating в Парквилле.Он предлагает проверить манометр на котле. Это небольшое круглое или квадратное устройство, обычно сверху или спереди.

«Верхняя часть манометра обычно предназначена для измерения давления, а нижняя часть — для температуры котла», — объясняет г-н Калвер. Найдите значение в фунтах на квадратный дюйм (фунт / кв. Дюйм). «Фунт давления поднимет столб воды примерно на 2,4 фута», — говорит Калвер.

Что должен показывать прибор? Он приводит пример. «Если давление в котле составляет 10 фунтов, он поднимет воду на 24 фута.В типичном двухэтажном доме с подвалом оставьте 8 футов для подвала, 8 футов для первого этажа и примерно 4 фута на втором этаже, чтобы добраться до вершины самого высокого радиатора. Восемь плюс восемь плюс 4 — это 20 футов, поэтому 10 фунтов давления будет достаточно ».

Если у вас более высокие потолки или нет подвала, скорректируйте значения соответствующим образом.

Если показания манометра в фунтах на квадратный дюйм кажутся слишком низкими для высоты, на которую должна идти вода, системе может потребоваться больше воды. Думайте об этом как о забивании большего количества воды в системе; это повысит давление.

И, если это ваш первый опыт работы с системой горячего водоснабжения, вы можете вызвать сантехника — хотя бы для того, чтобы показать вам веревки, чтобы в следующий раз вы могли продолжить работу самостоятельно.

В основном вот что нужно для регулировки давления.

Сначала система должна быть холодной или, по крайней мере, не работать. Затем определите, есть ли в системе редукционный клапан.

«Чтобы найти это, — говорит г-н Калвер, — нужно проследить за линией холодной воды, ведущей к котлу.Непосредственно перед тем, как он войдет в котел, будет запорный клапан, а сразу за запорным клапаном находится редукционный клапан. «Вероятно, он красный или зеленый, — говорит он, и его цель — снизить« уличное давление ». вода по мере того, как она поступает в птичник, с обычных 45-60 фунтов на квадратный дюйм до 12 фунтов.

Большинство редукционных клапанов, объясняет он, настроены на заводе так, чтобы допускать 12 фунтов на квадратный дюйм или поднимать воду на 28,8 футов. достаточно для трехэтажного дома

У некоторых котлов есть кнопка «быстрого наполнения» на клапане, которая позволяет быстро доливать воду при уличном давлении.У других есть установочный винт на клапане, который следует поворачивать по часовой стрелке для увеличения давления и против часовой стрелки для его уменьшения. Любую регулировку необходимо производить постепенно, чтобы система могла приспособиться.

В некоторых системах нет редукционного клапана; вода добавляется открытием крана в магистрали с улицы.

Обычно котлы защищены предохранительным клапаном, заводская настройка которого составляет 30 фунтов на кв. Дюйм. Если давление превысит это значение, клапан «дует», и «лишняя» вода выльется наружу.В некоторых старых домах предохранительный клапан может входить прямо в бак для стирки или слив. (Если вы восстанавливаетесь, будьте осторожны, не снимайте и не закрывайте такую ​​трубу, — говорит г-н Калвер.) В любом случае, вы не хотите стоять рядом с этим предметом, когда он уходит.

«Известно, что манометры котла неправильные, — говорит г-н Калвер. Он рекомендует никогда не повышать давление выше 25 фунтов на квадратный дюйм.

Next: Котлы разные.

Г-н Джонсон — менеджер по строительству Жилищной службы по соседству в Балтиморе.Г-жа Мензи — главный редактор журнала The Sun.

Если у вас есть вопросы, комментарии, советы или опыт, которыми вы можете поделиться по поводу работы над домами, напишите нам по адресу HOME WORK, The Sun, 501 N. Calvert St., Baltimore, Md. 21278. Вопросы, представляющие общий интерес, будут ответил в колонке; комментарии, советы и впечатления будут публиковаться в отдельных столбцах.

Радиаторы все еще горячие при выключенном отоплении. Почему?

Никто не любит решать проблемы, связанные с системой отопления. Обогреватели, которые не включаются, а в некоторых случаях не выключаются, вызывают проблемы с комфортом и потери энергии, которые могут дорого стоить.Одна проблема, которая встречается чаще, чем люди думают, — это радиатор , который все еще горячий, даже когда нагрев выключен.

Так почему же радиатор остается горячим при выключенном отоплении? В нашем последнем блоге специалисты по отоплению и охлаждению из компании Bigham’s One Hour Heating and Air Conditioning обсуждают две распространенные причины этой проблемы.

Неисправный обратный клапан

Старые системы радиаторного отопления используют бойлер для постоянного поддержания горячей воды. Горячая вода из котла поднимается и движется естественной конвекцией к радиаторам.Когда в вашем доме включено отопление, насос забирает воду из бойлера в радиаторы. Когда в комнатах достигается желаемая температура или когда отопление выключается, насос останавливается.

Когда насос останавливается, обратный клапан закрывается грузом, что препятствует возникновению естественной конвекции. Когда насос снова включается, он может преодолеть сопротивление веса обратного клапана. Если обратный клапан выйдет из строя, естественная конвекция продолжится. Из-за этого радиатор становится горячим даже при выключенном обогреве.«Обратные клапаны имеют тенденцию выходить из строя, когда пружина ломается или мусор блокирует закрытие клапана.

Техник HVAC из компании Bigham’s One Hour Heating and Air Conditioning может помочь исправить ваши обратные клапаны и диагностировать ваши проблемы. Поскольку эти проблемы часто встречаются в старых системах, возможно, стоит модернизировать вашу систему отопления.

Проблемы с переключающим клапаном

Современные системы радиаторного отопления используют свой бойлер для нагрева воды для радиаторов отопления и для нагрева воды для раковин и смесителей.Термостаты используются для переключения воды в радиаторы или бак с горячей водой. Часть, которая направляет горячую воду в радиаторы или баки, называется дивертером.

Дивертеры работают как ванна с душем. Если вы не хотите, чтобы вода текла из крана ванны, вы нажимаете кнопку, которая перенаправляет воду на насадку для душа. Разница в котлах состоит в том, что они могут подавать воду одновременно и к радиаторам, и к резервуару для горячей воды, перемещаясь в «среднее положение», чтобы оба могли получать необходимую им горячую воду.

Иногда этот переключающий клапан выходит из строя или забивается мусором, поэтому он не может остановить попадание воды в радиатор даже при выключенном обогреве. Вода, которая должна поступать только в резервуар для горячей воды, по-прежнему направляется в оба. Это еще одна распространенная причина, по которой ваш радиатор все еще горячий, даже если он выключен. Удаление воздуха из радиатора может помочь решить эту проблему, но если проблема не исчезнет, ​​это означает, что с термостатами или бойлером могут возникнуть другие проблемы, и вам следует позвонить в Бигхэм, чтобы исправить это.

Bigham’s — ваша надежная компания по ремонту радиаторов в районе залива

Если радиатор все еще горячий, когда вы хотите охладиться, это может быть очень неудобно и расточительно, поэтому важно исправить его сразу же. От Кловердейла до Лос-Гатоса — Bigham’s поможет вам решить ваши проблемы с отоплением и охлаждением.

Позвонив в службу One Hour Heating and Air Conditioning Bigham, вы без проблем снова сделаете ваш дом комфортным. Мы готовы заменить и установить любые детали или оборудование, необходимые для вашей системы отопления.Мы на связи 24/7. Нет проблемы слишком большой или слишком маленькой, когда ваш комфорт находится под угрозой. Позвоните нам сегодня для обслуживания!

БТЕ против ватт: как выбрать размер электрических радиаторов

Мир отопления, похоже, изо всех сил пытается определиться с тем, как он выражает выходную мощность, что не менее легко, учитывая неудобную золотую середину, которую Великобритания принимает в отношении измерения. Ватты или БТЕ — что вам следует использовать? Один лучше другого? Если вы всю жизнь использовали одно или другое измерение, это может быть настоящим неудобством, а когда вы идете в магазин за новым обогревателем, столкнетесь с массой непонятных вам ценностей.По правде говоря, оба измерения мощности хороши, но, тем не менее, путаница по поводу них распространена. Но не волнуйтесь, Heatingpoint всегда под рукой, чтобы предоставить немного больше информации о том, чего ожидать, когда вы выбираете размер электрического радиатора.

Измерения мощности

БТЕ и ватт — это единицы измерения, которые используются в отношении тепловой мощности приборов, но в чем разница между ними и что вам нужно знать, когда вы подбираете электрический радиатор для дома или бизнеса?

БТЕ (британские тепловые единицы)

Если вы лучше знакомы с метрикой, возможно, вы не слышали о БТЕ или менее уверены в их использовании.BTU (британская тепловая единица) означает количество энергии, необходимое для подъема одного фунта жидкой воды на 1 градус по Фаренгейту при давлении в одну атмосферу. Хотя это называется британской тепловой единицей, в Великобритании это измерение используется по-разному, и гораздо чаще используется в Америке, где оно используется для выражения мощности как газовых, так и электрических обогревателей. Тем не менее, BTU иногда используются в Великобритании, обычно для измерения тепловой мощности систем центрального отопления. Расчеты объемов помещения для определения потребности в БТЕ обычно производятся в футах, поэтому, как правило, подходят всем, кому удобнее использовать британские единицы измерения.Метрическим эквивалентом БТЕ является калория, которая представляет собой количество энергии, необходимое для подъема одного грамма воды на один градус Цельсия при давлении в одну атмосферу.

Вт

Вт — единица мощности, представляющая передачу энергии в один джоуль в секунду, и является частью Международной системы единиц. Поскольку ватты являются установленным мировым стандартом, их использование в Великобритании преобладает, хотя по очевидным причинам они, как правило, более тесно связаны с электротехнической продукцией. Когда вы покупаете электрические радиаторы, их выходная мощность часто указывается в ваттах, особенно если они поставляются в другие страны, где это предпочтительное измерение.Иногда при выборе размера электрического радиатора легче понять, что такое ватт, поскольку вы можете легко использовать указанную мощность для расчета их эксплуатационных расходов, используя пенсы за кВтч, предоставляемые вашим поставщиком энергии. Тепловая мощность электрических радиаторов, которые мы предлагаем в магазине Heatingpoint, указывается в ваттах.

Ватт какая разница?

Было бы немного ошибкой сказать, что БТЕ можно напрямую преобразовать в ватты, поскольку это не совсем так. БТЕ — это единица измерения энергии, тогда как ватты измеряют скорость передачи энергии, поэтому они напрямую не приравниваются к одному и тому же.Когда люди говорят о преобразовании БТЕ в ватты, на самом деле они имеют в виду преобразование БТЕ в час и в ватт, что иногда обозначается как БТЕ / ч. Если у вас есть мощность или значение БТЕ / ч, необходимое для обогрева комнаты, достаточно простого расчета, чтобы преобразовать их в предпочтительные измерения.

Какое измерение мне следует использовать, чтобы выбрать размер моего электрического радиатора?

Вы можете использовать любое измерение, чтобы определить, будет ли у электрического радиатора достаточно мощности для обогрева вашей комнаты.

Преобразование БТЕ / ч в ватты

Если вы знаете, какое значение БТЕ / ч вам нужно для обогрева гостиной, но вам нужно преобразовать его в ватты, чтобы убедиться, что вы покупаете электрический радиатор, подходящий для этого помещения, все, что вам нужно сделать, это умножить полученное значение на 0,293.

Так, например, если в вашей комнате требуется радиатор с выходной мощностью 3425 БТЕ / ч, вы можете изменить это значение на ватты следующим образом:

3425 x 0,293 = 1003,53

Это означает, что вам нужен электрический радиатор мощностью около 1000 ватт, хотя рекомендуется округлить его до следующего доступного размера, чтобы обеспечить хорошее отопление комнаты.

Преобразование ватт в БТЕ / ч

Некоторые отопительные предприятия предпочтут указывать свою продукцию в единицах БТЕ / ч, поэтому для преобразования ватт в БТЕ можно использовать аналогичное простое умножение.

Если вы знаете, что вам нужен электрический радиатор мощностью 1800 Вт для вашей комнаты, все, что вам нужно сделать, чтобы получить его эквивалент в БТЕ / ч, — это умножить мощность на 3,412.

1800 x 3,412 = 6141,6

Это даст вам количество БТЕ / ч, необходимое для обогрева вашего помещения, но, опять же, всегда полезно округлить это немного до следующего размера, чтобы убедиться, что у вас есть радиатор, который будет достаточно мощным.

Так просто?

Если вы покупаете электрические радиаторы или другие нагревательные приборы с КПД почти 100%, приведенные выше расчеты дадут вам очень хорошее приближение того, как мощность радиатора соответствует его выходной мощности в БТЕ. Однако вы должны знать, что это не точная наука, и вы можете столкнуться с трудностями, если попытаетесь использовать эти практические правила, чтобы выбрать другие, менее эффективные решения для обогрева.

Путаница заключается в том, что указанная мощность большинства электрических нагревательных приборов не является строго измерением тепловой мощности.Фактически, это количество потребляемой энергии, которое определяет, сколько электричества обогреватель будет использовать в час. Если ваш радиатор на 100% эффективен, его тепловая мощность будет такой же, как и потребляемая энергия, поэтому с нашими радиаторами проблем не возникнет. Но как только тепловая мощность становится значительно меньше потребляемой энергии, расчет становится искаженным, и вам потребуется более высокая мощность, чем рекомендуется.

Как выбрать размер радиатора на сайте Heatingpoint

Запутались? Не волнуйтесь — розничные продавцы отопительного оборудования много лет борются с этим, и большинство из них, в том числе и мы, устранили большую часть этой двусмысленности, предоставив индивидуальные калькуляторы отопления для каждого типа отопительного решения.В случае сомнений всегда обращайтесь к калькулятору размеров или таблицам, рекламируемым вместе с продуктом, или поговорите с консультантом по продажам, чтобы получить индивидуальное предложение, адаптированное как для вашего дома, так и для выбранной вами системы отопления. Иногда это означает полный отказ от БТЕ, но большинство людей считает, что это упрощает задачу и делает ее менее запутанной.

В Heatingpoint мы предоставляем простой в использовании калькулятор электрических радиаторов, который мгновенно даст вам минимальную требуемую мощность, и, используя приведенные выше вычисления, ее можно легко преобразовать в БТЕ.

Распределение тепла более равномерно — балансировка

Во многих домах есть холодная комната или даже целый этаж, который холоднее другого. Неравномерное тепло может происходить из-за недостаточно изолированной северной стены, утечки воздуха и других источников. Но зона с дополнительным свитером часто находится в конце участка воздуховода или трубопровода, вдали от печи или котла и получает обедненный теплом запас воздуха или воды.

Если в большинстве комнат тепло, а в некоторых даже слишком тепло, вам, вероятно, не нужна новая отопительная установка.Но вам может потребоваться сделать одно из этих улучшений, чтобы обеспечить более равномерную подачу тепла. Еще лучше подумать об улучшениях, которые повышают комфорт и энергоэффективность за счет подачи тепла туда, где находятся люди: в жилых помещениях днем ​​и спальнях в ночное время.

* Ограничения термостата. В системах горячего водоснабжения труднее всего сбалансировать старую одноконтурную конструкцию, управляемую одним термостатом. Вода выходит из котла очень горячей, нагревает радиаторы в первых комнатах, до которых достигает, но переносит все меньше и меньше тепла в более отдаленные комнаты.

Если термостат находится в прохладной зоне, он будет продолжать требовать тепла, и в теплых помещениях начнется жарка. Если он находится в теплой зоне, термостат перестанет требовать тепла, и прохладные помещения замерзнут. Это не очень удобная установка, если не считать траты топлива.

Это может помочь переместить термостат в другое место, за исключением того, что во многих домах его нет. Даже в центральном холле или на лестничной клетке воздух, вероятно, будет течь из теплых зон в холодные, с нижнего этажа на верхний и создавать изменения температуры, которые искажают любую настройку термостата, которую вы устанавливаете.

* Системы горячего водоснабжения. В большинстве домов вы можете регулировать подачу тепла, частично или полностью закрыв некоторые радиаторы. Это не сработает в старых домах с однотрубной системой, где горячая вода проходит через каждый радиатор, чтобы достичь следующего в очереди. Но с системами, которые позволяют обходить радиаторы, закрытие одного из двух в теплом помещении передаст больше тепла в более прохладные помещения.

Лучшее решение — разделить одноконтурные системы как минимум на две секции, как правило, по одной на каждый этаж.Большая часть существующей сантехники может оставаться на месте. Основные изменения — это второй циркуляционный насос рядом с котлом и новая линия подачи, ведущая от нового насоса непосредственно к началу второго контура.

Таким образом, каждый контур может иметь свой собственный термостат, управляющий собственным насосом.

Вы можете поддерживать температуру на первом этаже, а на втором — прохладу в течение дня и менять настройки ночью. Запрограммируйте два понижающих термостата, и вы сможете прогреть участки, прежде чем попасть туда, а затем сэкономить деньги, автоматически охладив их, когда вы уйдете.Такое серьезное улучшение в конечном итоге окупится за счет экономии топлива, потому что вы не будете перегревать одну часть дома, чтобы сделать жизнь возможной без дополнительных свитеров в другой.

* Системы горячего воздуха. Горячий воздух из печи проходит через распределительные каналы, размер которых позволяет подавать необходимое количество тепла в каждую комнату. Но во многих компоновках не учитываются потери тепла в пути, которые, по данным Министерства энергетики США, могут составлять от 20 до 40 процентов.

Вы можете обернуть воздуховоды изоляцией и заклеить стыки фольгированной лентой для экономии тепла.Чтобы распределить запасы более равномерно, можно частично закрыть кассы в самых теплых помещениях. Чтобы усилить тепло в изолированном холодном месте, добавьте небольшой вентилятор в воздуховод в конце линии чуть ниже регистра.

Он подключен к главному вентилятору печи, работает одновременно и увеличивает тепловой поток, протягивая дополнительный теплый воздух через канал.

Другой подход заключается в замене стандартного печного вентилятора, который выдувает и включает воздух, на систему непрерывной циркуляции воздуха.У них есть вентиляторы с регулируемой скоростью и постоянно работающим низкоскоростным циклом. Это уменьшает колебания тепла и холода, которые часто возникают в домах с системами горячего воздуха, и более тщательно перемешивает подаваемый в помещении воздух.

Одним из сложных способов решения проблемы является установка одного или нескольких автоматических заслонок в стратегически важных местах в основных приточных каналах. Заслонка представляет собой панель с электроприводом, установленную в воздуховоде, которая открывается и закрывается в ответ на действие собственного термостата.

Увеличьте настройку, например, на термостате на верхнем этаже, и перегородка сместится, чтобы отводить больше теплого воздуха в линии подачи второго этажа.У вас остались одна печь и вентилятор. Но с двумя или более автоматическими заслонками вы можете направить тепло туда, где оно вам больше всего нужно.

Тепловыделение от радиаторов

Тепловая мощность радиатора определяется температурой окружающей среды

  • температура поверхности радиатора
  • площадь поверхности радиатора

Формулы ниже могут использоваться для оценки тепла излучение от радиаторов, где разница температур между поверхностью радиатора и окружающим воздухом составляет 50 o C (температура воды на входе 80 o C , температура воды на выходе 60 o C и окружающего воздуха 20 o C ).

Тепловыделение от колонных радиаторов

Тепловыделение колонного радиатора можно приблизительно оценить как

P = k c V e (1)

где

где

= тепловыделение (Вт)

k c = 15000-17000 — постоянная для колонного радиатора

V e = внешний объем радиатора (м 3 )

Тепловыделение панельных радиаторов

Тепловыделение панельного радиатора можно приблизительно оценить как

P = 41 k p л (1 + 8 h) (2)

где

P = тепловыделение (Вт)

k p = постоянная для панельного радиатора

l = длина радиатора th (м)

h = высота радиатора (м)

Типичные константы конфигурации панельного радиатора — k p :

  • 3.1: для одной панели
  • 4,1: для панели — конвектора
  • 4,9: для двух панелей
  • 5,8: для панели — конвектора — панели
  • 7: для панели — конвектора — конвектор — панель
  • 7,6: для трех панелей
  • 8,8: для панели — конвектор — панель — конвектор — панель
  • 9: для четырех панелей

Калькулятор панельного радиатора

— k p — постоянная панельного радиатора

— l — длина радиатора (м)

— h — высота радиатора (м)

Central Heat vs.Прямой нагрев

Система отопления вашего дома — это один из тех скрытых компонентов вашего дома, который легко упустить из виду, если он работает правильно. Но когда тепло гаснет без предупреждения или ваши счета за коммунальные услуги неожиданно резко возрастают, система отопления внезапно оказывается в центре вашего внимания.

Самым большим препятствием при обогреве дома является поиск правильного баланса между обеспечением адекватным теплом там, где вы хотите, без разорения в течение нескольких месяцев. И это золотое пятно не всегда легко найти.

Ищете ли вы новую систему отопления или просто хотите узнать больше о доступных вам вариантах, вы попали в нужное место. Мы рассмотрим разницу между центральным отоплением и прямым отоплением и сравним плюсы и минусы различных типов обогревателей и систем отопления, чтобы помочь вам определить, какой из них лучше всего подходит для вашего дома.

Центральное отопление и прямое отопление

Если в вашем доме есть печь, тепловой насос или бойлер, у вас центральное отопление .В системах центрального отопления используется центральное оборудование и воздуховоды или радиаторы для распределения тепла по дому.

Прямое отопление часто называют дополнительным теплом в виде обогревателей, но на рынке есть системы прямого отопления, которые предназначены для обогрева всего дома. Основное преимущество систем прямого отопления состоит в том, что их относительно легко установить в качестве модернизации; однако они более дорогие в эксплуатации, чем системы центрального отопления.

Типы систем центрального отопления

1. Печь газовая

Газовые печи, пожалуй, самая распространенная система отопления, используемая в США. Газовая печь, работающая на природном газе или пропане и контролируемая домашним термостатом, сжигает топливо для нагрева теплообменника агрегата.

Воздуходувка перемещает нагретый воздух через воздуховоды дома, а побочные продукты сгорания топлива удаляются из дома.

Плюсы

  • Новые газовые печи высокоэффективны, что означает, что они меньше влияют на окружающую среду, чем другие варианты отопления.Проверьте рейтинги эффективности печи (также известные как AFUE или ежегодная эффективность использования топлива), чтобы убедиться, что вы получаете эффективную систему. Чем выше рейтинг AFUE, тем лучше.
  • Газовая печь дешевле в эксплуатации, чем система электрического отопления.

Минусы

  • По сравнению с электрическими печами и тепловыми насосами, газовые печи более дорогие в приобретении и установке.
  • Газовые печи необходимо надлежащим образом (и постоянно) обслуживать и проверять.Если им позволить выйти из строя, газовые печи могут стать шумными и неэффективными, а трещины в теплообменнике могут вызвать потенциально фатальную утечку окиси углерода.

2. Печь электрическая

Электрические печи распространены в многоквартирных домах и районах, где газоснабжение либо недоступно, либо нецелесообразно. Основное различие между газовой печью и электрической печью заключается в том, как нагревается воздух.

В электрической печи воздух нагревается, когда он проходит через систему змеевиков, нагреваемых электричеством.Воздуходувка перемещает воздух через воздуховоды дома.

Плюсы

  • Электропечи дешевле газовых в приобретении и установке.
  • Поскольку для нагрева воздуха не требуется горение, электрические печи, как правило, служат дольше, чем их аналоги, работающие на топливе.

Минусы

  • В зависимости от того, где вы живете, электричество может быть дорогим. Электрическая печь приведет к более высоким счетам за коммунальные услуги, чем другие системы центрального отопления.
  • Хотя на первый взгляд электричество может показаться экологически чистым топливом, изучите, как вырабатывается ваша энергия. Если ваша электроэнергия поступает от электростанции, работающей, например, на угле, электрическая печь не является экологически чистым выбором.

3. Электрический тепловой насос

В то время как печи вырабатывают тепло (и используют для этого довольно много энергии), тепловые насосы просто перемещают тепло. Тепловые насосы потребляют меньше энергии, чем другие системы отопления, поэтому они более экологичны и в большинстве случаев менее дороги в эксплуатации.

Плюсы

  • Тепловые насосы очень эффективны в теплую погоду и осушают воздух внутри.
  • Тепловые насосы с мини-сплит-системой не требуют наличия воздуховодов, что делает их идеальными для подвалов и помещений, в которых нет воздуховодов.

Минусы

  • Стандартные тепловые насосы не идеальны для домов в районах с очень холодными зимами, поскольку они создают теплый воздух, забирая тепло из наружного воздуха и доставляя его внутрь.
  • В очень холодную погоду стандартные тепловые насосы могут переключаться на резервную систему отопления — обычно электрическое сопротивление — для поддержания температуры, установленной на термостате. Это может привести к большим счетам за электроэнергию.

4. Котел отопительной системы

Вместо распределения тепла путем продувки воздухом в системах отопления котлов используется вода. В домах с котельными системами используются радиаторы — обычно настенные или монтируемые на плинтусе — или системы лучистого теплого пола для распределения горячей воды или пара, образующего тепло.

Плюсы

  • Бойлеры обычно более энергоэффективны, чем традиционные печи, потому что пар или горячая вода, которые они производят, не остывают, когда попадают в радиаторы дома.
  • Котельные системы предоставляют больше возможностей для обогрева помещений. В то время как традиционные топочные системы могут обогревать помещения только через воздуховоды, в котельных могут быть установлены радиаторы и теплый пол.

Минусы

  • Котлы не являются идеальным выбором для установки в существующее пространство, так как для них требуются радиаторы или теплый пол.
  • Котлы

  • наиболее эффективны, когда работают на природном газе. Электрические котельные системы являются вариантом, если услуги природного газа (или пропана) недоступны или слишком дороги, но эксплуатационные расходы, вероятно, будут высокими.

Типы систем прямого нагрева

1. Газовый обогреватель

Обогреватели, работающие на природном газе и пропане, популярны для неотапливаемых помещений, таких как гаражи, подвалы с дневным освещением и открытые пространства, которые были преобразованы в закрытые помещения.

Плюсы

  • Природный газ и пропан дешевле электричества, поэтому газовые обогреватели более экономичны в эксплуатации.
  • Газовые обогреватели обеспечивают немедленное нагревание, и многие модели оснащены термостатом, который помогает поддерживать постоянную температуру.

Минусы

  • Чтобы избежать риска утечки окиси углерода в дом, газовые обогреватели следует выводить наружу.Это немного усложняет установку по сравнению с другими системами прямого нагрева.
  • Газовые обогреватели не имеют решетки с прохладным прикосновением, которую вы найдете на многих электрических обогревателях. Не подпускайте детей и домашних животных к газовым обогревателям.

2. Электрический обогреватель

Электрические обогреватели — простое решение для холодной комнаты. Их легко найти в магазинах, и для них требуется только розетка.

Плюсы

  • Электрические обогреватели бывают разных стилей — например, тепловентиляторы, керамические обогреватели и радиаторные обогреватели. Независимо от вашего бюджета, вы, вероятно, сможете найти подходящий обогреватель.
  • Электрические обогреватели

  • оснащены функциями безопасности, такими как холодные решетки и датчики опрокидывания, которые отключают агрегат в случае его опрокидывания.

Минусы

  • Электрические обогреватели потребляют много энергии, поэтому они могут привести к резкому увеличению счетов за электроэнергию.
  • Большие маслонаполненные обогреватели радиаторного типа не так портативны, как электрические обогреватели меньшего размера, и, как правило, они дороже.

3. Дровяная печь

Вы можете больше ассоциировать дровяные печи с хижиной семьи Ингаллсов в Little House on the Prairie , чем с собственным домом, но технология дровяных печей прошла долгий путь со времен дымных пузатых печей.

Печи, сертифицированные Агентством по охране окружающей среды

, эффективны и чисто горят, оказывая гораздо меньшее воздействие на окружающую среду, чем обычный дровяной камин.

Плюсы

  • Древесина и другие подходящие горючие материалы недороги и возобновляемы.
  • Программа сертификации дровяных печей Агентства по охране окружающей среды (EPA) позволяет легко найти печи, работающие на экологически чистом топливе. Выбирайте печи на гранулах или дровяные печи с каталитическими нейтрализаторами как наиболее экологически чистый вариант.

Минусы

  • Дровяные печи и печи на гранулах должны выводиться наружу, поэтому установка также может включать строительные работы.
  • Вам понадобится сухое крытое место для хранения топлива для печи.Если вы планируете постоянно использовать дровяную печь, вам может потребоваться много места для хранения.

Другие варианты систем отопления

Несмотря на то, что в последние годы как системы центрального, так и прямого отопления повысили свою энергоэффективность, есть несколько дополнительных опций, которые еще меньше влияют на окружающую среду.

1. Геотермальные системы

Установка геотермальной системы требует значительных финансовых вложений, но эксплуатационные расходы низкие, и вы уменьшите углеродный след своего дома.Геотермальные системы используют тепловой насос и стабильную температуру земли под землей для обогрева и охлаждения вашего дома.

Плюсы

  • Геотермальные системы невероятно эффективны и потребляют очень мало электроэнергии. В то время как стандартный тепловой насос будет прибегать к дорогостоящему резистивному нагреву в очень холодную погоду, геотермальная система забирает тепло из земли, которое круглый год остается на уровне примерно 50 градусов по Фаренгейту.
  • Геотермальные системы

  • требуют минимального обслуживания (в конце концов, большинство компонентов находятся под землей), и во время работы работают бесшумно.

Минусы

  • Геотермальная система имеет одну из самых высоких затрат на установку среди всех отопительных систем на рынке. Вы сразу же ощутите экономию на счетах за коммунальные услуги, но чтобы увидеть полную окупаемость своих вложений, воспользуйтесь геотермальной системой только для вашего вечного дома.
  • Не каждая компания, занимающаяся ОВКВ, устанавливает или обслуживает геотермальные системы, поэтому вам может показаться, что это дорогое обслуживание.

2. Активное солнечное отопление

Активные солнечные системы отопления используют солнечную энергию для нагрева жидкости (обычно воды или пропиленгликоля), которая затем передается в теплообменник для обогрева дома.Если в тепле нет необходимости, система оснащается накопительным баком.

Плюсы

  • Активные солнечные системы отопления совместимы с лучистыми напольными обогревателями и большинством оборудования центрального отопления, например, бойлерами или традиционными печами.
  • Отопление дома с помощью солнечной энергии — экологически ответственное дело.

Минусы

  • Первоначальные затраты на солнечную энергию высоки. Подобно геотермальному отоплению, воздержитесь от установки солнечной системы отопления, пока не почувствуете, что находитесь в своем вечном доме.
  • Логистика установки солнечной системы отопления может быть сложной. В вашем доме должно быть пространство, правильная ориентация по отношению к солнцу и небольшой укрытие от деревьев, чтобы поддерживать необходимое оборудование.

Выбор системы отопления

Выбор системы отопления — не всегда простой процесс, и необходимо учитывать множество факторов:

  • Какой источник питания используют другие системы в вашем доме?
  • Насколько дорого стоит электричество в вашем районе?
  • Доступны ли вам услуги природного газа?
  • Если природный газ не подходит, хотите ли вы купить баллон с пропаном и оставить его заполненным?
  • Как долго вы планируете оставаться в своем доме?
  • Каков ваш бюджет?

Для большинства людей газовая печь или высокоэффективный электрический тепловой насос — лучший вариант, если вы пытаетесь найти баланс между стоимостью (как на установку, так и на эксплуатацию) и эффективностью.Если вы обнаружите, что вам нужно дополнительное тепло, сначала попробуйте электрический обогреватель радиаторного типа. Если вам нужно постоянное дополнительное отопление для относительно большой площади, подумайте об экологически чистой печи на гранулах.

И если ваш бюджет позволяет, и вы обосновались в своем вечном доме, обязательно возьмите солнечную или геотермальную систему отопления. Вы сразу же увидите сокращение своих счетов за электроэнергию и окажете услугу окружающей среде.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *