Чем полипропилен от полиэтилена отличается: Чем отличается полиэтилен от полипропилена

Содержание

Отличия полиэтилена от полипропилена | ЮНИТРЕЙД

Полиэтилен и полипропилен – два схожих полимерных материала, которые конкурируют друг с другом на мировом рынке. И свойства, и их сфера применения очень близка. Однако различия все-таки существуют, потому в этой статье мы поможем разобраться, чем отличаются полиэтилен и полипропилен.

Общие свойства полиэтилена и полипропилена

Начнем с того, что объединяет эти два материала.

  • Термопластичность. Оба материала под воздействием температуры размягчаются и плавятся, что обеспечивает возможность применения соответствующих технологий: литье, экструзия и т.п.
  • Механическая прочность. РР и РЕ имеют схожие показатели прочности на разрыв, а также ударной вязкости. При этом полипропилен гораздо ближе по свойствам к полиэтилену низкого давления. 
  • Электроизоляционные свойства. Оба материала не проводят электрический ток, а за счет своей пластичности могут эффективно применяться в качестве гибкой изоляции проводов.  
  • Химическая устойчивость. Полиэтилен и полипропилен устойчивы к воздействию воды, а также агрессивных сред (щелочей, кислот). Однако оба материала растворяются под воздействием многих органических растворителей, включая бензин. 

Основные отличия полиэтилена и полипропилена

  • Полипропилен синтезируют только при низком давлении (до 4 МПа), и только в присутствии катализатора Циглера – Натты. Полиэтилен же может синтезироваться при таких условиях (будет получен ПЭ низкого давления) либо при высоком давлении (будет получен менее прочный ПЭ высокого давления). Соответственно, отличий между РР и РЕ высокого давления намного больше, чем между РЕ низкого давления.
  • Полипропилен легче: материал имеет вес как минимум на 0,04 г/куб. см. меньше по сравнению с самой легкой маркой полиэтилена.
  • Полипропилен имеет более высокую температуру плавления, до 180 градусов, в то время как полиэтилен плавится уже при 140 градусах. 
  • Полипропилен формирует более гладкую и плотную поверхность, потому более устойчив к загрязнениям и легче отмывается по сравнению с ПЭ.
  • Полиэтилен более эластичен. Полипропилен более прочный, но и хрупкий материал, в то время как полиэтилен обеспечивает увеличенную гибкость.
  • Полиэтилен имеет гораздо более высокую морозостойкость, выдерживая температуры до -50 градусов, в то время как для полипропилена критичной является температура -5 градусов. 
  • Цена: полипропилен – это более дорогой полимер. Сырье стоит дороже, и по стоимости может быть сопоставимо разве что с лучшими маркам полиэтилена низкого давления.

Итоги: каждый полимер – хорошее решение для своих задач

Каждый из материалов имеет свою сферу применения и свои преимущества, которыми нужно пользоваться:

Разделяя сферы применения, можно получить максимум выгоды от существующих отличий между этими полимерами.

Полипропилен или полиэтилен. Сравнительный анализ полипропиленовых и полиэтиленовых труб

Сшитый полипропилен: особенности, характеристики и отзывы

Сшитый полипропилен еще называется сверхмолекулярным и представляет собой самую плотную модификацию продукта полимеризации этилена. Она обладает сетчатой молекулярной структурой и межмолекулярными связями. Технические характеристики полипропилена уникальны, так как позволяют применять его в сферах, недоступных для несшитых образцов.

Некоторые особенности строения

Обычный несшитый материал получается при воздействии низкого давления, когда присутствуют катализаторы. Он обладает крупными полимерными молекулами с боковыми ответвлениями. Большинство из них находится в некоем свободном «плавании» в пространстве между молекулами. Сшивка позволяет добиться боковых связей, которые создают межмолекулярную сетку. В итоге удается получить особо прочную структуру, которая имеет вид кристаллической решетки твердых веществ.

Когда используются разные методики сшивания, получается вещество с определенным количеством связей, что указывает на более высокую или менее внушительную прочность. Некоторые варианты сшитого полипропилена получаются в присутствии перекиси водорода и обладают наибольшим процентом сшивки, который может достигать 85%. Наиболее распространен и применим в широком перечне изделий силановый полимер, который обладает 70-процентной связанной структурой.

Сшивка составит 60%, если технология предусматривает радиационный способ изготовления. В присутствии азота создается материал с достаточно сложными условиями протекания реакций. В итоге удается добиться все той же 70%-ной сшивки. Сшитый полипропилен с высоким процентом сшивки получается более дорогим и обладает наибольшей трещиностойкостью, высокой температурой плавления и внушительной ударопрочностью. Такая сшивка позволяет добиться более высокой твердости и меньшей пластичности изделий, что не говорит о высоком качестве, но позволяет получить различные материалы, которые будут иметь свое назначение.

Технические характеристики

Сшитый полипропилен по своим характеристикам не уступает множеству твердых веществ, а некоторые разновидности превосходят их по стойкости к разрушителям и длительности срока эксплуатации. Плотность материала составляет 940 кг/м3. Горение происходит при температуре +400 ˚С, при этом материал разлагается на воду и углекислый газ. Температура плавления достигает +200 ˚С.

Дополнительные характеристики

Растяжение на разрыв варьируется от 350 до 800 %. Этот параметр определяет механическую прочность. Сшитый полипропилен характеризуется высоким уровнем гибкости. Он ударопрочен при воздействии отрицательных температур до -50 ˚С. Срок эксплуатации материала при стандартных условиях превышает 50 лет. Теплопроводность сшитого полипропилена составляет 0,38 Вт/мК.

Основные особенности

Описываемый материал обладает множеством преимуществ, среди которых следует выделить:

  • высокую прочность на разрыв;
  • биологическую устойчивость;
  • способность противостоять высоким температурам;
  • отличные диэлектрические свойства;
  • устойчивость к растрескиванию;
  • противостояние щелочам, кислотам и органическим растворителям.

Материал хорошо претерпевает растяжение и характеризуется прочностью на разрыв. Даже при колебаниях температуры не покрывается трещинами. Он не разрушается биологическим способом и выдерживает даже кипение воды.

Трубы из сшитого полипропилена прочны и позволяют добиться качественных межтрубных соединений. Этот факт указывает на возможность использования изделий при устройстве коммуникаций в сейсмоопасных зонах.

Отрицательные особенности и отзывы о них

Как утверждают потребители, у описываемого материала есть и свои недостатки. Например, сшитый полипропилен проявляет низкую устойчивость перед воздействием солнечного излучения. Если ультрафиолет будет долго воздействовать на трубы, материал начнет разрушаться, станет хрупким.

Покупатели подчеркивают еще и то, что на полипропилен разрушительно воздействует кислород, если проникает внутрь молекулярной структуры. Однако эти проблемы можно устранить методом защиты изделий или добавкой специальных веществ на этапе создания продукции.

Полиэтилен или полипропилен

Довольно часто потребители задаются вопросом о том, что выбрать — сшитый полиэтилен или полипропилен. Для того чтобы ответить на него, необходимо ознакомиться с основными свойствами материалов и разобраться в областях применения каждого. Эти материалы изготавливаются разными способами. Например, полипропилен, который еще обозначается аббревиатурой ПП, получается методом полимеризации молекул пропилена. А вот сшитый полиэтилен, обозначающийся буквами PE-X, изготавливается по технологии физической или химической сшивки молекул этилена.

Оба варианта имеют высокую износостойкость и одинаковые показатели растяжения на разрыв. Но большей устойчивостью к растрескиванию обладает ПП, а при резких нагрузках он демонстрирует худшие показатели, чем PEX. Кроме того, сшитый полиэтилен имеет большую гибкость, ведь минимальный изгиб изделий из него составляет 5D. А вот у полипропилена этот показатель равен 8D.

Трубы из этих материалов обладают свойствами памяти, что позволяет восстанавливать форму при нагреве до +100 ˚С. Можно провести сравнение еще и по температуре плавления. У сшитого полиэтилена она выше на 30 ˚С, но применяются такие трубы в более низких температурных режимах.

Для обоих изделий максимальная рабочая температура одинакова и составляет +90 ˚С. Здесь лишь нужно будет уточнить, какой срок эксплуатации актуален при разных температурных режимах. Что касается нижнего предела, то он отличается довольно сильно. Например, для полипропилена критическая температура составляет -20 ˚С, а у сшитого полиэтилена ударопрочность сохранится до -50 ˚С.

Отзывы об использовании материала для бытовых нужд

Теплый пол из сшитого полипропилена, как утверждают домашние мастера, будет высокоэффективной системой. Такие трубы считаются сегодня наиболее современным выбором, так как их характеристики соответствуют требованиям в полной мере. Среди недостатков здесь, как утверждают покупатели, можно отметить лишь малую гибкость, из-за которой изделия плохо держат форму во время укладки.

Сшитый полипропилен для отопления используется тоже довольно часто. Однако здесь, как подчеркивают потребители, могут возникнуть проблемы из-за кислородопроницаемости материала, что может стать причиной активизации коррозионных процессов на элементах конструкции. Поэтому для теплого пола, например, специалисты советуют использовать трубы с диффузионной защитой.

В заключение

Если вы все еще не можете решить для себя вопрос о том, что лучше — полипропилен или сшитый полипропилен, то должны знать, что последний хорош тем, что обладает высокой температурой плавления. Этот материал хоть и является горючим, но для этого необходима температура в +400 ˚С.

Если эксплуатировать изделия из сшитого полипропилена при температуре до +75 ˚С, они будут готовы прослужить около 50 лет. А вот если условия будут сопровождаться высоким давлением и температурой теплоносителя в пределах +95 ˚С, то срок службы может сократиться до 15 лет. При этом материал не будет подвергаться деформации, поэтому его без опаски можно монтировать под слой штукатурки в тех помещениях, где важна эстетическая составляющая интерьера.

fb.ru

Разница между полипропиленовыми, полиэтиленовыми и пластиковыми трубами

В чем отличия между полипропиленовыми, полиэтиленовыми и пластиковыми трубами? В обиходе неспециалисты обычно все трубы, из различных полимеров, называют «пластиковыми» и, как ни странно, это правильно. Однако, изготовленные из различных материалов трубы значительно различаются по свойствам и, следовательно, по области применения:

1. Пластиком или пластмассой можно назвать любой полимер природного или искусственного происхождения и если следовать этому принципу, то даже резиновый шланг — это пластиковая труба. Существует множество пластмасс, из которых изготавливают трубы — поливинилхлорид, полистирол и т.п., но в строительстве для прокладки коммуникаций наибольшее применение нашли полиэтиленовые и полипропиленовые изделия.

2. Полиэтилен от полипропилена отличается несколько более низким максимальным давлением и температурой, его обычно применяют только для прокладки водопровода и канализации, зато большей гибкостью, что позволяет уменьшить количество стыков при укладке.

3. Полипропилен более жесткий, но выдерживает более высокое давление и температуру, трубами, изготовленными из него, можно прокладывать отопление и горячую воду.

На этом различия не заканчиваются, «таки есть одна маленькая большая разница» — есть полиэтилен, который не совсем полиэтилен, также как и есть не совсем полностью полиэтиленовые трубы.

Рассказываю о них:

4. Существуют трубы из «сшитого» полиэтилена.В процессе изготовления он подвергается специальной обработке и меняет свои свойства. Такой материал имеет почти одинаковые с полипропиленом свойства и трубы из него применяются там же, где и полипропиленовые. Но он имеет и недостаток — его нельзя сваривать, соединения делают с помощью специальных вставок и использования уплотнений или клеев.

5. Из «сшитого» полиэтилена изготавливают и металлопластиковые трубы.По своей конструкции это «слоеный пирог», где между внешней и внутренней пластиковой оболочкой вклеен рукав из алюминиевой фольги. Такие трубы выдерживают еще более высокие давления и температуры. Кроме того, они не расширяются так сильно, как выполненные из однородного материала под воздействием перепадов температуры и давления, и идеально подходят для монтажа отопления. Но их также нельзя сварить.

***

С основными различиями мы разобрались, но это не значит, что любую полипропиленовую трубу можно монтировать в качестве стояка отопления — иногда бывают разновидности, которые не рассчитаны на большие нагрузки или нагрев. В любом конкретном случае нужно внимательно соотнести характеристики конкретной марки трубы и условия, в которых она будет работать. Иначе есть возможность устроить в вашем доме небольшой бассейн или даже каток в зимнее время из-за ее разрыва.

biodoma.ru

ПНД и полипропилен. В чем разница?

Полипропилен — это полимер пропилена, а полиэтилен — полимер этилена. Оба вида пластика имеют много общего. Оба не подвержены коррозийному воздействию, в отличие от металла, поэтому их предпочтительнее применять в водопроводных системах. И полиэтилен, и полипропилен устойчивы к химическим средам, температурным перепадам. За счет своих свойств они получили широкое распространение. Транспортировка этих материалов обходится дешевле других, они меньше весят, и просто устанавливаются.

Оба полимера можно получить реакцией полимеризации.

Существуют два вида полиэтилена: низкой и высокой плотности. Структура и свойства полиэтилена определяются способами его получения. С увеличением плотности растет жесткость полиэтилена. К примеру, полиэтилен высокого давления (низкой плотности) чаще используется для изготовления пластиковых бутылок, а полиэтилен низкого давления является самым эластичным и прочным материалом из всей группы.

Полипропилен жестче полиэтилена низкого давления. Полипропилен идеален для изготовления труб, а полиэтилен низкого давления лучше применять для производства пластиковых емкостей. Теплопроводность полипропилена выше по сравнению с полиэтиленом (что прекрасно для водопроводных систем). Но полиэтилен менее подвержен солнечному и кислородному воздействию (по сравнению с полипропиленом без добавок), и достаточно термостоек, чтобы изготавливать из него пластиковые бассейны.

Наибольшее распространение получил полиэтилен низкой плотности (ПНД). Именно из него компания «Крис групп» выпускает на рынок широкий ассортимент своей продукции: пластиковые пруды, емкости для разведения рыбы, детские санки, сани-волокуши для снегохода, купели, поддоны для душа, бассейны эконом класса.

Полиэтилен низкого давления более эластичный, чем полиэтилен высокого давления и полипропилен.

Полиэтилен высокой плотности получают при низком или среднем давлении, а низкой – при высоком. Полиэтилен низкого давления — это пластик высшего качества. Полиэтилен – одни из самых дешевых полимеров. Полиэтилен стоит на первом месте в мире из всех пластиков, получаемых полимеризацией.

www.kris-group.ru

Полиэтилен

Полиэтилен – простейший из углеводородных полимеров. Получается в виде двух модификаций: низкой и высокой плотности.

Полиэтилен низкой плотности состоит из разветвленных цепей и получается радикальной полимеризацией этилена при высоком давлении. Это один из самых легких полимеров (плотность 0,92 г\см3 ), он не растворяется в органических растворителях, устойчив к действию кислот и щелочей, имеет довольно высокую температуру плавления – 110-120о и выдерживает дезинфекцию кипячением. Из полиэтилена низкой плотности изготовляют пленку для упаковки пищевых продуктов и медикаментов, флаконы с пипетками для глазных капель, бутылки.

Полиэтилен высокой плотности (0,92 г\см3) состоит из линейных цепей и получается координационной полимеризацией. По сравнению с полиэтиленом низкой плотности он имеет бóльшую механическую прочность, меньшую газопроницаемость и химически более устойчив. Применяется для изготовления коррозионно-устойчивых труб, предметов домашнего обихода.

Полипропилен

Может быть получен в виде атактического, синдиотактического и изотактического полимеров. Последний обладает более высокими механическими свойствами.

Полипропилен превосходит полиэтилен по прочности, химической устойчивости и теплостойкости. Изделия из него легко стерилизуются. Из него изготавливают одноразовые шприцы, капельницы, узлы аппаратов искусственного кровообращения. Детали из полипропилена используются в радиоаппаратуре.

Полистирол

Полистирол получается в основном радикальной полимеризацией в виде атактического полимера. В отличие от полиэтилена и полипропилена полистирол почти не эластичен, представляет собой стеклообразную массу, из него изготовляют, в частности, диски для цифровой записи. Химически инертен и обладает высокими электроизоляционными свойствами. Пенополистирол используется как термоизолятор и упаковочный материал.

Поливинилхлорид

Хлорсодержащий полимер, устойчивый к действию кислот и щелочей. Производится в больших количествах как один из наиболее многоцелевых полимеров. Он хорошо смешивается с различными наполнителями, что дает возможность получать различные изделия в виде труб, пленок, волокон.

Поливинилхлорид применяется в медицине для изготовления катетеров, дренажей, воздуховодов.

Фторсодержащие полимеры

Полимеры, содержащие атомы фтора – фторопласты – отличаются исключительно высокой стойкостью к действию кислот, щелочей, окислителей и органических растворителей.

Политетрафторэтилен (тефлон, фторопласт-4)

образует длинные линейные плотно упакованные цепи и представляет собой тяжелый полимер с температурой плавления выше 250о.

Связь C-F настолько прочна, что не разрывается под действием практически всех реагентов. Величина радиуса фтора такова, что его атомы полностью экранируют углеродную цепь, защищая её от воздействия агрессивных агентов:

Этим объясняется исключительная химическая стойкость фторопластов.

Недостатком политетрафторэтилена является трудность его переработки в изделия.

Политрифторхлорэтилен (фторопласт-3)

несколько уступает тефлону по химической и термической стойкости, но легче поддается переработке.

Сополимер тетрафторэтилена с перфторпропиленом, сохраняя химическую и термическую устойчивость, имеет менее плотную упаковку цепей, чем тефлон, и может перерабатываться по обычной технологии литья под давлением.

Фторсодержащие каучуки обладают уникальной устойчивостью к действию высоких температур и агрессивных агентов. Их разработка и применение позволили решить многие кардинальные вопросы в создании авиационной и космической техники.

studfiles.net

Сравнительный анализ полипропиленовых и полиэтиленовых труб

По степени химической устойчивости трубы из сшитого полиэтилена считаются одними из лучших. Они способны без разрушения транспортировать агрессивные химические вещества, такие как щелочи и кислоты. Есть небольшое количество жидкостей и газов, которые запрещено перекачивать по PEX трубам, но только при определенных высоких температурах. При нормальных и низких температурах, по большей части, полиэтиленовые трубы могут работать с любыми газами или жидкостями. Далее заметим, что отличная износостойкость позволяет PEX трубам выдерживать длительные нагрузки и разнообразные механические воздействия и при этом сохранять все свои положительные качества. Высокая прочность позволяет использовать трубы из сшитого полиэтилена не только для бытовых систем, как водоснабжение, отопление или канализация, но и для газопроводов, давление в которых намного выше, чем в ранее перечисленных.

Удобство монтажа — тоже немаловажно для трубопроводов из сшитого полиэтилена. Монтаж трубопроводов из PEX труб достаточно прост и не требует каких-либо специальных навыков и инструментов. Гибкость и эластичность позволяют минимизировать количество фитингов при создании даже сложно разветвленных сетей, а их легкость позволяет существенно сократить физические усилия человека. Также есть возможность выполнить неразъемные или разъемные соединения, что в дальнейшем упрощает эксплуатацию. Об этом и подробнее о монтаже поговорим немного позже. Высокая экологичность труб из сшитого полиэтилена разрешает их применение в таких требовательных к чистоте продукции отраслях промышленности, как пищевая или фармацевтическая. Они абсолютно нетоксичны, не взаимодействуют с переносимой средой и препятствуют размножению бактерий на внутренних стенках. Поэтому транспортировка по ним питьевой воды или сред для приготовления продуктов питания или лекарств полностью безвредно. Выделим и отменные диэлектрические свойства материала PEX. Сшитый полиэтилен не проводит электроток (не зря изначально полиэтилен применялся для создания изоляции кабелей), что положительно сказывается на безопасности и существенно расширяет область их применения. Теперь, когда основные характеристики и свойства PEX труб рассмотрены, можно сравнить их с PP-RCT трубами по тем же параметрам.

nomitech. ru

Полипропилены и полиэтилены, сравнение — Справочник химика 21

    Из полипропилена изготовляют изделия самого различного назначения. В некоторых областях полипропилен служит заменителем металла, дерева и стекла [117]. Из-за более высокой по сравнению с полиэтиленом стоимости полипропилен применяли до сих пор в тех сл5 аях, когда требовались повышенная жесткость, лучший блеск и болое высокая стабильность формы. Полипропилен легко [c.302]     В последние годы в Советском Союзе освоено производство новой полимеризационной пластмассы — полипропилена, получаемого из нефтяных газов. Полипропилен обладает более высокой химической стойкостью и более высокой теплостойкостью по сравнению с полиэтиленом. Это объясняется большим средним молекулярным весом полипропилена (80 ООО— 150 000) и более компактной структурой по сравнению с полиэтиленом. [c.424]

    Вследствие наличия третичных атомов углерода полипропилен чувствителен к действию кислорода, особенно при повышенных температурах, что обусловливает его большую склонность к старению по сравнению с полиэтиленом и сополимерами этилена с пропиленом. Поэтому в процессе переработки в полипропилен добавляют стабилизаторы. [c.13]

    По сравнению с полиэтиленом полипропилен обладает более высокой прочностью, термостойкостью, стойкостью к окислению и действию агрессивных сред ((табл. 6-21). Выпускается в виде белого порошка и гранулированный пяти марок ПП-1 для переработки литьем под давлением ПП-2 и ПП-4 для переработки методом экструзии, 1ПП-3 и ПП- 5 для прессования. За рубежом полипропилен известен главным образом под названием моплен.  [c.344]

    Вследствие наличия третичных углеродных атомов полипропилен более чувствителен к действию кислорода, особенно при повышенных температурах. Этим и объясняется значительно большая склонность полипропилена к старению по сравнению с полиэтиленом. Старение полипропилена протекает с более высокими скоростями и сопровождается резким ухудшением его механических свойств. Поэтому полипропилен применяется только в стабилизированном виде. Стабилизаторы предохраняют полипропилен от разрушения как в процессе переработки, так и во время эксплуатации. Полипропилен меньше, чем полиэтилен, подвержен растрескиванию под воздействием агрессивных сред. Он успешно выдерживает стандартные испытания на растрескивание под напряжением, проводимые в самых разнообразных средах. Стойкость к растрескиванию в 20%-ном водном растворе эмульгатора ОП-7 при 50 °С для полипропилена с показателем текучести расплава 0,5—2,0 г/10 мин, находящегося в напряженном состоянии, более 2000 ч. [c.34]

    Химическая природа полимеров, как видно из рассмотрения способов их получения и строения макромолекул (см. ч. 1), принципиально не отличается от химической природы их низкомолекулярных аналогов (например, полиэтилен, полипропилен и другие производные этиленовых углеводородов и этан, пропан и другие парафины и их производные). Основная разница состоит в огромной длине макромолекул полимеров по сравнению даже с большими молекулами низкомолекулярных аналогов. Это придает по-ли.мерам тот особый комплекс физико-механических свойств (см. [c.214]

    Полипропилен по сравнению с полиэтиленом более прочен (см. табл. 9), термостоек, газо- и паронепроницаем, менее подвержен растрескиванию в агрессивных средах, устойчив к воздействию серной (до 98 %) и азотной (до 94 %) кислот, не разрушается под действием растворов солей, минеральных и растительных масел. [c.73]

    Более благоприятно при этом сравнении выглядит полиэтилен низкой плотности при этом следует учесть, однако, что литье этого материала при низких температурах имеет незначительное практическое применение вследствие коробления и других дефектов, проявляющихся при этих температурах. При разборе условий литья с производственной точки зрения оказывается, что полипропилен выдерживает сравнение с полиэтиленом. [c.154]

    Органические соединения, состоящие из углерода и водорода (углеводороды), давно известны как хорошие диэлектрики. К таким соединениям относится, например, парафин, отличающийся высоким удельным объемным сопротивлением порядка см и низкими диэлектрическими потерями. Широкое применение нашли в качестве жидких диэлектриков нефтяные масла (трансформаторное, конденсаторное и др. ), которые представляют собой смеси углеводородов различного строения. Как было показано выше (стр. 32), высокомолекулярные углеводороды, полученные синтетическим путем, должны также обладать хорошими электроизоляционными характеристиками, ввиду отсутствия в структуре молекул полярных групп. Вместе с тем большие молекулярные веса синтетических полимеров и особенности их структуры обусловливают появление свойств, которыми природные углеводороды не обладают. Например, полиэтилен, а также полученный за последнее время полипропилен по сравнению с парафином имеют значительно более высокую температуру плавления, большую твердость и обнаруживают такие новые свойства, как гибкость, прочность на разрыв, способность выпрессовываться и др. [c.70]

    Из табл. 1 видно, что полиэтилен высокой плотности менее чувствителен к давлению, чем полиэтилен низкой плотности. Кроме того, высокомолекулярный полиэтилен (материал с меньшим значением индекса расплава) подвержен более сильному влиянию давления, чем полиэтилен с низким молекулярным весом. Полипропилен и полиэтилен средней плотности почти одинаково реагируют на изменение давления. Было замечено также, что при давлении порядка 560—680 атм начинается процесс кристаллизации, а при достижении 700 атм скорость кристаллизации увеличивается. Это связано с тем, что внешнее давление сближает молекулы, способствуя кристаллизации, которая наступает значительно выше температуры плавления, соответствующей низкому давлению. Наиболее существенно влияние давления на вязкость полистирола, которая увеличивается в сто р аз. Молекулы полистирола по сравнению с полиэтиленом содержат очень большие боковые группы—бензольные кольца. Эти группы препятствуют плотному расположению молекулярных цепей, а при течении полистирола выступают в роли внутреннего пластификатора. При таком строении цепей имеется свободное пространство для их уплотнения и, следовательно, существует возможность изменения вязкости полимера в широком диапазоне. Исследованный перепад давлений очень часто имеет место при литье под давлением полистирола и, конечно, при этом ни в коем случае нельзя пренебрегать повышением вязкости. Можно надеяться, что в скором времени появятся дополнительные данные необходимые для расчета процесса литья. [c.40]

    Во всех случаях полимер склеивает стеклянные волокна, связывая их в единый монолитный материал, что должно приводить к лучшему сочетанию механических и других свойств по сравнению со свойствами составных частей. Хорошему сцеплению, сильной адгезии благоприятствует развитие хемосорбционного взаимодействия, что может проявляться в хорошей смачиваемости стеклянного волокна данным полимером. Естественно, что в этом отношении различные полимеры могут вести себя далеко не одинаково. Углеводороды, в особенности не содержащие кратных связей (полиэтилен, полипропилен), обладают такой способностью в минимальной степени, а некоторые кислородсодержащие полимеры хорошо связываются с поверхностью стекла, К ним относятся полиэфиры, эпоксидные смолы, соответствую- [c.227]

    Полипропилен отличается высокой степенью кристалличности (95%) и повышенной, по сравнению с полиэтиленом, температурой плавления (160—1Т0 С). Этим о-пределяются значительные преимуш ества полипропилена перед полиэтиленом более высокие прочность, термостойкость, газо-и паронепроницаемость, стойкость к действию агрессивных сред и растворителей. Он менее подвержен растрескиванию в агрессивных средах, но более чувствителен к термоокислительной деструкции (старению) [12, с. 129—132]. [c.150]

    Поскольку эти материалы, действительно, содержат две кристаллические фазы, то, по-видимому, важным условием улучшения их механических свойств является наличие в системе небольших количеств аморфного полиэтилена. Следует отметить, что аморфные области в полиэтилене имеют температуру стеклования —80 °С (по сравнению с —10 °С в полипропилене) [674, с. 16], [c.182]

    Полипропилен — вещество молочно-белого цвета, один из самых легких полимеров, обладает высокой твердостью, прочностью, устойчивостью к истиранию, термО пластичностью. Полипропилен химически стоек к действию растворителей, кислот и щелочей. Однако по сравнению с полиэтиленом он менее морозостоек.  [c.326]

    По сравнению с полиэтиленом полипропилен, помимо дешевизны сырья, обладает рядом других преимуществ он мягче и гибче полиэтилена и, следовательно, более пригоден для покрытий, пленок и волокна, более прочен и имеет большую теплостойкость, т. пл. 160—170°. [c.195]

    Такой полипропилен обладает следующими преимуществами по сравнению с полиэтиленом, имеющим линейную структуру. Ои размягчается при 164—165° и проявляет более высокую химическую стойкость и механическую прочность однако он менее светоустойчив и более легко окисляется, [c.309]

    Пентапласт стоек к большинству органических растворителей, слабым и сильным щелочам, слабым и некоторым сильным кислотам на него действуют только сильные окисляющие кислоты, такие, как азотная и дымящая серная [32]. При этом воздействие агрессивных сред значительно меньше влияет на изменение механических свойств пентапласта, чем на изменение свойств фторопласта-3. Пентапласт более стоек, чем полипропилен, к концентрированным минеральным кислотам (30%-ной хромовой и 60%-ной серной) и органическим кислотам (75%-ной уксусной) и особенно к органическим растворителям кетонам, хлорсодержащим и ароматическим углеводородам. Такая повышенная химическая стойкость пентапласта обусловлена его строением — прочностью связи хлорметильных групп с углеродом основной цепи и компактностью его кристаллической структуры. Удачное сочетание физико-механических свойств с повышенной химической стойкостью выгодно отличает пентапласт от других термопластичных материалов. Пленки пентапласта практически непроницаемы для кислорода и азота по сравнению с полиэтиленом они менее газопроницаемы для паров воды и двуокиси углерода, [c.169]

    Полипропилен отличается высокой степенью кристалличности, что обусловливает более высокие по сравнению с полиэтиленом термостойкость и твердость Полипропилен водостоек и превосходит полиэтилен по стойкости к воздействию кислот и щелочей Растворяется при 80 °С только в ароматических и хлорированных углеводородах, образуя малоконцентрированные растворы, поэтому имеет ограниченное применение — только в производстве порошковых красок [c.148]

    В случае, когда нестационарные потоки воды и электролита в полимере близки по величине, связывание молекул воды и электролита в процессе переноса будет осуществляться по параллельной схеме. При параллельной схеме связывания перенос свободных молекул электролита в полимерном материале значительно облегчен по сравнению с условиями, когда выполняется последовательная схема. Связывание летучего электролита с водой по последовательной и параллельной схемам выполняется в гидрофобных полимерах [102], например в полиэтилене и полипропилене. Процессы связывания воды и электролита в полимере происходят в основном в нестационарном периоде переноса, значительно увеличивая время запаздывания при установлении стационарного потока. [c.54]

    Весьма перспективным и сравнительно новым направлением переработки пропилена является получение из него полипропилена. По сравнению с полиэтиленом полипропилен имеет более высокие температуру плавления, механическую прочность и сопротивление разрыву. Он используется для изготовления прозрачных пленок и синтетических волокон, имеющих такую же прочность, как найлон. Фирма Монтекатини изготовляет из полипропилена теплостойкий (до 150°) термопласт моплен, который обладает хорошим сопротивлением действию кислот и масел.  [c.77]

    Большая часть получаемого сейчас промышленностью полипропилена характеризуется довольно высокой изотактичностью, но нет основательных причин отказываться от производства полимера с более низкой кристалличностью. Естественно, что изотактические полимеры можно легче всего непосредственно сравнивать с полиэтиленами высокой плотности. В сравнении с ними полипропилен имеет следующие достоинства и недостатки. [c.99]

    Большое влияние на термостойкость высокомолекулярных соединений оказывают заместители. По мере увеличения числа заместителей (например, метильных групп) в цепи энергия связи С—С уменьшается. Так, полиэтилен является более термостойким материалом по сравнению с полипропиленом и поли-изобутиленом [c.59]

    Полибутилены менее распространены по сравнению с полиэтиленом и полипропиленом, но в последние годы гомополимеры бутиленов и особенно сополимеры и различные композиции на их основе все шире применяются в технике. Опубликован ряд обзоров и монографий, посвященных методам синтеза и свойствам полибутиленов 4267 — 42 0  [c. 307]

    Порошкообразный полипропилен, как и полиэтилен, также применяется в противокоррозионной технике в качестве покрытий. Однако низкая устойчивость полипропилена к термоокислению требует повышенного содержания стабилизаторов (0,5—2,0 масс.ч.) по сравнению с полиэтиленом (не превышает 0,2 масс.ч.) [6]. [c.101]

    В табл. 19 даны отношения количества летучих продуктов к числу радикалов для полиметилметакрилата, полипропилена и полиэтилена, измеренные методом ЭПР и газовой хроматографии [429]. Процедура опытов была следующей образцы разрушали в вакууме при низкой температуре и здесь же измеряли число радикалов методом ЭПР, затем образцы отогревали до полной гибели радикалов, собирали выделяющиеся газы и измеряли их состав и концентрацию. Отношение количеств летучих продуктов к числу радикалов здесь оказалось обратным по сравнению с отношением числа новых концевых групп к числу радикалов. Так в полиэтилене и полипропилене на 10 радикалов приходится одна молекула газа, а в полиметилметакрилате каждый радикал дает около 10 моно. мерных осколков. Здесь также проявляется специфика свободно-радикальных процессов, поли.меры делятся на плохо деполимеризующиеся (полипропилен, полиэтилен и поли- [c.218]

    В медицинской практике уже давно ощущалась потребность в недорогих шприцах разового пользования [32]. Такие щприцы очень удобны на случай дорожных аварий, стихийных бедствий и как обязательная принадлежность военных полевых аптечек. Во всех этих случаях они имеют преимущество по сравнению со стеклянными шприцами, которые тяжелее и гораздо дороже их. Этим и продиктована необходимость замены стекла более легкими и дешевыми материалами, в частности пластмассами. Если учесть, что в данном случае первостепенное значение приобретают физиологическая безвредность и возможность горячей стерилизации (или химической при комнатной температуре), то станет ясно, что для применения в этой области пригодны лишь немногие из современных синтетических материалов, среди которых полипропилен занимает достойное место. Следует заметить, что раньше для этих целей применяли полиэтилен и полистирол.  [c.305]

    Наименьшей энергией активации течения отличаются высокомолекулярные соединения с высокой гибкостью цепи и слабым межмолекулярным взаимодействием. Сюда относятся полидиметилсило-ксаны (15 кДж/моль), г цс-полибутадиены (17 кДж/моль), линейные полиэтилены (25—29 кДж/моль). Введение боковых заместителей в полимерную цепь увеличивает размеры сегмента и вызывает повышение величины Е. Так, переход от полибутадиенов к полиизопре-нам увеличивает Е до 55 кДж/моль. Примерно к этому же Приводит статистическая сополимеризация полибутадиена со стиролом. У полипропилена Е возрастает по сравнению с линейным полиэтиленом примерно до 46 кДж/моль, при переходе к полиизобутилену она увеличивается до 54—59 кДж/моль. Замена метильного радикала в полипропилене фенильным (в полистироле) удваивает энергию активации течения полимера. Еще выше энергия активации течения фторированных производных полиолефинов и поливинилхлорида. Так, для сополимера тетрафторэтилена с гексафторпропиленом и поливинилхлорида Е оценивается значениями 125 и 145 кДж/моль. Очень высокими значениями энергий активации течения отличаются [c.136]

    Водороды у третичных углеродных атомов легче отщепляются радикалами, чем водороды у вторичных атомов углерода. Так, полипропилен окисляется значительно быстрее, чем линейный полиэтилен [6], как видно из данных, приведенных на рис. XIП-2. Полиизобутилеп, содержащий меньше метиленовых групп, частично экранированных инертными метильными группами, значительно стабильнее полиэтилена. Однако полистирол, ответвления в молекуле которого расположены так же часто, как у полипропилена, все же окисляется медленно при 100°. Необходимость детального ана-аиза при сравнении полимеров и выбранных для [c.454]

    В случае когда путем стереоспецифического синтеза необходимо получить регулярную структуру, корреляции подобного рода не могут быть представлены в такой простой форме. Ограничивая поворот вокруг связей в цепи, подвешенные боковые группы могут затруднять переориентацию молекул и замедлять процесс кристаллизации, даже если полимер состоит из коротких повторяющихся химических звеньев. Например, при сравнимых степенях переохлаждения изотактический полипропилен [105 кристаллизуется с заметно меньшей скоростью, чем полиэтилен [112] боковые метильные группы не только ограничивают гибкость молекул, но также заставляют их кристаллизоваться с образованием таких спиральных конформаций, когда эффективное повторяющееся звено или период идентичности в кристалле содержит три мономера. Кроме того, у таких полимеров обычно имеются в небольших концентрациях атактические и стереоблочные молекулы, и есть основание считать, что это является причиной дальнейшего уменьшения скорости кристаллизации. Сообщалось, например [65], что скорости кристаллизации двух образцов изотактического полистирола различались приблизительно в четыре раза. Образец, который кристаллизовался медленнее, обладал более низкой кристалличностью и считался менее стереорегулярным эта интерпретация кажется обоснованной с той точки зрения, что средний молекулярный вес исследовавшегося образца был ниже по сравнению с другим. Во многих случаях уменьшение среднего молекулярного веса стереорегулярного полимера приводит к небольшому увеличению скорости кристаллизации при любой температуре [134]. [c.413]

    В научной литературе информации об изотактическом полибутене-1 по сравнению с данными но полиэтилену и изотактическому полипропилену также мало. Монокристаллы изотактического полибутена-1 были получены из амилацетат-ных растворов Холландом и Миллером [33,34] и представляли собой сформировавшиеся ламели толщиной от 100 до 125 А. В зависимости от условий приготовления были получены три различные кристаллические формы изотактического полибутена-1, дальнейшие исследования которых проводились Шастри и Пателем [35]. [c.89]

    Спрюэлл и Уайт [80] применили эти подходы для обработки данных по полимерам. Типичные графики для полиэтилена высокой плотности и изотактического полипропилена показаны на рис. 5.4, из сравнения которых можно отметить, что полиэтилен кристаллизуется намного быстрее, чем изотактический полипропилен.  [c.108]

    По сравнению с большинством других термопластов полиолефины кристаллизуются быстро и образуют достаточно четкие кристаллические структуры. Полиэтилен — самый быстрокристаллизующийся термопласт. Изотактический полипропилен кристаллизуется гораздо медленнее, и его скорость кристаллизации в большой степени зависит от свойств центров кристаллизации и стереорегулярности. Уменьшение стереорегулярности вызывает снижение скорости кристаллизации изотактического полипропилена. [c.109]

    Рисунок 1, а представляет собой рентгенограмму полиэтиленовой пленки с привитым на пей слоем поливинилиденхлорида. Рентгенограмма отчетливо обнаруживает две системы рефлексов, относящиеся как к полиэтилену, так и к поливинилиденхлориду, причем, судя по характеру этих рефлексов, степень ориентации как подложки, так и привитого слоя одинаковы. Рентгенограмма, представленная на рис. 1, б, относится к полипропиленовому волокну с привитым на нем ноливипилиденхлоридом. Поскольку полипропилен дает волокно с более высокой степенью ориентации по сравнению с полиэтиленом, то и поливинилиденхлорид получается здесь более ориентированным. Отчетливо видно, что рентгенограмма отвечает двухкомпонентному комбинированному волокну, состоящему как бы из двух независимых высокоориентированных и высококристаллических волокон. Здесь предельно четко видно ориентирующее влияние волокна-нодложки па рост привитого слоя. По-видимому, при такой эпи-таксической полимеризации осуществляется наиболее плотная укладка цепей привитого полимера и цепей подложки. [c.133]

    В настоящее время синтезировано сравнительно большое количество полиолефинов стереорегулярного строения с более высокой температурой плавления, чем у полипропилена, например полиметилпентен-1 (нолипропилэтилен) с темп. пл. 205° С и поли-З-метилбутен-1 с темп. пл. 250° С. Однако эти полимеры пе получили пока применения для производства синтетических волокон из-за более высокой стоимости по сравнению с полипропиленом или вследствие трудности их переработки. Поэтому из всех других полиолефинов наряду с полипропиленом практический интерес для формования волокон представляет пока только полиэтилен.  [c.274]

    Являясь предельными или слабонепредельными, каучуки СКЭП и СКЭПТ несовместимы с большинством высоконепредельных каучуков, особенно неполярных. Возможна совулканизация с полярными каучуками — бутадиен- нитрильным, хлоропреновым. Каучуки СКЭП хорошо совмещаются с пластиками, например полиэтиленом и полипропиленом. Совулканизаты СКЭП с полиэтиленом (70 30) имеют повышенное (до 50%) сопротивление разрыву и лучшие диэлектрические свойства по сравнению с вулканизатом на основе СКЭП. Для вулканизации таких смесей могут быть использованы системы, применяемые для структурирования каучука СКЭП. [c.109]

chem21.info

Сравнение пакетов из полиэтилена и полипропилена

Пакеты – наиболее распространенные и доступные средства упаковки продукции. Сегодняшнее производство упаковки использует при изготовлении пакетов преимущественно полиэтилен и полипропилен. Чем же отличаются пакеты, сделанные из данных материалов? Об этом пойдет речь далее.

Полиэтиленовые пакеты

Физические свойства полиэтиленовых пакетов во многом зависят от использующегося в них исходного сырья, а также от формы. Пакеты, в которых используется полиэтилен с низким давлением, прочен только в случае, если у него высокая плотность. Основным достоинством такого материала является его низкая цена.

Главным свойством данного материала является способностьияго. Основным же недостатком такого материала считается отсутствие эластичности. Пакеты, изготовленные из такого полиэтилена, легко узнать по шуршащему звуку и быстро теряющейся внешней привлекательности.

Производством пакетов из полиэтилена высокого давленияспособно создавать изделия с более высокой степенью эластичности. Тем не менее, прочность таких пакетов отставляет желать лучшего. Если же в пакетах используется полиэтилен, изготовленный под средним давлением, в них оптимально может сочетаться плотность и прочность полиэтилена.

Полиэтиленовые пакеты высокого давления (ПВД) эластичнее, но менее прочные. Пакеты из полиэтилена среднего давления сочетают качества пакетов, изготовленных из полиэтилена высокого и низкого давления – то есть они более плотные, чем ПНД и более прочные, чем ПВД. Часто такие пакеты называют «шуршащим полиэтиленом».

Полипропиленовые пакеты

Потребителю пакеты, в которых используется полипропилен, знакомы благодаря отсутствию «шуршащего» звука. Им свойственна большая плотность, чем у полипропилена, поэтому в них часто упаковывают мелкую сыпучую продукцию, которая может быть безвозвратно потеряна при повреждении упаковки.

Также полипропиленовым пакетам свойственна большая эластичность. При растяжении поверхность полипропилена может увеличиваться в три раза. Это означает, что полипропиленовые пакеты более пригодны для носки и могут использоваться для реализации продукции конечному потребителю.

Виды пакетов

Выбор конструкции пакета осуществляется в зависимости от формы и исходного материала, из которого он изготовлен. Так, пакет может быть простым, и производиться из двух слоев спаянной между собой пленки. Также в пакетах может присутствовать клейкая лента, именуемая клапаном, и позволяющая многократное открытие и закрытие изделия.

Также из полипропилена изготавливаются пакеты с европодреской, в которых делаются различные отверстия для вывешивания или выставки на витрине. Для ежедневного использования потребителю больше подходят пакеты, у которых имеется объемное дно. В них удобно складывать много вещей, а за счет дополнительных ручек такие пакеты приспособлены к переноске.

www.vitoplast.ru

Процесс изготовления полиэтилена и полипропилена

Полиэтилен и полипропилен — самые известные и популярные полимеры, которые используются абсолютно во всех промышленных сферах. Оба полимера были открыты учеными в начале XX века, однако свое широкое применение нашли несколько позже — только к 50-60-м годам. Чем же отличаются эти полимеры, как их изготавливают и для производства каких изделий используют?



Сверхвысокомолекулярный полиэтилен PE 500 и PE 1000



Полипропилен листовой



Листовой ПНД (полиэтилен низкого давления)

Как производят полиэтилен и полипропилен?

Для производства этих полимеров применяется метод анионной полимеризации — с помощью катализаторов, ускоряющих ход реакции, образуют макромолекулы, центры которых имеют отрицательный заряд.

В производстве полиэтилена можно выделить три основных этапа:

  1. Подготовка сырья — газа этилена.
  2. Сам процесс полимеризации. Причем, в зависимости от нужного вида полиэтилена, процесс происходит при низком или, наоборот, высоком давлении.
  3. Заключительный этап — получение сырья полиэтилена в виде гранул или порошка.

Процесс производства полипропилена очень похож, однако имеет ряд своих особенностей:

  1. Подготовка сырья — этилена.
  2. Полимеризация.
  3. Отделение катализаторов, растворителей от полимера, которые использовались в процессе полимеризации.
  4. Дробление полимера и получение гранул.

Для производства обоих полимеров используют химический реактор, в котором и происходят все процессы. В зависимости от того, какой вид полиэтилена или полипропилена требуется получить, добавляют необходимые катализаторы (например, чистый кислород или хлорид титана), а также устанавливают нужную температуру и давление.

Чем отличается полиэтилен от полипропилена?

Несмотря на то, что оба полимера похожи, и многие их свойства и характеристики совпадают, есть и существенные отличия.

  • Полипропилен обладает более высокой температурой плавления — 175°С, в то время как у полиэтилена — 103-137°С.
  • Полипропилен отличается большей прочностью, а также устойчивостью к загрязнениям.
  • Полиэтилен более гибок, также он более плотный, чем полипропилен.
  • Для полипропилена характерна более высокая тепло- и морозостойкость.

Изделия из полипропилена и полиэтилена

Область применения этих полимеров по-настоящему огромна, рассмотрим наиболее популярные сферы:

Вполне понятно, почему полипропилен и полиэтилен нашли такое широкое применение. Процесс производства не слишком труднозатратен, довольно прост в реализации и экономически выгоден. Но самое главное — это, конечно, полезные и ценные свойства полимеров, благодаря которым они стали применяться абсолютно во всех сферах промышленности.

Полиэтилен и поливинилхлорид – два вида пластика :: информационная статья компании Полимернагрев

История открытия ПВХ


 > Всем, кто живет в XXI веке знаком и полиэтилен и поливинилхлорид (ПВХ), которые относятся виду термопластических полимеров.  Если статистические бюро подсчитают удельный вес пластмасс, используемых в быту, то изделия из ПВХ и полиэтилена займут первые места.В наше время этими вещами пользуются миллиарды людей, а общий вес пластиков, сосредоточенных в полиэтиленовых трубах, виниловых плащах и ПЭТ-бутылках измеряется миллионами тонн.


А вот в XIX веке считанные единицы профессиональных химиков получали ничтожные количества этих веществ в лабораторных экспериментах, и тщетно пытались привлечь внимание широкой общественности к плодам своих опытов.


Парадоксально, но оба вида этих пластмасс – полиэтилен и поливинилхлорид, открывали и забывали несколько раз.   Дорога к к массовому промышленному производству для этих пластиков была долгой и тернистой, и растянулась во времени более чем на полстолетия.


Самым первым открыли винил —  в виде кристаллического полимера. В первой трети XIX века рассеянный французский химик забыл некий раствор на подоконнике лаборатории. Примерно через неделю он с огромным удивлением обнаружил порошок поливинилхлорида, в который раствор превратился под действием солнечных лучей.


К сожалению, добросовестный ученый тут же попытался исследовать порошок стандартными на тот момент методами. Он начал пробовать винил во взаимодействии с различными химическими веществами – и не преуспел в этом. Сейчас каждый школьник, прошедший органическую химию, знает, что посуда и упаковка из ПВХ обладают химической инертностью, а тогда это еще никому не было неизвестно.  Сейчас считается, что в тот знаменательный день, догадайся французский химик нагреть порошок до определенной температуры, у него получилась бы вязкая и прозрачная пластическая масса поливинилхлорида.


Только через 50 лет, в начале века XX, ученые смогли полноценно заняться новым материалом и  исследовать процесс полимеризации поливинилхлорида. Более того, его уже запланировали на замену популярному тогда пластику – целлулоиду. Но началась Первая Мировая война, и химикам стало не до исследований.


И вот так вот и получилось, что триумфальное пришествие винила началось уже в середине XX-го века. Из винила начали производить профильные элементы для окон, грампластинки, тонкие пленки различного назначения, трубы, покрытия для пола и детали автомобилей.

История открытия полиэтилена


 


В отличие от винила, полиэтилен был впервые открыт уже в канун XX-го века.  Немецкий химик также производил опыты в своей лаборатории, и случайно сумел получить новый пластический материал. Практичный немец сразу описал свойства полученного вещества, но, как и в случае с поливинилхлоридом все застопорилось на этапе практического применения. Полиэтилен мог бы уже в то время заменить дорогой и нестойкий целлулоид, а также дорогой и ломкий целлофан – пластики, применявшиеся человечеством до Первой Мировой войны, но проблемы промышленного производства и трудности получения сырья не позволили ему выйти из стен научных лабораторий.


Поэтому массовое использование полиэтилена – в виде пакетов для магазинов и супермаркетов началось лишь 50 лет спустя, в середине XX-го века.

Сходства и отличия


 


И полиэтилен, и поливинилхлорид имеют своей базовой основой этилен – бесцветный горючий газ. При участии хлора и кислорода производится полимеризация этилена, в результате которой  при определенных температурах и давлении получаются макромолекулы, из которых и получаются пластики.


Температурные пределы, при которых полиэтилен и ПВХ плавятся, практически одинаковы и лежат в диапазоне температур, превышающих 100 градусов Цельсия. Оба пластика являются превосходными диэлектриками, обладают повышенной устойчивостью к кислотам и щелочам (при нормальной температуре, не превышающей 60-80 градусов Цельсия).


Оба пластика обладают достаточной износостойкостью и механической прочностью. Надо отметить, что полиэтилен подвержен более быстрому старению – это фактор, который надо учитывать при долгом применении изделий из этого пластика. Жесткость у обоих пластиков примерно одинакова, но полиэтилен в силу свойств составляющих его молекул обладает лучшими демпфирующими свойствами.


Конечно же, пластики устойчивы к коррозии, а также к изменению влажности и общим климатическим воздействиям. Эти свойства, а также их дешевизна обуславливают широчайшее использование и полиэтилена и поливинилхлорида. По промышленному производству они занимают соответственно 1-е и 2-е место в мире.

Методы изготовления


 


Для обоих пластиков характерны такие методы как экструзия, с помощью которой «льют», например, полиэтиленовые трубы и полиэтиленовую оплетку для различных проводов и кабелей. Также с помощью экструзии получают листы полиэтилена, пленку из полиэтилена,  листы ПВХ, и пленку из ПВХ, широко используемые, например, строителями. Для этих методов используются различные промышленные нагреватели для экструдеров и литьевых машин (кольцевые нагреватели, плоские нагреватели, патронные ТЭНы).


А термо-вакуумное формование пластиков и литье под давлением в основном применяется при изготовлении разнообразнейших упаковочных материалов .


Ротационным или экструзионно-выдувным способом получают, например, емкости, канистры, различные сосуды и разнообразнейшую пластиковую тару.

Применение в промышленности и быту


Сейчас проще назвать ту область человеческой деятельности, где не используется, скажем, пленка (термоусадочная, упаковочная, стретч и т.д и  т.п.).


Из пластика делают почти все виды современных труб – как водопроводные, так и газовые. Пластик используют в автомобилестроении, изоляции кабелей, в санитарно-технических изделиях и даже для протезирования органов человека.

Какой бывает ковролин виды, материалы, какой лучше выбрать для дома

Основные свойства полиамидов и стеклонаполненных НС материалов на их основе

Свойства

Полиамид
ПА 6

Полиамид
ПА 6.6

ПА 6.10

ПА 12Л

ПА 12Л-ДМ

Капролон В

П548 (спиртораст-воримый)

ПА 6НС

ПА 610НС

ПА66НС

Плотность кг/м3

1130

1140

1100

1020

1020

1150

1120

1350

1350

1300

Температура пл. С

215

260

220

180

177-182

220-225

150

207-211

230

250

Разрушающее напряжение МПа, при:

        растяжении

66-80

80-100

50-58

50

40-48

90-95

30

120-150

120-140

160-250

        изгибе

90-100

100-120

80-90

60

44-47

120-150

18

        сжатии

85-100

100-120

70-90

60

66

100-110

70

Относительное удлинение при разрыве,%

80-150

80-100

100-150

200-280

150-300

6-20

250

2-7

2-5

2-4

Ударная вязкость кДж/м2

100-120

90-95

80-125

80-90

60-80

100-150

150

30-50

35-55

20-30

Твердость по Бринеллю, МПа

150

100

120

75

80-87

130-150

40

130-150

150-250

110-180

Теплостойкость по Мартенсу, С

55

75

60

50

50

75

50

80

100-140

110-140

Морозостойкость, С

-30

-30

-60

-40

-40

-60

-40

-50

-50

Водопоглощение за 24 часа , %

3,5

7-8

До 4

До 1,7

До 1,4

2-7

8-10

Коэффициент трения по стали

0,14

0,15

0,15

0,28

0,18

0,13

0,27

0,3-0,4

0,4

Диэлектрическая проницаемость при 106 Гц

3,6

4

4,5

3,2

3,4

3,4-4,7

4,6

3,8

3,0-3,5

4,0

Тангенс угла диэлектрических потерь при 106Гц

0,03

0,02

0,04

0,02

0,03

0,03

0,03

0,025

0,025

0,04

Отличие полипропилена от полиэтилена

Чем отличается полипропилен от полиэтилена:

  • Легкостью — PP весит на 0,04 г/куб. см. меньше.
  • Температурой плавления — полипропилен плавится при 180 градусов С, а полиэтилен — при 140 градусов С.
  • Уходом — продукция из PP практически не подвержена загрязнениям и легко отмываются.
  • Методами синтезирования — полиэтилен изготавливает при любых условиях, а полипропилен — при низком давлении.
  • Затратами — изготовление продукции из полипропилена обходится дороже, чем производство полиэтилена из-за дороговизны сырья.

Чем отличается полиэтилен от полипропилена:

 Эластичностью — полиэтилен более гибкий, а полипропилен — хрупкий.

  • Морозостойкостью — PE не утрачивает свойства при температуре до -50 градусов С, а для PP разрушается при -5 градусов С.
  • Легкостью — за счет небольшого веса полиэтилен пригоден при изготовлении пленок, упаковки, труб и изоляционных изделий.
  • Отсутствием токсичности — при нагреве PE токсины улетучиваются.

Свойства и технические характеристики

Свойства полиамида различных видов в большинстве своем сходны между собой, но имеют некоторые отличия. В общем случае полиамид – это конструкционный материал, обладающий высокими прочностными качествами и износостойкостью.

Синтетические ткани выдерживают высокотемпературную обработку паром (до 140 градусов) и, при этом сохраняют свою эластичность. Детали трубопроводов и запорно-регулирующая арматура, в производстве которых использованы полиамиды, обладают хорошей стойкостью к механическим ударам и нагрузкам.

Широко распространенный промышленный полимер Поламид-6 имеет высокую степень устойчивости к различным нефтепродуктам, горюче-смазочным материалам и некоторым видам растворителей. Полимер применяется при производстве нефти, в автомобильной промышленности, машиностроении и приборостроении.

Недостатком Полиамида-6 является высокая степень водополглощения, что накладывает определенные ограничения на применение материала во влажных и мокрых средах. При этом после высыхания материал восстанавливает свои первоначальные технические качества.

Полиамид-66 обладает большей плотностью в сравнении с Полиамидом-6. Полимерный материал, также известный под маркой Текамид-66, обладает высокими показателями жесткости, прочности, твердости и упругости. Отлично противостоит воздействию щелочей, растворителей, жиров, масел и еще целого ряда технических и пищевых жидкостей. Не разрушается под действием радиоактивного излучения.

Материал Полиамид-12 остается стабильным в высокотемпературных влажных средах и обладает отличными показателями скольжения и эластичности. Вследствие этого он применяется для изготовления амортизаторов, втулок, роликов, поршней, деталей шнеков, колес, подвижных блоков.

Модификация Полиамид-11 имеет самый низкий показатель водопоглощения (менее 0,9%) и самый высокий срок эксплуатации. Материал хорошо зарекомендовал себя при работе в условиях отрицательных температур. Допускает продолжительный контакт с пищевыми продуктами.

Полиамид-11 применяется в машиностроении, автомобильной, авиационной и пищевой промышленности, в энергетической и электротехнической отраслях. Ограничение на использование полимера в некоторой степени накладывает его более высокая стоимость в сравнении с другими материалами группы полиамидов.

Полиамид-46, благодаря своей полукристаллической структуре, обладает самой высокой температурой плавления среди аналогов и конкурентов (не менее 295 градусов). Соответственно, основной областью использования материала являются высокотемпературные среды. При этом достаточно высокая степень водопоглощения делает невозможным использование материала в сырых и влажных условиях.

Композитный полиамид, наполненный стекловолокнистым материалом, имеет повышенные показатели жесткости, прочности и термостойкости. При этом невысокий коэффициент температурного расширения материала заметно уменьшает степень его усадки в условиях постоянных тепловых колебаний.

Композиты не растрескиваются на морозе и остаются стабильными при нагреве. Благодаря этим свойствам стеклонаполненные полиамиды применяются в производстве приборов, корпусов музыкальных и технических инструментов, диэлектрических деталей различного электротехнического оборудования.

Краткое описание, методы переработки, основное назначение, качественная оценка свойств полиамидов и специфические особенности

Капрон первичный А, Б, В: Полярный
кристалический полиамид. Более высокие механические свойства чем у
ПЭНД, полипропилена и других термопластов. Хорошие антифрикционные
свойства. Недостаток-большое водопоглощение и как следствие этого
нестабильность свойств и линейных размеров во влажной среде. Стоек к
действию керосина, бензина, бензола, минеральных и органических масел,
концентрированных щелочей и слабых кислот. Легко окисляется при
нагревании. Низкий коэффициент теплопроводности. Более низкие
электрические свойства чем у полиэтилена

Методы переработки: Литье под
давлением. Экструзия. Центробежное литье. Механическая обработка.
Склейка. Сварка. Вихревое и другие виды напыления

Основное назначение: Для подшипников
скольжения, сепараторов подшипников качения, зубчатых колес, корпусных
деталей, лопаток вентиляторов. Для антифрикционных и декоративных
покрытий

 Полиамид П-68: Меньшее
водопоглощение, более высокие стабильность свойств и предел текучести
при растяжении, чем у капрона. Остальные свойста аналогичны капрону.

Методы переработки: Литье под давлением. Экструзия. Центробежное
литье. Механическая обработка. Склейка. Сварка. Вихревое и другие виды
напыления.

Основное назначение:Для ответственных деталей-антифрикционных и констркционных, требующих стабильности размеров и свойств

Полиамид АК7:Более высокие механические свойства чем у других полиамидов, водопоглащение почти такое же как у капрона.

Методы переработки: Литье под давлением. Экструзия. Центробежное
литье. Механическая обработка. Склейка. Сварка. Вихревое и другие виды
напыления.

Осноное назначение: как у капрона

Полиамид П-12: Более низкие механические свойства чем у капрона. Самое низкое водопоглощение среди полиамидов

Методы переработки: аналогичны капрону

Основное назначение: аналогично капрону

Капролон В: Наиболее
жесткий из всех видов полиамидов. Наибольший модуль упругости и
наименьшее относительное удлинение при растяжении. Полимеризация
материала осуществляется непосредственно  в форме без давления, что
позволяет получать заготовки любой массы. Материал удобен для проведения
эксперементальных работ, так как  опытную деталь можно изготовить из
заготовки без дорогостоящей прессформы

Методы переработки: Свободное литье. Центробежное литье. Изделия изготаливают механической обработкой.

Основное назначение: Толстостенные трубы. Подшипники. Шестеренки.

Капрон вторичный:Продукт переработки отходов капрона. Более низкие свойства, чем у капрона

Методы переработки: Литье под давлением. Экструзия. Центробежное
литье. Механическая обработка. Склейка. Сварка. Вихревое и другие виды
напыления

Основное назначение: для менее ответственных детлей чем из капрона

Вторичный Полиамид П-68: Продукт переработки отходов смолы П-68. Более низкие свойста чем у П-68

Метод переработки:Литье под давлением. Экструзия. Центробежное литье.
Механическая обработка. Склейка. Сварка. Вихревое и другие виды
напыления

Основное назначение: для менее ответственных детлей чем из капрона

Полиамид 548: Невысокая ударная вязкость, малый коэффициент трения, стойкость к действию щелочей и углеводородов

Метод переработки: Литье под давлением. Клей представляет собой, как
правило, спиртовой раствор. Пленки получают разливом на металлическую
поверхность

Основное назначение: Для прокладочного материала, изготовления клеев, пленок, покрытий

Полиамид высоконаполненный типа П-68Т40:Устойчив к воздействию щелочей, масел, жиров, углеводов. Хорошие антифрикционные свойста

Метод переработки: Литье под давлением

Основное назначение: Для конструкционных деталей

Полиамид П-68 наполненный тальком и графитом П-68 Т5, П68 Г5:Полиамиды с тальком и графитом обладают масло , щелоче, бензоло и бензиностойкостью. Хорошие антифрикционные свойства

Метод переработки: Литье под давлением

Основное назначение: Для узлов трения с затрудненной смазкой

Как выбрать ковролин для конкретного помещения

Выбор должен, прежде всего, зависеть от конкретного помещения, т.к. все они отличаются по функциональной нагрузке и своему предназначению.

Гостиная — место в доме, где собирается вся семья, проходят праздники, приглашаются гости. Ковролин должен соответствовать общему дизайнерскому стилю, иметь привлекательный внешний вид, даже может стать предметом гордости, демонстрируя материальный достаток, например, чисто шерстяной. Он должен быть практичный, т.к. в гостиной большая проходимость, легко подвергаться чистке. Лучше всего подойдет ковролин из синтетических волокон со средней высотой ворса с высокой плотностью.

Для спальни, где самая низкая проходимость в доме, соображения практичности отходят на второй план. На первое место выступают требования уюта, тепла, интимной атмосферы. Не обязательно выбирать дорогой ковролин, подойдет с высоким ворсом, низкой плотностью, мягкий, приятный для ног. Он должен иметь спокойную расцветку, гармонировать с интерьером, чтобы способствовать созданию спокойной, расслабляющей обстановки. Подойдет ковролин с длинным ворсом, можно крупнопетлевой, из синтетических волокон.

Для детской большое значение имеет практичность, ведь, дети активны, много двигаются, играют, могут оставлять пятна. Ковролин должен быть мягким, чтобы смягчать удары при возможных падениях, не марким, легко чиститься. Нежелательно использовать в детской ковролин из шерсти, т.к. она аллергенна, накапливает пыль, имеет низкую износоустойчивость. Лучше всего подойдет покрытие из синтетических волокон на толстой войлочной основе с коротким или средним ворсом. Большое значение имеет расцветка, для детской нежелательны однотонные и светлые тона, лучше яркие, тематические, с забавными рисунками, подходящие для детской психики.

Для прихожей, где больше всего собирается грязь с улицы и большая проходимость, подойдет только износоустойчивый ковролин из синтетических волокон с плотным и низким ворсом или, вообще, без него с хорошими водо- и грязеотталкивающими свойствами. Идеальным будет ковролин на резиновой основе, изготовленный иглопробивным способом.

На кухне больше всего велика вероятность разлива жидкостей, что грозит возникновением пятен. Поэтому подойдет ковролин с высокими водо-, грязеотталкивающими свойствами, он должен легко чиститься и мыться специальными чистящими средствами. Ковролин должен быть из синтетических волокон без ворса с высокой плотностью на резиновой основе, изготовленный иглопробивным способом.

Выбор ковролина — мероприятие ответственное, но не очень трудное. Зная свойства, основные характеристики, можно выбрать ковролин, который прослужит максимально долгий срок, не вызывая дискомфорт и не затрудняя уборку помещения лишними хлопотами.

Какая бывает основа ковролина

Производство ковролина начинается с изготовления первичной основы и закрепления на ней ворса. На данном этапе нитки еще не прочно крепятся и могут легко извлекаться. Их фиксируют закрепляющим составом и нанесением вторичной основы. Во время эксплуатации воздействие на пол может быть весьма интенсивным, а значит требования к прочности и износостойкости возрастают

Особое внимание уделяется надежной фиксации нитей, осуществляют которую с помощью клеящего состава на основе полимеров с добавлением латекса

После того, как ворс надежно закреплен, осуществляют нанесение вторичной основы. В большинстве случаев это вспененный латекс или слой текстиля, который непосредственно будет контактировать с полом. Благодаря этой прослойке ковролин приобретает эластичность, сопротивление скольжению и усадке, дополнительную звуко и теплоизоляцию.

Основа закрепляет ворс и обеспечивает стабильность его формы. Может быть тканной и нетканой. Тканевая разновидность изготавливается по большей части из полипропилена. Нетканая – из полиамида или того же полипропилена. Последний из названных отличается малой пластичностью, что не позволяет использовать покрытие на его основе в случаях, когда необходима дополнительная формовка (например, при обивке поверхностей). На рынке строительно-отделочных материалов можно увидеть ковролин, имеющий различную основу: джутовую, резиновую, вспененную, текстильную и войлочную. Войлочные и джутовые основания могут быть изготовлены как из натуральных, так и искусственных материалов.

На рынке представлен ковролин имеющий различную основу

Натуральный джут – это природный материал. Он экологичен, но имеет ряд недостатков: волокна быстро истираются, подвержены гниению, может даже появиться плесень при излишней влажности. Искусственный джут получают из синтетических волокон. Он влагоустойчив, не дает усадки, износостоек, однако, не переносит частых уборок с помощью моющего пылесоса. Материал отличается жесткостью, что может стать причиной повреждения верхнего слоя напольного покрытия: паркета, ламината, линолеума.

Ковролин на резиновой основе используют чаще всего в помещениях, где нагрузка на пол выше средних показателей: офисы, общественные здания и т.д. Для них он является идеальным. Основа представляет собой специальный прорезиненный материал. Подобную основу получают путем пропитки вторичного слоя водоупорным резиновым клеем или же смесью на основе капрона, с последующей вулканизацией. Верхний слой – чаще всего ворс иглопробивного типа, который обладает отличными грязеотталкивающими свойствами и надолго сохраняет привлекательный внешний вид. Такое строение обеспечивает высокие эксплуатационные свойства.

Натуральный войлок – материал из прошлого. Сейчас популярностью пользуется его искусственный аналог. Основание из искусственного войлока имеет хорошие шумопоглощающие, пылеотталкивающие и теплоизоляционные свойства. Ковролин на войлочной основе легко режется, укладывается и при этом не «сыпется». В уходе он проще, чем такое же покрытие на натуральном войлоке, при чистке его можно мочить. И, хотя стоит он намного дороже натурального, современные ковровые покрытия выпускают чаще именно на его основе. Материал на натуральной войлочной основе теплый и мягкий, но сложен в уходе, капризен и имеет те же недостатки, что и натуральный джут.

Текстильная основа применяется при выпуске коммерческого или контрактного покрытия. Тканный ковролин имеет основу виде сеточки, которая впоследствии прошивается ворсованными нитками. Они самые дорогие, но имеют целый ряд преимуществ, основные из которых простота и аккуратность укладки.

Покрытия на вспененной (латексной) основе имеют отличные звукопоглощающие свойства и отличаются хорошими теплоизоляционными характеристиками, обеспечивая высокий уровень комфорта в помещении. Латексирование хорошо отражается на прочности покрытия, а специальные добавки могут придавать покрытию огнеупорность и антистатические свойства.

К главным недостаткам этого покрытия можно отнести то, что приблизительно через 6 лет после его укладки, латекс теряет эластичность, основание становится ломким, крошится и на покрытии появляются вмятины.

Выбор ковролина зависит от назначения помещения, в котором его будут стелить, и от основания

Виды ковролина

Виды ковролина определяются составом пряжи и материалов, используемых при его фабричном изготовлении.
Поэтому по типу пряжи ковролин следует различать:
• натуральный
• искусственный.
Натуральная пряжа бывает растительного и животного происхождения. В качестве растительных материалов при изготовлении применяют лен, джут, хлопок или волокна кокоса и сизаля. Для материалов животного происхождения используется шерсть. Шерстяные нити отлично сочетают эластичность и природную прочность с декоративным исполнением.

Искусственными или синтетическими материалами для изготовления ковролина и ковровых покрытий являются:
• полиамид
• полипропилен
• акрил
• полиэстер.

Главным преимуществом синтетического материала полиамид может служить полная гармония всех эксплуатационных качеств. Именно поэтому полиамидная нить идеально подходит для ковров с точки зрения практичности и износостойкости. Изделия из полиамида легкие и прочные.

Полипропилен немного уступает упругостью нити. Волокна полипропилена обладают более слабой структурой, поэтому изделия из таких нитей подвержены смятию и незначительной деформации.
Мягкие волокна нитей акрила немного напоминают шерсть и превосходно поддаются обработке и окрашиванию. Износостойкость у волокон средняя, однако, смесовая нить с полиамидом значительно усиливает устойчивость такого типа ковролина.

Полиэстер имеет способность быстро терять внешний вид из-за слабой структуры волокон.

Как выбирать ковролин или ковровое покрытие вам помогут эксперты. Поэтому, не торопитесь приобретать ковролин из натуральной пряжи, можно найти более практичные варианты.

https://youtube.com/watch?v=IWFPydQ1ejI

Натуральные волокна животного происхождения.

Шерсть. Овечья шерсть – самое традиционное волокно для производств ковров.Шерсть для изготовления ковров производится в основном в Новой Зеландии и Великобритании.

Достоинства шерстяного волокна прочность, упругость, эластичность ворса,низкая теплопроводность, высокие противопожарные показатели.

Недостатки  шерстяного волокна высокая стоимость, подверженность накапливанию статического заряда, низкая пятно стойкость и подверженность воздействию моли и плесени. плохо поддается окраске, поэтому изделия из чистой шерсти преимущественно натуральных, спокойных тонов. Современные производители шерстяных ковров научились частично компенсировать ряд вышеперечисленных недостатков натурального волокна специальными методами. Применяются специальные грязеотталкивающие, антистатические и противомолевые пропитки ворса. Комбинирование шерстяной пряжи и синтетических волокон (обычно — 80% шерсти и 20% нейлона) позволяет, сохраняя преимущества натурального покрытия, повысить износостойкость ковра.

Шелк.сразу же поднимает ковер в категорию элитных.Это тонкое и чрезвычайно прочная нить используется в основном в ручном производстве и ткачестве. Шелк позволяет добиться: высокой плотности покрытия , тонких изысканных узоров, и цветов необычайной красоты .Эти ковры тонкие и легкие, с характерным шелковистым блеском и выглядит шикарно и дорого.Однако стоимость шелковых ковров ручной работы «кусается»,  начиная свой старт, с нескольких тысяч долларов.

Отличия ковролина от паласа и ковра

  1. Ковролин продается в больших бухтах, поэтому ширина его неопределенная. Палас же продается в нешироких рулонах.
  2. Ковер и палас имеют оконченный рисунок, у ковролина он либо вообще отсутствует, либо это рисунок мелкий, повторяющийся.
  3. Палас можно стирать, ковролин поддается только влажной чистке или чистке моющим пылесосом.
  4. Палас стоит в полтора-два раза дешевле ковролина.
  5. В паласе, в отличие от ковролина, отсутствует ворс. При его производстве используется техника ткачества.
  6. Ковролин рассчитан на покрытие пола всего помещения, палас может служить элементом декора.
  7. Ковер покупают с уже обработанными краями, ковролин обрабатывают после покупки.
  8. Ковер фиксируют к полу с помощью специального клея, ковролин еще и заводят под плинтус.
  9. Еще одно отличие ковролина от ковра заключается в том, что ковер как кладут на пол, так и вешают на стену, а вот ковролин в доме для стен практически не используется, разве в качестве элемента декора.
  10. Ковролин является основным покрытием, его часто кладут прямо на бетонную стяжку. Для паласа или ковра приемлемым является только готовый пол.

Синтетические этикетки термотрансферные и синтетические термоэтикетки

— Термоматериалы и термотрансферные материалы на синтетической основе. — О преимуществах синтетических материалов. — Этикетки из полиэтилена. — Этикетки из полипропилена. — Этикетки из полиэстера (полиэтилтерефталата, лавсана).

Синтетические материалы, используемые для производства этикеток, в подавляющем большинстве случаев термотрансферные, и встретить на рынке синтетические термоэтикетки практически невозможно. Несмотря на то, что термоматериалы на синтетической основе присутствуют в линейках всех производителей. Например, для нашей компании изготовить синтетические термоэтикетки не составит никакого труда. Но на практике такие этикетки используются крайне редко в силу высокой цены. То есть термотрансферные будут стоить меньше при лучшем качестве. Соответственно, выбор почти всегда останавливают на них.

Основное отличие синтетических этикеток от бумажных — они гораздо более прочные. Им нипочём влажная среда, жир, любые масла, большинство химикатов. Не испугаются они ни дождя, ни яркого солнечного света, ни пониженных (повышенных) температур. Высокая стойкость к истиранию и другим физических воздействиям позволяет уверенно служить долгие годы.

Синтетические этикетки могут быть белыми и цветными, серебряными и золотыми, перламутровыми или вовсе прозрачными. Последние приобрели особую популярность — они, впрочем, как и все синтетические этикетки, придают товару большую привлекательность, выгодно «упаковывая» его. Ведь, кроме внешней привлекательности, у синтетических этикеток есть ещё один серьёзный плюс — качество печати. На них хорошо ложится самый мелкий шрифт или рисунок.

Соответственно, стоимость синтетических этикеток несколько выше, чем бумажных. Сказывается тут и тот факт, что в силу своей большей прочности они сложней в обработке.

Наиболее распространены три вида синтетических этикеток: полиэтиленовые (РЕ), полипропиленовые (РР) и полиэстеровые (РЕТ).

Полиэтиленовые этикетки (PE)

Это самый мягкий материал. Соответственно, таковы же и наклейки из него. Применяется чаще всего на поверхностях неровных или подверженных изгибам и деформациям. Лучший пример — полиэтиленовая наклейка на бутылке с шампунем.

Полипропиленовые этикетки (PP)

Полипропилен заметно жёстче полиэтилена и гораздо прочней. Он обеспечивает заказчику оптимальное соотношение цены и качества. Как следствие, полипропиленовые этикетки — самые распространённые из всех синтетических этикеток, сегодня на рынке они занимают главенствующее положение.

Полиэстеровые этикетки (РЕТ)

Пэт, полиэстер, или, как говорили раньше, лавсан — самый прочный материал. Именно его прочность, устойчивость к физическому воздействию и другим неблагоприятным внешним факторам обуславливают область применения пэт этикеток. Как правило, это наклейки, предназначенные для длительного использования. Они не боятся перепадов температур (от -40 до +150), в силу чего используются как на нагревающихся узлах и агрегатах, так и в холодильниках. Пэт этикетка заменила не так давно ещё привычный всем алюминиевый шильдик на бытовой технике и оргтехнике. Теоретически pet этикетка может быть любого цвета, но сложилось так, что наиболее часто используются всего два цвета — белый и серебристый.

РоллПринт изготавливает синтетические этикетки из любых материалов на выбор заказчика. При необходимости поможем правильно выбрать синтетический материал, а также риббон и тип клея.

Справочная информация по теме «синтетические этикетки»:

Читайте статьи в Wikipedia о полиэтилене, полипропилене и пэт

Классификация волокон

Шерсть

Наиболее ценным и качественным признан ворс из шерстяной пряжи. Шерстяной ковролин наделен превосходным внешним видом, обладает великолепной теплоизоляцией, отличается хорошей звукоизоляцией, имеет пониженную пожароопасность.

Но у шерстяной пряжи есть и недостатки. Такое ковровое покрытие способно накапливать статическое электричество, склонно к устойчивым загрязнениям, по сравнению с синтетическими аналогами обладает пониженным сроком эксплуатации, подвержено влиянию плесени, моли, грибкам.

Для придания улучшенным свойств шерстяным изделиям производители добавляют в шерстяную пряжу 20% нейлоновых нитей. Это уменьшает стоимость изделия и улучшает его эксплуатационные характеристики.

Полиэстер (PES)

Полиэстер (полиэфир) — волокно, производимое на основе полиэфира путем поликонденсации многоосновных кислот. Внешне напоминает шерсть.

К достоинствам ковролина из полиэстера относятся: износоустойчивость, легкость в уходе (обычная уборка пылесосом), геометрическая стабильность, невосприимчивость к воздействию плесени и микробов, хорошие теплоизоляционные показатели, гидрофобность, большое разнообразие дизайна.

Недостатками являются: дороговизна, низкое сопротивление к сминанию, плохая устойчивость к пятнам, которые с трудом удаляются.

Ковролин из полиэстера внешне привлекателен и обладает хорошими эксплуатационными показателями, однако постепенно утрачивает первоначальные свойства, начинает распушаться и скатываться, теряет эластичность. Если по ковровой дорожке пройдет большое количество людей, он сохранит внешний вид, а вот тяжелая мебель оставит следы на покрытии.

Полиамид (PA)

Полиамидное волокно (нейлон) впервые было изготовлено компанией DuPont в прошлом столетии. Это наиболее дорогой в производстве материал, но весьма распространенный. Характеристики полиамида улучшают при помощи покрытия тефлоном для защиты от грязи и добавлением графитовой крошки для придания антистатических свойств.

Эффект незаметности грязи достигается путем изменения среза волокна.

Ковролин из полиамида по своим качественным показателям лучше изделий из других синтетических волокон: они хорошо держат ворс, мягкие, на них не видно вмятин от ножек мебели, они не выцветают и легко чистятся. Служат от 10 до 15 лет.

Полиакрил (РАС)

Полиакрил по эксплуатационным показателям близок к шерсти. Он обладает средней устойчивостью к истиранию. В чистом виде полиакриловые волокна редко используются, его обычно смешивают с другими искусственными волокнами, например, с полиамидом, благодаря чему повышается его износоустойчивость.

Полиакрил — недорогое волокно. Его основным недостатком является то, что он со временем скатывается в шарики, что требует частой уборки ковровых покрытий на его основе. Акрил чаще всего используются, имитируя шерсть. Ковролин из полиакрила предназначен для бытовых помещений. В производственных и офисных зданиях его не рекомендуется использовать.

Полипропилен (PP)

Полипропилен (олефин) — наиболее распространенный синтетический материал при изготовлении ковровых изделий. Широта использования объясняется дешевизной волокна. При этом качество не слишком высоко.

Полипропилен химически инертен, его нельзя окрасить традиционными красителями, поэтому окрашивание волокна производится на молекулярном уровне путем введения краски в само волокно до изготовления ковролина.

Пятна на водной основе (вино, чай и т.п.) удаляются без проблем, а масляные вещества могут нанести серьезный урон внешнему виду.

К достоинствам полипропилена относятся: низкая стоимость, устойчивость к пятнам, антистатичность, долгая сохранность окраски без выцветания.

Недостатками материала являются: быстрая изнашиваемость, низкая пожаробезопасность (при горении выделяются вредные вещества).

Полипропилены и полиэтилены, сравнение — Справочник химика 21





    Из полипропилена изготовляют изделия самого различного назначения. В некоторых областях полипропилен служит заменителем металла, дерева и стекла [117]. Из-за более высокой по сравнению с полиэтиленом стоимости полипропилен применяли до сих пор в тех сл5 аях, когда требовались повышенная жесткость, лучший блеск и болое высокая стабильность формы. Полипропилен легко [c.302]







    В последние годы в Советском Союзе освоено производство новой полимеризационной пластмассы — полипропилена, получаемого из нефтяных газов. Полипропилен обладает более высокой химической стойкостью и более высокой теплостойкостью по сравнению с полиэтиленом. Это объясняется большим средним молекулярным весом полипропилена (80 ООО— 150 000) и более компактной структурой по сравнению с полиэтиленом. [c.424]

    Вследствие наличия третичных атомов углерода полипропилен чувствителен к действию кислорода, особенно при повышенных температурах, что обусловливает его большую склонность к старению по сравнению с полиэтиленом и сополимерами этилена с пропиленом. Поэтому в процессе переработки в полипропилен добавляют стабилизаторы. [c.13]

    По сравнению с полиэтиленом полипропилен обладает более высокой прочностью, термостойкостью, стойкостью к окислению и действию агрессивных сред ((табл. 6-21). Выпускается в виде белого порошка и гранулированный пяти марок ПП-1 для переработки литьем под давлением ПП-2 и ПП-4 для переработки методом экструзии, 1ПП-3 и ПП- 5 для прессования. За рубежом полипропилен известен главным образом под названием моплен.  [c.344]

    Вследствие наличия третичных углеродных атомов полипропилен более чувствителен к действию кислорода, особенно при повышенных температурах. Этим и объясняется значительно большая склонность полипропилена к старению по сравнению с полиэтиленом. Старение полипропилена протекает с более высокими скоростями и сопровождается резким ухудшением его механических свойств. Поэтому полипропилен применяется только в стабилизированном виде. Стабилизаторы предохраняют полипропилен от разрушения как в процессе переработки, так и во время эксплуатации. Полипропилен меньше, чем полиэтилен, подвержен растрескиванию под воздействием агрессивных сред. Он успешно выдерживает стандартные испытания на растрескивание под напряжением, проводимые в самых разнообразных средах. Стойкость к растрескиванию в 20%-ном водном растворе эмульгатора ОП-7 при 50 °С для полипропилена с показателем текучести расплава 0,5—2,0 г/10 мин, находящегося в напряженном состоянии, более 2000 ч. [c.34]

    Химическая природа полимеров, как видно из рассмотрения способов их получения и строения макромолекул (см. ч. 1), принципиально не отличается от химической природы их низкомолекулярных аналогов (например, полиэтилен, полипропилен и другие производные этиленовых углеводородов и этан, пропан и другие парафины и их производные). Основная разница состоит в огромной длине макромолекул полимеров по сравнению даже с большими молекулами низкомолекулярных аналогов. Это придает по-ли.мерам тот особый комплекс физико-механических свойств (см. [c.214]

    Полипропилен по сравнению с полиэтиленом более прочен (см. табл. 9), термостоек, газо- и паронепроницаем, менее подвержен растрескиванию в агрессивных средах, устойчив к воздействию серной (до 98 %) и азотной (до 94 %) кислот, не разрушается под действием растворов солей, минеральных и растительных масел. [c.73]

    Более благоприятно при этом сравнении выглядит полиэтилен низкой плотности при этом следует учесть, однако, что литье этого материала при низких температурах имеет незначительное практическое применение вследствие коробления и других дефектов, проявляющихся при этих температурах. При разборе условий литья с производственной точки зрения оказывается, что полипропилен выдерживает сравнение с полиэтиленом. [c.154]

    Органические соединения, состоящие из углерода и водорода (углеводороды), давно известны как хорошие диэлектрики. К таким соединениям относится, например, парафин, отличающийся высоким удельным объемным сопротивлением порядка см и низкими диэлектрическими потерями. Широкое применение нашли в качестве жидких диэлектриков нефтяные масла (трансформаторное, конденсаторное и др.), которые представляют собой смеси углеводородов различного строения. Как было показано выше (стр. 32), высокомолекулярные углеводороды, полученные синтетическим путем, должны также обладать хорошими электроизоляционными характеристиками, ввиду отсутствия в структуре молекул полярных групп. Вместе с тем большие молекулярные веса синтетических полимеров и особенности их структуры обусловливают появление свойств, которыми природные углеводороды не обладают. Например, полиэтилен, а также полученный за последнее время полипропилен по сравнению с парафином имеют значительно более высокую температуру плавления, большую твердость и обнаруживают такие новые свойства, как гибкость, прочность на разрыв, способность выпрессовываться и др. [c.70]

    Из табл. 1 видно, что полиэтилен высокой плотности менее чувствителен к давлению, чем полиэтилен низкой плотности. Кроме того, высокомолекулярный полиэтилен (материал с меньшим значением индекса расплава) подвержен более сильному влиянию давления, чем полиэтилен с низким молекулярным весом. Полипропилен и полиэтилен средней плотности почти одинаково реагируют на изменение давления. Было замечено также, что при давлении порядка 560—680 атм начинается процесс кристаллизации, а при достижении 700 атм скорость кристаллизации увеличивается. Это связано с тем, что внешнее давление сближает молекулы, способствуя кристаллизации, которая наступает значительно выше температуры плавления, соответствующей низкому давлению. Наиболее существенно влияние давления на вязкость полистирола, которая увеличивается в сто р аз. Молекулы полистирола по сравнению с полиэтиленом содержат очень большие боковые группы—бензольные кольца. Эти группы препятствуют плотному расположению молекулярных цепей, а при течении полистирола выступают в роли внутреннего пластификатора. При таком строении цепей имеется свободное пространство для их уплотнения и, следовательно, существует возможность изменения вязкости полимера в широком диапазоне. Исследованный перепад давлений очень часто имеет место при литье под давлением полистирола и, конечно, при этом ни в коем случае нельзя пренебрегать повышением вязкости. Можно надеяться, что в скором времени появятся дополнительные данные необходимые для расчета процесса литья. [c.40]

    Во всех случаях полимер склеивает стеклянные волокна, связывая их в единый монолитный материал, что должно приводить к лучшему сочетанию механических и других свойств по сравнению со свойствами составных частей. Хорошему сцеплению, сильной адгезии благоприятствует развитие хемосорбционного взаимодействия, что может проявляться в хорошей смачиваемости стеклянного волокна данным полимером. Естественно, что в этом отношении различные полимеры могут вести себя далеко не одинаково. Углеводороды, в особенности не содержащие кратных связей (полиэтилен, полипропилен), обладают такой способностью в минимальной степени, а некоторые кислородсодержащие полимеры хорошо связываются с поверхностью стекла, К ним относятся полиэфиры, эпоксидные смолы, соответствую- [c.227]

    Полипропилен отличается высокой степенью кристалличности (95%) и повышенной, по сравнению с полиэтиленом, температурой плавления (160—1Т0 С). Этим о-пределяются значительные преимуш ества полипропилена перед полиэтиленом более высокие прочность, термостойкость, газо-и паронепроницаемость, стойкость к действию агрессивных сред и растворителей. Он менее подвержен растрескиванию в агрессивных средах, но более чувствителен к термоокислительной деструкции (старению) [12, с. 129—132]. [c.150]

    Поскольку эти материалы, действительно, содержат две кристаллические фазы, то, по-видимому, важным условием улучшения их механических свойств является наличие в системе небольших количеств аморфного полиэтилена. Следует отметить, что аморфные области в полиэтилене имеют температуру стеклования —80 °С (по сравнению с —10 °С в полипропилене) [674, с. 16], [c.182]

    Полипропилен — вещество молочно-белого цвета, один из самых легких полимеров, обладает высокой твердостью, прочностью, устойчивостью к истиранию, термО пластичностью. Полипропилен химически стоек к действию растворителей, кислот и щелочей. Однако по сравнению с полиэтиленом он менее морозостоек. [c.326]

    По сравнению с полиэтиленом полипропилен, помимо дешевизны сырья, обладает рядом других преимуществ он мягче и гибче полиэтилена и, следовательно, более пригоден для покрытий, пленок и волокна, более прочен и имеет большую теплостойкость, т. пл. 160—170°. [c.195]

    Такой полипропилен обладает следующими преимуществами по сравнению с полиэтиленом, имеющим линейную структуру. Ои размягчается при 164—165° и проявляет более высокую химическую стойкость и механическую прочность однако он менее светоустойчив и более легко окисляется, [c.309]

    Пентапласт стоек к большинству органических растворителей, слабым и сильным щелочам, слабым и некоторым сильным кислотам на него действуют только сильные окисляющие кислоты, такие, как азотная и дымящая серная [32]. При этом воздействие агрессивных сред значительно меньше влияет на изменение механических свойств пентапласта, чем на изменение свойств фторопласта-3. Пентапласт более стоек, чем полипропилен, к концентрированным минеральным кислотам (30%-ной хромовой и 60%-ной серной) и органическим кислотам (75%-ной уксусной) и особенно к органическим растворителям кетонам, хлорсодержащим и ароматическим углеводородам. Такая повышенная химическая стойкость пентапласта обусловлена его строением — прочностью связи хлорметильных групп с углеродом основной цепи и компактностью его кристаллической структуры. Удачное сочетание физико-механических свойств с повышенной химической стойкостью выгодно отличает пентапласт от других термопластичных материалов. Пленки пентапласта практически непроницаемы для кислорода и азота по сравнению с полиэтиленом они менее газопроницаемы для паров воды и двуокиси углерода, [c.169]

    Полипропилен отличается высокой степенью кристалличности, что обусловливает более высокие по сравнению с полиэтиленом термостойкость и твердость Полипропилен водостоек и превосходит полиэтилен по стойкости к воздействию кислот и щелочей Растворяется при 80 °С только в ароматических и хлорированных углеводородах, образуя малоконцентрированные растворы, поэтому имеет ограниченное применение — только в производстве порошковых красок [c.148]

    В случае, когда нестационарные потоки воды и электролита в полимере близки по величине, связывание молекул воды и электролита в процессе переноса будет осуществляться по параллельной схеме. При параллельной схеме связывания перенос свободных молекул электролита в полимерном материале значительно облегчен по сравнению с условиями, когда выполняется последовательная схема. Связывание летучего электролита с водой по последовательной и параллельной схемам выполняется в гидрофобных полимерах [102], например в полиэтилене и полипропилене. Процессы связывания воды и электролита в полимере происходят в основном в нестационарном периоде переноса, значительно увеличивая время запаздывания при установлении стационарного потока. [c.54]

    Весьма перспективным и сравнительно новым направлением переработки пропилена является получение из него полипропилена. По сравнению с полиэтиленом полипропилен имеет более высокие температуру плавления, механическую прочность и сопротивление разрыву. Он используется для изготовления прозрачных пленок и синтетических волокон, имеющих такую же прочность, как найлон. Фирма Монтекатини изготовляет из полипропилена теплостойкий (до 150°) термопласт моплен, который обладает хорошим сопротивлением действию кислот и масел. [c.77]

    Большая часть получаемого сейчас промышленностью полипропилена характеризуется довольно высокой изотактичностью, но нет основательных причин отказываться от производства полимера с более низкой кристалличностью. Естественно, что изотактические полимеры можно легче всего непосредственно сравнивать с полиэтиленами высокой плотности. В сравнении с ними полипропилен имеет следующие достоинства и недостатки. [c.99]

    Большое влияние на термостойкость высокомолекулярных соединений оказывают заместители. По мере увеличения числа заместителей (например, метильных групп) в цепи энергия связи С—С уменьшается. Так, полиэтилен является более термостойким материалом по сравнению с полипропиленом и поли-изобутиленом [c.59]

    Полибутилены менее распространены по сравнению с полиэтиленом и полипропиленом, но в последние годы гомополимеры бутиленов и особенно сополимеры и различные композиции на их основе все шире применяются в технике. Опубликован ряд обзоров и монографий, посвященных методам синтеза и свойствам полибутиленов 4267 — 42 0  [c.307]

    Порошкообразный полипропилен, как и полиэтилен, также применяется в противокоррозионной технике в качестве покрытий. Однако низкая устойчивость полипропилена к термоокислению требует повышенного содержания стабилизаторов (0,5—2,0 масс.ч.) по сравнению с полиэтиленом (не превышает 0,2 масс.ч.) [6]. [c.101]

    В табл. 19 даны отношения количества летучих продуктов к числу радикалов для полиметилметакрилата, полипропилена и полиэтилена, измеренные методом ЭПР и газовой хроматографии [429]. Процедура опытов была следующей образцы разрушали в вакууме при низкой температуре и здесь же измеряли число радикалов методом ЭПР, затем образцы отогревали до полной гибели радикалов, собирали выделяющиеся газы и измеряли их состав и концентрацию. Отношение количеств летучих продуктов к числу радикалов здесь оказалось обратным по сравнению с отношением числа новых концевых групп к числу радикалов. Так в полиэтилене и полипропилене на 10 радикалов приходится одна молекула газа, а в полиметилметакрилате каждый радикал дает около 10 моно.мерных осколков. Здесь также проявляется специфика свободно-радикальных процессов, поли.меры делятся на плохо деполимеризующиеся (полипропилен, полиэтилен и поли- [c.218]

    В медицинской практике уже давно ощущалась потребность в недорогих шприцах разового пользования [32]. Такие щприцы очень удобны на случай дорожных аварий, стихийных бедствий и как обязательная принадлежность военных полевых аптечек. Во всех этих случаях они имеют преимущество по сравнению со стеклянными шприцами, которые тяжелее и гораздо дороже их. Этим и продиктована необходимость замены стекла более легкими и дешевыми материалами, в частности пластмассами. Если учесть, что в данном случае первостепенное значение приобретают физиологическая безвредность и возможность горячей стерилизации (или химической при комнатной температуре), то станет ясно, что для применения в этой области пригодны лишь немногие из современных синтетических материалов, среди которых полипропилен занимает достойное место. Следует заметить, что раньше для этих целей применяли полиэтилен и полистирол. [c.305]

    Наименьшей энергией активации течения отличаются высокомолекулярные соединения с высокой гибкостью цепи и слабым межмолекулярным взаимодействием. Сюда относятся полидиметилсило-ксаны (15 кДж/моль), г цс-полибутадиены (17 кДж/моль), линейные полиэтилены (25—29 кДж/моль). Введение боковых заместителей в полимерную цепь увеличивает размеры сегмента и вызывает повышение величины Е. Так, переход от полибутадиенов к полиизопре-нам увеличивает Е до 55 кДж/моль. Примерно к этому же Приводит статистическая сополимеризация полибутадиена со стиролом. У полипропилена Е возрастает по сравнению с линейным полиэтиленом примерно до 46 кДж/моль, при переходе к полиизобутилену она увеличивается до 54—59 кДж/моль. Замена метильного радикала в полипропилене фенильным (в полистироле) удваивает энергию активации течения полимера. Еще выше энергия активации течения фторированных производных полиолефинов и поливинилхлорида. Так, для сополимера тетрафторэтилена с гексафторпропиленом и поливинилхлорида Е оценивается значениями 125 и 145 кДж/моль. Очень высокими значениями энергий активации течения отличаются [c.136]

    Водороды у третичных углеродных атомов легче отщепляются радикалами, чем водороды у вторичных атомов углерода. Так, полипропилен окисляется значительно быстрее, чем линейный полиэтилен [6], как видно из данных, приведенных на рис. XIП-2. Полиизобутилеп, содержащий меньше метиленовых групп, частично экранированных инертными метильными группами, значительно стабильнее полиэтилена. Однако полистирол, ответвления в молекуле которого расположены так же часто, как у полипропилена, все же окисляется медленно при 100°. Необходимость детального ана-аиза при сравнении полимеров и выбранных для [c.454]

    В случае когда путем стереоспецифического синтеза необходимо получить регулярную структуру, корреляции подобного рода не могут быть представлены в такой простой форме. Ограничивая поворот вокруг связей в цепи, подвешенные боковые группы могут затруднять переориентацию молекул и замедлять процесс кристаллизации, даже если полимер состоит из коротких повторяющихся химических звеньев. Например, при сравнимых степенях переохлаждения изотактический полипропилен [105 кристаллизуется с заметно меньшей скоростью, чем полиэтилен [112] боковые метильные группы не только ограничивают гибкость молекул, но также заставляют их кристаллизоваться с образованием таких спиральных конформаций, когда эффективное повторяющееся звено или период идентичности в кристалле содержит три мономера. Кроме того, у таких полимеров обычно имеются в небольших концентрациях атактические и стереоблочные молекулы, и есть основание считать, что это является причиной дальнейшего уменьшения скорости кристаллизации. Сообщалось, например [65], что скорости кристаллизации двух образцов изотактического полистирола различались приблизительно в четыре раза. Образец, который кристаллизовался медленнее, обладал более низкой кристалличностью и считался менее стереорегулярным эта интерпретация кажется обоснованной с той точки зрения, что средний молекулярный вес исследовавшегося образца был ниже по сравнению с другим. Во многих случаях уменьшение среднего молекулярного веса стереорегулярного полимера приводит к небольшому увеличению скорости кристаллизации при любой температуре [134]. [c.413]

    В научной литературе информации об изотактическом полибутене-1 по сравнению с данными но полиэтилену и изотактическому полипропилену также мало. Монокристаллы изотактического полибутена-1 были получены из амилацетат-ных растворов Холландом и Миллером [33,34] и представляли собой сформировавшиеся ламели толщиной от 100 до 125 А. В зависимости от условий приготовления были получены три различные кристаллические формы изотактического полибутена-1, дальнейшие исследования которых проводились Шастри и Пателем [35]. [c.89]

    Спрюэлл и Уайт [80] применили эти подходы для обработки данных по полимерам. Типичные графики для полиэтилена высокой плотности и изотактического полипропилена показаны на рис. 5.4, из сравнения которых можно отметить, что полиэтилен кристаллизуется намного быстрее, чем изотактический полипропилен. [c.108]

    По сравнению с большинством других термопластов полиолефины кристаллизуются быстро и образуют достаточно четкие кристаллические структуры. Полиэтилен — самый быстрокристаллизующийся термопласт. Изотактический полипропилен кристаллизуется гораздо медленнее, и его скорость кристаллизации в большой степени зависит от свойств центров кристаллизации и стереорегулярности. Уменьшение стереорегулярности вызывает снижение скорости кристаллизации изотактического полипропилена. [c.109]

    Рисунок 1, а представляет собой рентгенограмму полиэтиленовой пленки с привитым на пей слоем поливинилиденхлорида. Рентгенограмма отчетливо обнаруживает две системы рефлексов, относящиеся как к полиэтилену, так и к поливинилиденхлориду, причем, судя по характеру этих рефлексов, степень ориентации как подложки, так и привитого слоя одинаковы. Рентгенограмма, представленная на рис. 1, б, относится к полипропиленовому волокну с привитым на нем ноливипилиденхлоридом. Поскольку полипропилен дает волокно с более высокой степенью ориентации по сравнению с полиэтиленом, то и поливинилиденхлорид получается здесь более ориентированным. Отчетливо видно, что рентгенограмма отвечает двухкомпонентному комбинированному волокну, состоящему как бы из двух независимых высокоориентированных и высококристаллических волокон. Здесь предельно четко видно ориентирующее влияние волокна-нодложки па рост привитого слоя. По-видимому, при такой эпи-таксической полимеризации осуществляется наиболее плотная укладка цепей привитого полимера и цепей подложки. [c.133]

    В настоящее время синтезировано сравнительно большое количество полиолефинов стереорегулярного строения с более высокой температурой плавления, чем у полипропилена, например полиметилпентен-1 (нолипропилэтилен) с темп. пл. 205° С и поли-З-метилбутен-1 с темп. пл. 250° С. Однако эти полимеры пе получили пока применения для производства синтетических волокон из-за более высокой стоимости по сравнению с полипропиленом или вследствие трудности их переработки. Поэтому из всех других полиолефинов наряду с полипропиленом практический интерес для формования волокон представляет пока только полиэтилен. [c.274]

    Являясь предельными или слабонепредельными, каучуки СКЭП и СКЭПТ несовместимы с большинством высоконепредельных каучуков, особенно неполярных. Возможна совулканизация с полярными каучуками — бутадиен- нитрильным, хлоропреновым. Каучуки СКЭП хорошо совмещаются с пластиками, например полиэтиленом и полипропиленом. Совулканизаты СКЭП с полиэтиленом (70 30) имеют повышенное (до 50%) сопротивление разрыву и лучшие диэлектрические свойства по сравнению с вулканизатом на основе СКЭП. Для вулканизации таких смесей могут быть использованы системы, применяемые для структурирования каучука СКЭП. [c.109]


Физические и химические свойства полимерных материалов, мембран














Полистирол (ПС, тефлон, Polystyrene, PS) — термопластичный полимер с высокой степенью оптического светопропускания. Жесткий и нетоксичный, с превосходной стабильностью размеров и хорошей химической стойкостью к водным растворам, однако ограниченной устойчивостью к органическим растворителям (кроме разбавленных кислот, спиртов и щелочей) и морозостойкостью до −40 °C. Этот материал с прозрачностью, как у стекла, часто применяется для изготовления одноразовой лабораторной продукции. Изделия из полистирола хрупки при комнатной температуре и могут треснуть или разбиться при падении с высоты стола.


Полиэтилен высокого давления (ПЭВД, high pressure polyethylene, PEHP) — термопластичный материал, прозрачный, имеет высокую прочность при воздействии низких температур, обладает химической устойчивостью ;к большинству кислот, оснований и спиртов, подходит для хранения и отбора проб биологических веществ и других водных растворов.

Полиэтилен высокой плотности (низкого давления, ПЭВП, ПНД, HDPE, High Density Polyethylene) — термопластический материал, имеет повышенную твердость и прочность, высокую химическую стойкость при воздействии на него агрессивных сред, хорошую пластичность. Используется при температурах в диапазоне от -70 до +50 °С, нетоксичный материал.

Полипропилен (ПП, Polypropylene, PP) — термопластичный материал, обладающий высокой ударной прочностью, имеет газо- и паропрочность, низкую теплопроводностью, по прозрачности уступает полистеролу. Он прозрачен, выдерживает автоклавирование и не растворяется в каких-либо известных растворителях при комнатной температуре. Его чувствительность к сильным окислителям немного выше, чем у полиэтилена. Обладает наилучшей стойкостью к трещинам от напряжения из всех полиолефинов. Изделия из полипропилена хрупки при 0 °С и могут треснуть или разбиться при падении с высоты стола.

Поликарбонат (ПК, polycarbonate, PC) — термопластичный полимер, который не имеет аналогов среди современных полимеров. Он отличается превосходными параметрами светопроницаемости, ударопрочности, а также устойчивостью к температурным перепадам (от -100 до +165 °C). Обладает прозрачностью оконного стекла, удивительно прочен и жесток. Он выдерживает автоклавирование, нетоксичен и самый жесткий из термопластиков. Прочность и стабильность размеров делает этот материал идеальным для изготовления изделий для центрифугирования.

Полисульфон (ПСФ, Polysulphone, PSU) — термопластичный материал, прозрачный, обладает высокой прочностью и устойчивостью при высоких температурах, отличные диэлектрические свойства в широком диапазоне температур и частот; нетоксичен; допускает стерилизацию всех видов.

Поливинилхлорид (ПВХ, Polyvinyl chloride, PVC) — термопластичный материал, прозрачный, отличается химической стойкостью к щелочам, минеральным маслам, многим кислотам и растворителям, устойчивостью при высоких температурах.

Полиэтилен-терефталат (ПЭТ, Polyethylene terephthalate, PET) — это термопластичный материал, являющийся самым распространенным среди полиэфиров. Обладает прозрачностью, высокой прочностью, хорошей пластичностью (причем как в нагретом состоянии, так и в холодном), химической стойкостью. Все свои характеристики ПЭТ сохраняет и при низких температурах, до -40 °C, и при высоких, до +75 °C. Высокая устойчивость к деформации.

Политетрафторэтилен (ПТФЭ, Polytetrafluoroethylene, PTFE) — термопластический материал, гибкость и эластичность которого сохраняются при температурах в диапазоне от -70 до +270 °С, имеет очень высокую стойкость к щелочам, кислотам, растворителям и окислителям. Устойчивость к свету и неблагоприятным погодным условиям, к горячему водяному пару. не горюч.

Нейлон (Nylon) — термопластичный материал, непрозрачен, термостойкий, подходит для механической обработки, высокая проницаемость для водяного пара, устойчив к центрифугированию.

Нитрат целлюлозы (Cellulose nitrate) — непрозрачный, химически нестабилен, обладает низкой химической стойкостью к действию кислот и щелочей.

Ацетат целлюлозы (Cellulose acetate) — термопластический материал, светостойка, обладает хорошими физико-механическими свойствами и практически негорюча. Термостабильность ацетилцеллюлозы недостаточно высока: уже при 190-210 °C изменяется окраска материала, а при 230 °С он начинает разлагаться.


Физические свойства










Полистирол (ПС, Polystyrene, PS





Полиэтилен высокого давления (ПЭВД, high pressure polyethylene, PEHP)



Полиэтилен высокой плотности (низкого давления, ПЭВП, ПНД, HDPE, High Density Polyethylene)




Полипропилен (ПП, Polypropylene, PP)





Поликарбонат (ПК, polycarbonate, PC)





Полисульфон (ПСФ, Polysulphone, PSU)





Поливинилхлорид (ПВХ, Polyvinyl chloride, PVC)





Полиэтилен-терефталат (ПЭТ, Polyethylene terephthalate, PET)




Политетрафторэтилен (ПТФЭ, Polytetrafluoroethylene, PTFE)


(тефлон)

Нейлон (Nylon)


Нитрат целлюлозы (Cellulose nitrate)

Ацетат целлюлозы (Cellulose acetate)

Основные свойства

биологически инертный, твердый, с высокой степенью оптического светопропускания.

биологически инертный, твердый, высокая химическая стойкость


биологически инертный, твердый, высокая химическая стойкость


биологически инертный, высокая химическая стойкость, исключительная прочность

биологически инертный, очень прочный, инертный, высокая температурная стойкость

биологически инертный,

Нетоксичен и очень жёсток

биологически инертен,стоек к маслам (кроме эфирных).

биологически инертный, жесткий, прочный, превосходные оптические качества

биологически и химически инертен, очень стойкая скользкая поверхность


термостойкий, подходит для механической обработки, высокая проницаемость для водяного пара


термически нестабильный, обладает низкой хим. стойкостью к действию кислот и щелочей

термостойкий, стойкость к воздействию минеральных масел, нефтепродуктов, ряда ароматических углеводородов

Прозрачность

прозрачный

непрозрачен

полупрозрачный

непрозрачен

прозрачный

прозрачный

прозрачен

прозрачный

непрозрачен

непрозрачен

непрозрачен

прозрачен

Результат автоклавирования

плавится

возможно


плавится


не поддается деформации

выдерживает несколько циклов

возможно

плавится

плавится

допустимо

допустимо

допустимо

допустимо

Устойчивость к центрифугированию

устойчив до 3000g.

устойчив

до 15000 g


-


устойчив до 50000g

устойчив до 50000 g

устойчив до 50000 g

устойчив

до 5000 g

устойчив

до 5000 g

устойчив

до 5000 g

устойчив до 16000 g

устойчив до 50000 g


Температура термической деформации

64-80 °С

121 °С


120 – 138 °C


135 °С

138-143 °С

174 °С

150-220 °С

70 °С

121°С

150-180°С

190-220°С

190-210°С

Скорость горения

медленно

медленно


медленно


медленно

гаснет само-произвольно

гаснет само-произвольно

не горит


не горит

гаснет самопроизвольно

медленно


Воздействие лабораторных реактивов








Полистирол (ПС, Polystyrene, PS

Полиэтилен высокого давления (ПЭВД, high pressure polyethylene, PEHP)



Полиэтилен высокой плотности (низкого давления, ПЭВП, ПНД, HDPE, High Density Polyethylene)




Полипропилен (ПП, Polypropylene, PP)

Поликарбонат (ПК, polycarbonate, PC)

Полисульфон (ПСФ, Polysulphone, PSU)


Поливинилхлорид (ПВХ, Polyvinyl chloride, PVC)


Полиэтилен-терефталат (ПЭТ, Polyethylene terephthalate, PET)

Политетрафторэтилен (ПТФЭ, Polytetrafluoroethylene, PTFE)

(тефлон)

Нейлон (Nylon)


Нитрат целлюлозы (Cellulose nitrate)

Ацетат целлюлозы (Cellulose acetate)


Слабые кислоты


нет


нет


нет


нет


нет


нет


нет


нет


нет


нет

нет

нет


Сильные кислоты


окисляющие кислоты разрушают


окисляющие кислоты разрушают


окисляющие кислоты разрушают


окисляющие кислоты разрушают


возможно разрушение


возможно разрушение


нет


окисляющие кислоты разрушают


нет


нет

разрушение

окисляющие кислоты разрушают


Слабые щелочи


нет


нет


нет


нет


нет


нет


нет


нет


нет


нет

нет

нет


Сильные щелочи


нет


нет


нет


нет


медленное разрушение


нет


нет


нет


нет


нет

нет

нет


Органические растворители


растворим в ароматических хлор-содержащих углеводородах


устойчив при температуре ниже 80оС


набухает в ароматических соединениях и галогенированных углеводородах


устойчив при температуре ниже 80оС


растворим в хлор-содержащих углеводородах; частично растворим в ароматических


неустойчив, разрушается эфирами и ароматическими углеводородами



нет


растворим в ароматических или хлор-содержащих углеводородах


устойчив


устойчив


растворим в орг.растворителях: спиртоэфирной смеси, ацетоне, частично в этиловом спирте


растворим в орг.растворителях: спиртоэфирной смеси, ацетоне, этилацетате, частично в этиловом спирте

Проницаемость тонкостенных изделий для газа







Полистирол (ПС, Polystyrene, PS





Полиэтилен высокого давления (ПЭВД, high pressure polyethylene, PEHP)



Полиэтилен высокой плотности (низкого давления, ПЭВП, ПНД, HDPE, High Density Polyethylene)



Полипропилен (ПП, Polypropylene, PP)





Поликарбонат (ПК, polycarbonate, PC)





Полисульфон (ПСФ, Polysulphone, PSU)





Поливинилхлорид (ПВХ, Polyvinyl chloride, PVC)





Полиэтилен-терефталат (ПЭТ, Polyethylene terephthalate, PET)





Политетрафторэтилен (ПТФЭ, Polytetrafluoroethylene, PTFE)




(тефлон)



Нейлон (Nylon)

Ацетат целлюлозы


О2


низкая


высокая


низкая


высокая


очень низкая


очень низкая


очень низкая


очень низкая


очень низкая


очень низкая

низкая


N2


очень низкая


низкая


очень низкая


низкая


очень низкая


очень низкая


очень низкая


очень низкая



очень низкая

очень низкая


СО2


высокая


очень высокая


высокая


очень высокая


низкая



очень низкая





очень низкая

Полипропилен против полиэтилена: чем они отличаются?

3D Insider поддерживает рекламу и получает деньги от кликов, комиссионных от продаж и других способов.

Хотя в последние несколько лет пластмассы стали непопулярными (и по уважительным причинам), нет сомнений в том, что современное общество все еще очень сильно зависит от них. Совершенно очевидно, что пластик по-прежнему присутствует повсюду, от упаковки продуктов и обычных предметов домашнего обихода до автомобилей и промышленных предприятий, несмотря на усилия по разработке более экологичных альтернатив.

В области пластмасс, используемых в потребительских товарах, два типа гораздо более популярны, чем другие: полипропилен (PP) и полиэтилен (PE). Как и во многих других вещах, одно необязательно лучше другого. Однако есть приложения, в которых полипропилен или полиэтилен являются более подходящим вариантом. Чем отличаются ПП и ПЭ?

Полипропилен

Полипропилен (ПП) — это полимер, изготовленный из мономера пропилена. Это термопласт, который по темпам мирового производства уступает только полиэтилену.Почти у каждого, вероятно, есть что-то из пропилена в семье. Только в США в 2017 году было произведено 7,3 миллиарда фунтов пропилена, что на 7,7% больше, чем в предыдущем году. Эксперты прогнозируют, что к 2020 году мировой спрос на пропилен достигнет 62 миллионов тонн, хотя на это все еще может сильно повлиять изменение отношения потребителей.

Промышленное производство полипропилена начинается с пропенового сырья. Наиболее распространенный метод создания твердого полипропилена — пропускание пропена через псевдоожиженный слой из твердых катализаторов, который затем запускает процесс полимеризации с ростом цепи.Это приводит к производству полипропилена в виде белого порошка, который затем плавится и превращается в гранулы для распределения.

Варианты

Основной полипропилен, называемый гомополимером полипропилена, по-прежнему является его наиболее широко используемой формой, и его можно найти в упаковочной продукции, текстильных изделиях, а также в автомобилестроении и электротехнике. Он жестче и прочнее, чем все другие варианты полипропилена, но при этом сохраняет хорошую химическую стойкость.

Часть этена может быть смешана с пропеном во время полимеризации, что приводит к получению сополимера полипропилена.Эта модификация делает ПП намного более гибким и улучшает его оптические свойства. Таким образом, сополимер ПП подходит для применений, требующих прозрачности и хорошего внешнего вида.

В процессе полимеризации можно подмешивать большую часть этена, чтобы дополнительно улучшить гибкость полипропилена. При содержании от 45 до 65% этилена может быть получен вариант, называемый ударопрочным сополимером ПП. Этот продукт имеет отличную ударопрочность и предпочтителен для изготовления посуды и труб, а также для применения в электротехнике и автомобилестроении.

Преимущества

Как и в случае со многими потребительскими пластиками, основная причина широкого использования полипропилена заключается в том, что он очень дешев в производстве. Несмотря на это, полипропилен — отличный упаковочный материал. Обладает отличной влагостойкостью и устойчивостью к широкому спектру кислот и щелочей. Он также обладает хорошим сочетанием гибкости, прочности, ударопрочности и сопротивления усталости. Это изолятор выше среднего, что делает его хорошим компонентом для электрических применений.

PP обладает удивительной способностью сохранять свои механические и электрические свойства даже в экстремальных условиях, таких как высокая температура и влажность.Упаковка из полипропилена устойчива к росту микробов, но при необходимости может выдерживать стерилизацию паром.

Ограничения

Хотя полипропилен демонстрирует хорошую стойкость к большинству кислот и щелочей, он легко разлагается при воздействии различных углеводородов и окислителей. Это также очень легковоспламеняющийся материал. ПП становится хрупким при температуре ниже -20 ° C и начинает терять структурную целостность примерно при 120 ° C. Воздействие ультрафиолета также делает полипропилен хрупким. Кроме того, полипропилен имеет плохую адгезию к краске, что затрудняет печать этикеток на упаковке продукта.

Приложения

1. Упаковка продукта

ПП — один из наиболее предпочтительных недорогих вариантов упаковки продукта. Из него делают термоусадочную пленку, пластиковые ящики для электроники и одноразовые вкладки для подгузников. Поскольку полипропилен безопасен для пищевых продуктов, он используется для производства как многоразовых, так и одноразовых пищевых контейнеров.

2. Ткани

PP также можно прядать или экструдировать в волокна, которые затем используются для создания прочного и влагостойкого шпагата. Ткань, сотканная из полипропиленовых волокон, исключительно прочная и дешевая, что делает ее отличным вариантом для хранения и транспортировки пищевых продуктов, таких как зерно, фрукты и овощи.

3. Здравоохранение

Благодаря устойчивости полипропилена к росту микробов и многим химическим соединениям, он использовался для производства шприцев, флаконов, устройств для внутривенного введения и флаконов для образцов для индустрии здравоохранения. Медицинский полипропилен также обладает дополнительным преимуществом, так как он может выдерживать стерилизацию паром.

4. Применение в автомобилестроении

Простота работы с полипропиленом делает его одним из наиболее широко используемых материалов для внутренних и внешних деталей автомобилей.ПП легко поддается формованию и имеет низкое тепловое расширение, что делает его отличным выбором для внутренней отделки и приборных панелей автомобилей, а также для бамперов и подкрылков.

Полиэтилен

Полиэтилен (PE) — один из самых дешевых, но при этом наиболее универсальных пластиков, поэтому неудивительно, что это самый распространенный пластик в мире. По состоянию на 2018 год прогнозируемый мировой спрос на продукцию из полиэтилена достиг 99,6 миллиона тонн, что эквивалентно стоимости в 164 миллиарда долларов.Лидирует Китай, на который приходится почти четверть мирового спроса. Индия и Вьетнам рассматриваются как два из самых быстрорастущих рынков полиэтиленовой продукции в ближайшие несколько лет.

Основным мономером, используемым для производства полиэтилена, является этилен, газообразный углеводород. Это очень стабильное соединение, поэтому полимеризация до полиэтилена может протекать только в присутствии катализатора, чаще всего хлорида титана. В большинстве промышленных процессов производства полиэтилена используется координационная полимеризация, для которой требуется присутствие солей металлов, таких как хлориды и оксиды.

Рост отрасли полиэтилена был обусловлен высокой степенью коммерциализации пластика, а также богатством источников этиленового сырья. Помимо угля, современные методы позволяют извлекать этилен из сланцевого газа и биоматериалов.

На физические свойства полиэтилена может сильно влиять присутствие разветвленных групп в полимерной цепи. Степень разветвления влияет на плотность полимера, а также на его прочность, гибкость и термическое сопротивление, среди других характеристик.Наиболее распространенными типами полиэтилена являются полиэтилен высокой плотности (HDPE), полиэтилен низкой плотности (LDPE) и линейный полиэтилен низкой плотности (LLDPE).

Преимущества

Основным преимуществом полиэтилена является его универсальность. Количество различных вариантов полиэтилена, безусловно, сыграло ключевую роль в его распространении во многих отраслях и сферах применения. Например, превосходная прозрачность LDPE делает его идеальным для упаковки пищевых продуктов. С другой стороны, HDPE очень непрозрачен, но имеет гораздо лучшую прочность на разрыв, что делает его более подходящим в качестве контейнеров для тяжелых веществ, таких как молоко или жидкое моющее средство.

Значение термостойкости также различается для HDPE и LDPE. Температура плавления HDPE составляет от 120 до 180 ° C, что делает его отличным материалом для труб с горячей водой. LDPE имеет гораздо более низкую температуру плавления в диапазоне от 105 до 115 ° C.
Есть несколько параметров, общих для всех типов PE. По сравнению с полипропиленом, полиэтилен более гибкий, чем жесткий, что придает ему лучшую пластичность и ударную вязкость. Он также обладает хорошей влагостойкостью и является хорошим электроизолятором.

Ограничения

Подобно полипропилену, полиэтилен имеет плохую стойкость к УФ-излучению и легко воспламеняется. Несмотря на высокую влагостойкость, полиэтилен является плохим барьером для таких газов, как углекислый газ. Он также довольно быстро разлагается при воздействии углеводородных соединений и окислителей.

PE имеет гораздо меньшую жесткость по сравнению с PP. Хотя в некоторых случаях это может быть желательно, это также означает, что практически невозможно соединить компоненты из полипропилена с помощью сварки.ПП также имеет тенденцию к значительной усадке при использовании для литья под давлением.

Области применения

1. Упаковка продукта

Полиэтилен является прекрасным недорогим материалом для широкого спектра потребностей в упаковке продукта. При применении полиэтилена в качестве упаковки обычно используются преимущества превосходной гибкости материала, например, выжимаемые бутылки, термоусадочная пленка, крышки и укупорочные средства. Высокая прочность на разрыв HDPE также делает его полезным для более жесткой упаковки, например, для ящиков, лотков, бутылок для молока и сока и даже для промышленных емкостей для массовых грузов.

2. Волокна и текстиль

Из-за превосходной прочности на разрыв HDPE волокна из HDPE являются лучшим выбором для веревок и сетей, используемых для спорта, рыбалки и других сельскохозяйственных целей.

3. Потребительские товары

HDPE, в частности, можно найти во многих дешевых потребительских товарах, которые должны выдерживать умеренное количество ударов. Примеры включают ледяные ящики, мусорные баки и небольшие резервуары для воды. Большинство дешевых пластиковых игрушек, особенно гибких, производятся из полиэтилена низкой плотности.

4. Трубы и фитинги

Одно из основных применений HDPE — производство труб и фитингов для водоснабжения, канализации, газа и промышленности. Это связано с его превосходной устойчивостью к химическому разложению и поглощению влаги. Трубки из полиэтилена высокой плотности также использовались для защиты электрических проводов и телекоммуникационных кабелей. Более гибкий LDPE использовался для простых водопроводных труб и шлангов. LDPE также используется в качестве материала оболочки кабелей, который обеспечивает как физическую защиту, так и изоляцию.

Заключительные мысли

Чтобы понять, почему современному обществу так трудно отказаться от пластмасс, нам нужно понять, почему они так полезны. Пластмассы дешевы, их легко производить в больших объемах, они прочные, влагостойкие и могут использоваться многократно. Хотя в идеале многие пластмассы, включая полиэтилен и полипропилен, следует перерабатывать, реальность далека от этого идеального видения.

Даже если производство полиэтилена и полипропилена демонстрирует признаки замедления, они по-прежнему производятся в масштабе несколько миллионов тонн в год.Продукты из полиэтилена и полипропилена повсюду, поэтому трудно оспорить их ценность. Постепенно появляются жизнеспособные альтернативы. Тем не менее, чтобы отучить нас от пластика, потребуется от нескольких лет до нескольких десятилетий.

Разница между полиэтиленом и полипропиленом

Основное различие — полиэтилен против полипропилена

Полиэтилен и полипропилен являются пластиками и полимерами. Слово «поли» означает «множество», и, следовательно, полимеры — это материалы, состоящие из множества более мелких единиц, соединенных вместе.Большинство полимеров можно разделить на отдельные части, которые действуют как строительные блоки полимера, и эти отдельные звенья называются «мономерами». Мономерным звеном полиэтилена является этилен, тогда как мономерным звеном полипропилена является пропилен. Основное различие между полиэтиленом и полипропиленом состоит в том, что полиэтилен образуется в результате полимеризации мономерных звеньев этилена , тогда как полипропилен образуется в результате полимеризации звеньев мономерного пропилена.

Что такое полиэтилен

Как упоминалось выше, полиэтилен представляет собой полимер, образованный в результате полимеризации молекул этилена, которые представляют собой два углеродных алкановых звена [-CH 2 CH 2 -]. Он относится к категории термопластичных полимеров. Большинство его физических свойств зависит от его молекулярной массы. Полиэтилен высокой плотности (HDPE), полиэтилен средней плотности (MDPE) и полиэтилен низкой плотности (LDPE) являются наиболее распространенными типами. И они известны своим химическим сопротивлением.То есть они не реагируют и не разлагаются в присутствии сильных кислот и сильных оснований. Полиэтилен инертен и полупрозрачен. Это означает, что он пропускает свет, но не способствует формированию изображения, в отличие от прозрачного материала.

Этилен может подвергаться сополимеризации. В этом случае его чистота теряется. Однако полиэтилен в меньшей степени подвергается сополимеризации по сравнению с другими пластиками. Поэтому из-за своей чистоты он часто бывает дороже.Полиэтилен вызывает серьезные экологические проблемы, поскольку он не разлагается естественным путем, если его не обработать. Однако для решения этой проблемы было разработано и используется множество методов. Полиэтилен в настоящее время производится из такого сырья, как сахарный тростник, пшеничное зерно и сахарная свекла.

Шаровидная модель части кристаллической структуры полиэтилена

Что такое полипропилен

Полипропилен также является термопластичным полимером, более жестким по сравнению с полиэтиленом.Как упоминалось выше, полипропилен состоит из мономерных звеньев пропилена, которые представляют собой три углеродных алкановых звена [–CH 2 (CH 3 ) CH 2 -]. Благодаря своей жесткости, его часто используют для изготовления формованных материалов. Пропилен часто сополимеризуется с молекулами этилена, чтобы улучшить его гибкость. то есть этиленпропиленовый каучук. Полипропилен не такой полупрозрачный, как полиэтилен, но его можно сделать полупрозрачным, не окрашивая.

Полипропилен также бывает определенных марок в зависимости от его молекулярной массы.Однако большинство полипропиленов находится между полиэтиленом высокой плотности и полиэтиленом низкой плотности. Под воздействием света он подвергается цепной деградации и вызывает реакции окисления с образованием свободных радикалов, что вызывает дополнительные опасения в отношении здоровья и безопасности.

Шаровидная модель молекулы полипропилена

Разница между полиэтиленом и полипропиленом

Определение

Полиэтилен образуется в результате полимеризации мономерных звеньев этилена.

Полипропилен образуется в результате полимеризации мономерных звеньев пропилена.

Физические свойства

Полиэтилен менее жесткий и более гибкий.

Полипропилен достаточно жесткий.

полупрозрачность

Полиэтилен — полупрозрачный материал.

Полипропилен не является полупрозрачным, но его можно сделать полупрозрачным с помощью методов отбеливания.

Статический заряд

Полиэтилен имеет более низкий статический заряд.

Полипропилен имеет более высокий статический заряд по сравнению с полиэтиленом.

Точка плавления

Полиэтилен имеет более низкую температуру плавления, чем полипропилен.

Полипропилен имеет более высокую температуру плавления по сравнению с полиэтиленом.

Чистота

Полиэтилен часто бывает 100% степени чистоты.

Пропилен обычно сополимеризуется с этиленом.

Изображение предоставлено:

«Полиэтилен-ксталь-упаковка-3D-шары-орфография» Бена Миллса — Собственная работа.(Общественное достояние) через Wikimedia Commons

«Пропиленовые 3D-шары» Бена Миллса и Джинто — Производное от файла: Cis-but-2-ene-3D-balls.png. (Общественное достояние) через Commons

Полипропилен против полиэтилена: в чем разница?

Когда дело доходит до пластиковых пакетов, у вас действительно есть два основных варианта: полиэтилен или полипропилен. Как лучше? В конечном итоге это просто зависит от ваших потребностей. Наиболее очевидное отличие состоит в том, что полиэтиленовые пакеты — это непрозрачный пластик, а полипропиленовые — полностью прозрачные.

Но решение о том, какой тип пластиковой упаковки подходит, требует большего, чем просто степень прозрачности самого пластика. Итак, в чем разница между полиэтиленом и полипропиленом? Как узнать, какой из них вам подходит? Есть ли какие-то важные отличия, о которых вам следует знать? Знание о различиях между полипропиленом и полиэтиленом является ключом к тому, чтобы получить лучший пластиковый пакет для ваших продуктов и потребностей.

Честно говоря, понять полипропилен и полиэтилен на самом деле довольно просто.Важно помнить, что, хотя они оба являются пластиковыми пакетами, они обычно не используются для одних и тех же продуктов или целей. Это означает, что эти два типа пластика в большинстве случаев не взаимозаменяемы.

Полиэтилен — наиболее широко доступный вид пластика. Он полупрозрачный или непрозрачный, с легкой дымкой, что делает его хорошим вариантом, когда вам нужна сумка с защитными свойствами. Вы все еще можете видеть предметы внутри, но детали содержимого не будут такими ясными.
С другой стороны, полипропилен кристально чистый, поэтому они идеально подходят для продуктов питания или медицинских товаров.

Несмотря на то, что на первый взгляд эти пакеты могут показаться довольно похожими, при выборе полипропилена или полиэтилена и при попытке выяснить, какая пластиковая упаковка вам действительно нужна, вам нужно учитывать более сложные факторы, чем просто эти базовые эстетические аспекты.

Если вам нужна помощь в выборе полипропилена или полиэтилена, читайте дальше, поскольку мы расскажем обо всех плюсах и минусах каждого из них, чтобы вы почувствовали себя экспертом при выборе полиэтиленовых пакетов.

Полиэтилен (PE)

Что такое полиэтиленовый пластик? Это прочный, гибкий материал, устойчивый к разрывам и разрывам. Полиэтилен идеально подходит для упаковки в тяжелых условиях. Он обладает полупрозрачным качеством, что делает его идеальным вариантом, если вы ищете полиэтиленовый пакет, который будет служить защитным материалом.

Например, музеи и архивисты часто используют полиэтиленовый пластик для защиты важных предметов от солнечных лучей. Это также тип сумки, часто используемый магазинами комиксов и коллекционерами по тем же причинам защиты.Поскольку солнечный свет выцветает изображения и текст, незащищенное воздействие солнечного света может со временем привести к потере ценности книг и других произведений искусства.

Обычно используемые полиэтиленовые пластмассы включают:

  • Полиэтилен высокой плотности (HDPE) — известен высоким отношением прочности к плотности. Обычно используется в баннерах, крышках для бутылок, хранении продуктов и многом другом.
  • Полиэтилен низкой плотности (LDPE) — Не вступает в реакцию при комнатной температуре. Обычно используется в картонных коробках для сока и молока, кольцах на шесть упаковок, пластиковой упаковке, упаковке для электронных и компьютерных устройств и т.
  • Полиэтилентерефталат (ПЭТ) — наиболее распространенная термопластичная полимерная смола. Обычно используется в упаковке-раскладушке, пластиковых бутылках, пряже, полотенцах / одежде из микрофибры и т. Д.

Другие преимущества полиэтиленовых пакетов

Полиэтиленовые пакеты обладают отличными качествами, в том числе:

  • Гибкий
  • прочный
  • Прочность на разрыв
  • Притупляет детали продукта (ов) внутри
  • Низкий статический заряд
  • Хорошая электрическая изоляция
  • Мягкий и гибкий
  • Устойчив к грязи, пыли и более низким температурам
  • 100% чистый материал

Недостатки полиэтиленовых пакетов

У полиэтилена есть некоторые недостатки, особенно если сравнивать полиэтилен с полипропиленом.Некоторые из наиболее значительных отличий включают:

  • Более низкая температура плавления, чем у полипропилена
  • Менее жесткий и устойчивый к химическим веществам, чем полипропилен
  • Стоимость выше, чем у полипропилена

Полипропилен (ПП)

Полипропилен обладает высокой степенью прозрачности, что делает его оптимальным для демонстрации таких продуктов, как свежие продукты. Он обеспечивает защитный барьер без ущерба для видимости. Кроме того, поскольку полипропилен предотвращает испарение или воздействие бактерий, он помогает сохранить продукты.

Именно эти и другие качества делают полипропилен идеальным для тех предметов, которые должны оставаться чистыми и видимыми, таких как медицинское или стоматологическое оборудование и продукты питания.

Другие преимущества полипропиленовых мешков

Мешки полипропиленовые:

  • Легкий
  • Устойчив к растрескиванию и воздействию органических растворителей
  • Соответствует всем рекомендациям FDA и USDA
  • Полезно с едой
  • Невероятно прочный, гибкий и имеет высокую температуру плавления
  • Защита от пара, влаги и грязи
  • Дешевле полиэтилена

Недостатки полипропиленовых мешков

Как и полиэтилен, у полипропилена есть свои недостатки.Имейте в виду, если вы обсуждаете полипропилен или полиэтилен, полипропилен — это:

.

  • Менее гибкий, чем полиэтилен
  • Без защиты от света

Выберите правильный пластик с Paper Mart!

Прежде чем принимать решение о полипропилене или полиэтилене, подумайте о бюджете, продуктах и ​​эффективности доставки ваших продуктов покупателям.

Если у вас есть товары, не требующие защитных мер, цена может оказаться решающим фактором.Полиэтилен, как правило, дороже из-за чистоты материала и защиты, которую он обеспечивает. Если вы найдете качественный источник, вы сможете запастись любым типом пластиковой упаковки с минимальными или значительно меньшими затратами.

Полиэтилен против полипропилена — какие пакеты подходят вам? Ознакомьтесь с широким выбором полиэтиленовых и полипропиленовых пакетов Paper Mart сегодня.

Разница между полипропиленом и полиэтиленом — разница Wiki

РЕКЛАМА

ПРОДОЛЖАЙТЕ ЧТЕНИЕ НИЖЕ

Основное различие

Основное различие между полипропиленом и полиэтиленом состоит в том, что полипропилен является мономером пропилена, тогда как полиэтилен является мономером этилена.

Сравнение полипропилена и полиэтилена

Полипропилен и полиэтилен являются термопластичными полимерами. Оба этих полимера широко используются в широком спектре промышленных и бытовых применений. Полипропилен производится из комбинации мономеров пропилена, а полиэтилен — из комбинации мономеров полиэтилена. Полипропилен легко модифицируется, адаптируется и поддается формованию, в то время как полиэтилен очень прочен и не податлив. Полипропилен обозначается аббревиатурой PP, а полипропилен известен как PE.Полипропилен известен своей технологичностью и способностью формоваться под воздействием тепла, в то время как пропилен известен своей способностью выдерживать низкие температуры. Полипропилен не так стабилен, как полиэтилен. Полипропилен имеет более высокий статический заряд, чем полиэтилен. Полипропилен можно преобразовать только в полупрозрачный, а полиэтилен всегда можно изготовить как оптически прозрачный. Полипропилен — плохой изолятор, а полиэтилен — хороший электрический изолятор. ПП имеет более высокую температуру плавления и меньшую стоимость, чем ПЭ.PP весит легче, чем PE. Полипропен также более устойчив к органическим растворителям и химическим веществам, чем полиэтилен. Из полипропилена можно делать волокна, но из полиэтилена нельзя. Оба имеют разные химические формулы.

РЕКЛАМА

ПРОДОЛЖАЙТЕ ЧТЕНИЕ НИЖЕ

Сравнительная таблица

903 903 903 903

РЕКЛАМА

ПРОДОЛЖАЙТЕ ЧТЕНИЕ НИЖЕ

Что такое полипропилен?

Полимер, полипропилен, также известен как полипропилен.Это сокращенно PP. И имеет химическое обозначение (C 3 H 6 ) n. Это термопластичный полимер, который также может быть адаптирован для различных производственных процессов. Он производится в основном из мономера пропилена в процессе, называемом полимеризацией с ростом цепи. Это универсальный пластиковый товар, который также выполняет функции волокна. В 1954 году он был впервые полимеризован итальянским химиком и профессором Джулио Натта, но первоначально создан немцем Карлом Реном.Способность полипропилена к полукристаллизации вызвала большой резонанс, и к 1957 году он стал широко популярным в коммерческом производстве по всей Европе. Полипропилен обладает уникальной способностью. Его можно производить различными способами и использовать во многих областях, таких как упаковка, литье под давлением и волокно. Этот пластиковый товар является вторым по популярности в мире после полиэтилена, который находится на первом месте. Пропилен бывает двух видов, а именно гомополимеры и сополимеры. Он легко модифицируется и поддается формованию, а его свойства делают его очень полезным материалом для многих отраслей промышленности, особенно для производства пластмасс.Способность полипропена к адаптации — жизненно важное свойство. По сравнению с другими пластиками, этот имеет более высокую температуру плавления, но такой же вес, как и они. Он эластичный, но без мягкости и стоит очень дешево. Он устойчив к химическим веществам, таким как кислоты и щелочи на водной основе. Он также сохраняет свою первоначальную форму даже после того, как он был изогнут или изогнут, поэтому он имеет сопротивление усталости. Кроме того, полипропилен очень полезен для компонентов электроники из-за его устойчивости к электричеству.Он очень ценен при производстве волокон, ковров, веревок, одежды и обивки, причем в упаковочной промышленности он используется в основном. Автомобильная промышленность и бытовая техника также потребляют десять процентов этого термопласта. Игрушки, предметы домашнего обихода также используют его. Однако он не термостойкий, легко воспламеняется и легко деформируется при нагревании.

Что такое полиэтилен?

Полиэтилен или полиэтилен также являются полимером, но сделаны из мономера этилена. Он имеет химическую формулу (C 2 H 4 ) n .Первый синтез этого произошел случайно в 1898 году немецким ученым Гансом фон Пехманном. Как и полипропилен, он также является термопластом по самой своей природе. Его сокращенная форма — ПЭ. PE стоит на первом месте как самый используемый пластик во всем мире. Однако не все пластмассы являются полиэтиленом. Полиэтилен не очень легко поддается податливости, поскольку он очень стабилен. Это хороший электроизолятор. Он имеет очень низкую температуру плавления и широко используется в автомобильной промышленности, а также в производстве упаковки для пищевых продуктов. Примерно 70 процентов его используется в пищевых упаковках, пищевых контейнерах, поддонах и даже в ящиках и бутылках.

Типы
  • Полиэтилен сверхвысокой молекулярной массы (UHMWPE)
  • Полиэтилен сверхнизкой молекулярной массы (ULMWPE или PE-WAX)
  • Высокомолекулярный полиэтилен (HMWPE)
  • Высокая плотность Полиэтилен (HDPE)
  • Сшитый полиэтилен высокой плотности (HDXLPE)
  • Сшитый полиэтилен (PEX или XLPE)
  • Полиэтилен средней плотности (MDPE)
  • Линейный полиэтилен низкой плотности (LLDPE)
  • Полиэтилен плотности (LDPE)

  • Полиэтилен очень низкой плотности (VLDPE)
  • Хлорированный полиэтилен (CPE)

Ключевые различия

  1. Полипропилен сокращенно обозначается как PP, а полиэтилен обычно обозначается как PE.
  2. Полипропилен является вторым по популярности товаром из пластмассы в мире, а полиэтилен — первым.
  3. ПП очень дешевый, а ПЭ очень дорогой.
  4. Полипропен имеет более высокую температуру плавления, чем полиэтилен.
  5. Полипропилен менее прочен, чем полиэтилен.
  6. Полипропилен имеет меньший вес, чем полиэтилен.
  7. Полипропен — плохой электроизолятор по сравнению с полиэтиленом.
  8. Полипропилен изготовлен из смеси мономеров пропилена, а полиэтилен — из смеси мономеров этилена.
  9. Полипропилен в основном используется в автомобильной и упаковочной промышленности, петлях, бытовой технике и игрушках, коврах, волокнах, крышках, синтетической бумаге и т. Д., А полиэтилен используется в пластиковых пакетах, пищевых контейнерах и бутылках, пленках, пищевых ящиках. , поддоны и т. д.
  10. Полипропилен имеет химическую формулу (C 3 H 6 ) n , а полиэтилен (C 2 H 4 )

Видео сравнения

Заключение

Все в целом, хотя полипропилен и полиэтилен имеют некоторые общие физические свойства, но они совершенно разные по природе и способу их использования.ПП более податлив, а ПЭ более прочен. ПП также эластичен по своей природе, но ПЭ стабилен. Они также сделаны в результате полимеризации различных мономеров, таких как пропилен и этилен. Но оба являются одинаково важными товарами из пластика в мире.

Сравнение полиэтилена и полипропилена — Acadian Industrial Textiles

Мы гордимся тем, что являемся источником знаний и информации, которые помогают нашим клиентам найти нужные продукты для своих клиентов.Нам часто задают вопрос о разнице между полиэтиленом и полипропиленом. Считайте, что это краткое руководство по обоим типам волокон, к которому вы можете вернуться и при необходимости ссылаться.

Сходства

Полиэтилен и полипропилен похожи друг на друга и обладают некоторыми общими свойствами, такими как долгий срок службы, высокое качество и универсальность для использования в различных областях. Они также оба состоят из волокон, известных как олефины, которые представляют собой химические вещества, образующие маслянистые жидкости в сочетании с другими веществами.Оба волокна имеют низкий удельный вес и могут плавать в воде. Они также устойчивы к повреждениям, вызванным насекомыми и плесенью.

Отличия

Этилен, основное вещество для полиэтиленового волокна, представляет собой горючий газ, получаемый из природного газа и нефти. Пропилен, также являясь горючим газом, получают при крекинге нефтяных углеводородов. Полипропилен обеспечивает большее покрытие на фунт, в то время как полиэтилен имеет более низкую температуру плавления и более эластичен, чем полипропилен.

Подробнее о полиэтилене

Полиэтилен более гибкий, что дает производителю возможность выбора ткачества или вязания.Полиэтиленовые волокна имеют низкую влажность и обладают одинаковой прочностью на разрыв как во влажных, так и в сухих условиях.

Подробнее о полипропилене

Полипропилен имеет тенденцию быть более популярным из двух, по крайней мере в Северной Америке, из-за доступности и цены. Полипропилен имеет высокую температуру плавления, что означает, что он плохо термосваривается, и из-за его характеристик изгиба (то есть его жесткости) его обычно не используют при вязании.

Мы здесь, чтобы помочь вам найти подходящие материалы для вашей продукции и потребностей ваших клиентов.Пожалуйста, не стесняйтесь обращаться к нам с любыми вопросами.

Типы, свойства, использование и информация о структуре


Полипропилен — это прочный, жесткий и кристаллический термопласт, произведенный из мономера пропена (или пропилена). Это линейная углеводородная смола. Химическая формула полипропилена (C 3 H 6 ) n . ПП — один из самых дешевых пластиков, доступных сегодня.

Молекулярная структура полипропилена

ПП принадлежит к семейству полиолефинов и входит в тройку наиболее широко используемых сегодня полимеров.Полипропилен применяется как в качестве пластика, так и в качестве волокна:

  • Автомобильная промышленность
  • Промышленное применение
  • Потребительские товары и
  • Мебельный рынок

Он имеет самую низкую плотность среди товарных пластиков.

Некоторые из основных поставщиков полипропилена:


  • A. Schulman
    — GAPEX®, ACCUTECH ™, POLYFORT®, Fiberfil®, FERREX® и другие

  • Borealis
    — Daplen ™, Bormed ™, Fibremod ™ и др.

  • ExxonMobil Chemical
    — ExxonMobil ™, Achieve ™

  • LyondellBasell
    — Adstif, Circulen, Hifax, Hostacom, Moplen и др.

  • SABIC
    — SABIC® PP, SABIC® Vestolen, LNP ™ THERMOCOMP ™ и др.

  • Компания RTP
    — ESD C, ESD A, RTP 100, RTP 101–109 и др.


База данных пластика позволяет фильтровать результаты поиска по свойствам (механические, электрические и т. Д.).), приложения, режим конвертации и другие размеры БЕСПЛАТНО!

Как производить полипропилен?

В наши дни полипропилен получают в результате полимеризации мономера пропена (ненасыщенное органическое соединение — химическая формула C 3 H 6 ) по:

  • полимеризацией Циглера-Натта или
  • Каталитическая полимеризация металлоцена

Полипропилен Полиэтилен
Мономер этилена
3
Мономер пропилена

-кристаллический Инертный, полупрозрачный
Электрические свойства

Высокий статический заряд

Плохой изолятор

Низкий статический заряд

Хороший изолятор

130–171 ° C (266–340 ° F; 403–444 K) 115–135 ° C (239–275 ° F, 388–408 K)
Химическая формула
( C 3 H 6 ) n (C 2 H 4 ) n
Использует
Волокна, пленки, колпачки, петли, синтетическую бумагу, а также для производства различных химикатов, таких как акрилонитрил, акриловая кислота, оксид пропилена, кумол и бутиральдегид. Полиэтиленовые пакеты, бутылки, контейнеры для пищевых продуктов, поддоны, геомембраны, пленки из пластика, ящики для пищевых продуктов и т. Д.
Плотность
0,855 г / см 3 аморфный, 0,946 г / см 3 кристаллический 0,88–0,96 г / см 3
Discovery
Дж. Пол Хоган и Роберт Бэнкс (1951) и Джулио Натта, Карл Рен (1954). Ганс фон Пехманн (1898 г.).
Аббревиатура
PP PE
Альтернативные имена
Полипропен Полиэтилен

Структура мономера ПП
C 3 H 6
Полимеризация Циглера-Натта

Или металлоценовый катализ


Структура полипропилена

(C 3 H 6 ) n

После полимеризации ПП может образовывать три основные цепные структуры в зависимости от положения метильных групп:

  • Атактическое (aPP) — Неправильное расположение метильных групп (CH 3 )
  • Изотактические (iPP) — Метильные группы (CH 3 ), расположенные на одной стороне углеродной цепи
  • Syndiotactic (sPP) — Расположение чередующихся метильных групп (CH 3 )

Полипропилен был впервые полимеризован немецким химиком Карлом Реном и итальянским химиком Джулио Натта в кристаллический изотактический полимер в 1954 году.Это открытие вскоре привело к крупномасштабному производству полипропилена, начатому в 1957 году итальянской фирмой Монтекатини.

Синдиотактический полипропилен также был впервые синтезирован Наттой и его сотрудниками.

Виды полипропилена и их преимущества

Гомополимеры и сополимеры — это два основных типа полипропилена, доступных на рынке.

  • Гомополимер полипропилена — это наиболее широко используемый тип общего назначения .Он содержит только мономер пропилена в твердой полукристаллической форме. Основные области применения включают упаковку, текстиль, здравоохранение, трубы, автомобилестроение и электротехнику.
  • Сополимер полипропилена Семейство далее подразделяется на статистические сополимеры и блок-сополимеры, полученные полимеризацией пропена и этана:
    1. Случайный сополимер полипропилена получают путем совместной полимеризации этилена и пропена. Он содержит звенья этена, обычно до 6% по массе, случайно включенные в полипропиленовые цепи.Эти полимеры гибкие и оптически прозрачные , что делает их пригодными для применений, требующих прозрачности, и для продуктов, требующих превосходного внешнего вида.
    2. В то время как в полипропиленовом блок-сополимере содержание этена больше (от 5 до 15%). Он имеет звенья сомономера, расположенные в правильном порядке (или блоках). Следовательно, регулярный рисунок делает термопласт более жестким и менее хрупким, чем случайный сополимер. Эти полимеры подходят для применений, требующих высокой прочности, например, для промышленного использования.


Полипропилен, ударный сополимер
— Гомополимер пропилена, содержащий смешанную фазу статистического сополимера пропилена с содержанием этилена 45-65%, относится к ударному сополимеру PP. Это полезно в деталях, требующих хорошей ударопрочности. Ударные сополимеры в основном используются в производстве упаковки, посуды, пленки и труб, а также в автомобильном и электротехническом сегментах.


Вспененный полипропилен
— это гранулированная пена с закрытыми порами и сверхнизкой плотностью.EPP используется для производства трехмерных изделий из вспененного полимера. Пенопласт из пенополистирола имеет более высокое соотношение прочности и веса, отличную ударопрочность, теплоизоляцию, химическую и водостойкость. EPP используется в различных приложениях: от автомобилей до упаковки, от строительных товаров до товаров народного потребления и т. Д.


Полипропиленовый тройной сополимер
— он состоит из пропиленовых сегментов, соединенных мономерами этиленом и бутаном (сомономер), которые случайным образом появляются по всей полимерной цепи. Тройной сополимер ПП имеет лучшую прозрачность , чем гомо ПП. Кроме того, включение сомономеров снижает кристаллическую однородность полимера, что делает его пригодным для применения в герметизирующих пленках.


Полипропилен с высокой прочностью расплава (HMS PP)
— это длинноцепочечный разветвленный материал, сочетающий в себе высокую прочность расплава и растяжимость в фазе расплава. PP Марки HMS обладают широким диапазоном механических свойств, высокой термостойкостью, хорошей химической стойкостью.HMS PP широко используется для производства мягких пен с низкой плотностью для упаковки пищевых продуктов, а также в автомобильной и строительной промышленности.

Гомополимер ПП против сополимера — Как выбрать между ними?

Гомополимер ПП Сополимер ПП
  • Высокое соотношение прочности и веса, жесткость и прочность по сравнению с сополимером
  • Хорошая химическая стойкость и свариваемость
  • Хорошая технологичность
  • Хорошая ударопрочность
  • Хорошая жесткость
  • Допускается контакт с пищевыми продуктами
  • Подходит для коррозионностойких конструкций
  • Немного мягче, но имеет лучшую ударную вязкость; прочнее и долговечнее гомополимера
  • Лучшая стойкость к растрескиванию под напряжением и низкотемпературная вязкость
  • Высокая технологичность
  • Высокая ударопрочность
  • Высокая вязкость
  • Не рекомендуется для приложений, контактирующих с пищевыми продуктами.

Потенциальные области применения гомополимера ПП и сополимера ПП практически идентичны

Это из-за их широко разделяемых владений .В результате выбор между этими двумя материалами часто делается на основе нетехнических критериев.

Интересные свойства материала полипропилена

Всегда полезно заранее сохранить информацию о свойствах термопласта. Это помогает выбрать подходящий термопласт для применения. Это также помогает оценить, будет ли выполнено требование конечного использования или нет. Вот некоторые ключевые свойства и преимущества полипропилена:

  1. Точка плавления полипропилена — Точка плавления полипропилена может варьироваться.
    • Гомополимер: 160 — 165 ° C
    • Сополимер: 135 — 159 ° C
  2. Плотность полипропилена — ПП — один из самых легких полимеров среди всех товарных пластиков. Эта особенность делает его подходящим вариантом для легких и экономичных приложений.
    • Гомополимер: 0,904 — 0,908 г / см 3
    • Случайный сополимер: 0,904 — 0,908 г / см 3
    • Ударный сополимер: 0,898 — 0,900 г / см 3
  3. Химическая стойкость полипропилена

    • Отличная стойкость к разбавленным и концентрированным кислотам, спиртам и щелочам
    • Хорошая стойкость к альдегидам, сложным эфирам, алифатическим углеводородам, кетонам
    • Ограниченная устойчивость к ароматическим и галогенированным углеводородам и окислителям
  4. Воспламеняемость: Полипропилен — легковоспламеняющийся материал
  5. PP сохраняет механические и электрические свойства при повышенных температурах, во влажных условиях и при погружении в воду.Это водоотталкивающий пластик
  6. ПП обладает хорошей устойчивостью к растрескиванию под воздействием окружающей среды
  7. Чувствителен к атакам микробов, таких как бактерии и плесень
  8. Обладает хорошей устойчивостью к стерилизации паром

Узнайте больше обо всех свойствах полипропилена и их значениях — от механических и электрических до химических свойств; и сделайте правильный выбор для вашего приложения.

Как добавки помогают улучшить свойства полипропилена?

Полимерные добавки, такие как осветлители, антипирены, стекловолокно, минералы, проводящие наполнители, смазочные материалы, пигменты и многие другие добавки, могут дополнительно улучшить физические и / или механические свойства полипропилена. Например:
ПП имеет плохую стойкость к УФ-излучению, поэтому такие добавки, как затрудненные амины, обеспечивают световую стабилизацию и увеличивают срок службы по сравнению с немодифицированным полипропиленом.

Далее, наполнители (глины, тальк, карбонат кальция …) и армирующие элементы (стекловолокно, углеродное волокно …) добавляются для достижения значительных свойств, связанных с обработкой и конечной обработкой. использовать приложение.

Разработка и использование новых добавок, новейших процессов полимеризации, а также растворов для смешивания значительно улучшают характеристики полипропилена. Таким образом, сегодня полипропилен не рассматривается как дешевое решение, а в гораздо большей степени рассматривается как высокоэффективный материал, конкурирующий с традиционными конструкционными пластиками и, иногда, с металлическими предметами (например, сортами полипропилена, армированными длинным стекловолокном).

Недостатки полипропилена

  • Плохая устойчивость к УФ-излучению, ударам и царапинам
  • Хрупкость ниже -20 ° C
  • Нижняя верхняя рабочая температура, 90-120 ° C
  • Атакует сильно окисляющих кислот, быстро набухает в хлорированных растворителях и ароматических соединениях
  • На устойчивость к тепловому старению отрицательно влияет контакт с металлами
  • Изменение размеров после формования из-за эффектов кристалличности — Эта проблема может быть решена с помощью зародышеобразователей »Смотреть видео
  • Плохая адгезия краски

Основные области применения полипропилена

Полипропилен широко используется в различных сферах применения из-за его хорошей химической стойкости и свариваемости.Некоторые распространенные применения полипропилена включают:

  1. Применение в упаковке: Хорошие барьерные свойства, высокая прочность, хорошее качество поверхности и низкая стоимость делают полипропилен идеальным для нескольких упаковочных приложений.
    1. Гибкая упаковка: ПП пленка с превосходной оптической прозрачностью и низким пропусканием влаги и паров делает ее пригодной для использования в упаковке пищевых продуктов. Другие рынки: термоусадочная пленка, пленки для электронной промышленности, приложения для полиграфии, одноразовые вкладки и застежки для подгузников и т. Д.Пленка PP доступна в виде литой пленки или двухосно ориентированного полипропилена (BOPP).
    2. Жесткая упаковка: Полипропилен формован с раздувом для производства ящиков, бутылок и горшков. Тонкостенные контейнеры из полипропилена обычно используются для упаковки пищевых продуктов.
  2. Товары народного потребления: Полипропилен используется в нескольких предметах домашнего обихода и потребительских товарах, включая полупрозрачные детали, предметы домашнего обихода, мебель, бытовую технику, багаж, игрушки и т. Д.
  3. Применение в автомобильной промышленности: Благодаря низкой стоимости, выдающимся механическим свойствам и формуемости полипропилен широко используется в автомобильных деталях.Основные области применения: ящики и поддоны для аккумуляторных батарей, бамперы, облицовки крыльев, внутренняя отделка, приборные панели и дверные обшивки. Другие ключевые особенности автомобильного применения PP включают низкий коэффициент линейного теплового расширения и удельный вес, высокую химическую стойкость и хорошую устойчивость к атмосферным воздействиям, технологичность и баланс удара / жесткости.
  4. »Следите за всем, что происходит на автомобильном рынке

  5. Волокна и ткани: В рыночном сегменте, известном как волокна и ткани, используется большой объем полипропилена.ПП волокно используется во множестве применений, включая рафию / щелевую пленку, ленту, обвязку, объемную непрерывную нить, штапельное волокно, прядение и непрерывную нить. Канат и шпагат из полипропилена очень прочны и устойчивы к влаге, поэтому подходят для морского применения.
  6. Медицинское применение: Полипропилен используется в различных медицинских целях из-за высокой химической и бактериальной устойчивости. Кроме того, медицинский PP демонстрирует хорошую стойкость к стерилизации паром.Одноразовые шприцы — это наиболее распространенное медицинское применение полипропилена. Другие области применения включают медицинские флаконы, диагностические устройства, чашки Петри, флаконы для внутривенного введения, флаконы для образцов, лотки для пищевых продуктов, сковороды, контейнеры для таблеток и т. Д.
  7. »Следите за последними обновлениями в медицинской отрасли

  8. Промышленное применение: Полипропиленовые листы широко используются в промышленном секторе для производства емкостей для кислоты и химикатов, листов, труб, возвратной транспортной упаковки (RTP) и т. Д.благодаря своим свойствам, таким как высокая прочность на разрыв, устойчивость к высоким температурам и коррозионная стойкость.

Полезность полипропиленовых пленок


Пленка
на сегодняшний день является одним из ведущих материалов, используемых для гибкой упаковки, а также для промышленного применения. Две важные формы полипропиленовых пленок включают:

Литая полипропиленовая пленка

Литой полипропилен, широко известный как СРР, широко известен своей универсальностью.

  • Супер стойкость к разрыву и проколам
  • Более высокая прозрачность и лучшая термостойкость при высоких температурах.
  • Превосходный барьер для влаги и атмосферных воздействий
  • Высокая проницаемость для водяного пара

Биаксиально ориентированная полипропиленовая пленка

Биаксиально ориентированная полипропиленовая пленка (БОПП) растягивается как в поперечном, так и в продольном направлениях, обеспечивая ориентацию молекулярных цепей в двух направлениях.

  • Ориентация увеличивает прочность на разрыв и жесткость
  • Хорошая стойкость к проколу и растрескиванию при изгибе в широком диапазоне температур
  • Имеют отличный блеск и высокую прозрачность, могут быть глянцевыми, прозрачными, непрозрачными, матовыми или металлизированными.
  • Эффективный барьер против кислорода и влаги

PP vs.PE — Выбор подходящего полимера

Хотя полиэтилен и полипропилен схожи по физическим свойствам, вот ключевые моменты, которые следует учитывать при выборе полимера, подходящего для ваших нужд.

Полипропилен Полиэтилен
  • Мономер полипропилена пропилен
  • Может быть оптически прозрачным
  • Легче
  • PP обладает высокой стойкостью к растрескиванию, воздействию кислот, органических растворителей и электролитов
  • Обладает высокой температурой плавления и хорошими диэлектрическими свойствами
  • ПП нетоксичен
  • Более жесткий и устойчивый к химическим веществам и органическим растворителям по сравнению с полиэтиленом
  • ПП жестче полиэтилена
  • Мономер полиэтилена — этилен
  • Полиэтилен можно сделать только полупрозрачным, как кувшин для молока
  • Его физические свойства позволяют ему лучше выдерживать низкие температуры, особенно при использовании в качестве знаков
  • Хороший электроизолятор
  • PE обеспечивает хорошее сопротивление трекингу
  • Полиэтилен прочнее полипропилена
»Посмотреть все товарные марки ПП »Посмотреть все товарные марки полиэтилена

Условия переработки полипропилена

Полипропилен можно перерабатывать практически всеми способами.Наиболее типичные методы обработки включают: литье под давлением , экструзию, выдувное формование и универсальную экструзию.

  1. Литье под давлением
    • Температура расплава: 200-300 ° C
    • Температура формы: 10-80 ° C
    • При правильном хранении сушка не требуется
    • Высокая температура формы улучшает блеск и внешний вид детали
    • Усадка пресс-формы составляет от 1,5 до 3%, в зависимости от условий обработки, реологии полимера и толщины готовой детали

  2. Экструзия (трубы, экструзионные и литые пленки, кабели и т. Д.)
    • Температура расплава: 200-300 ° C
    • Степень сжатия: 3: 1
    • Температура цилиндра: 180-205 ° C
    • Предварительная сушка: Нет, 3 часа при 105-110 ° C (221-230 ° F) для доизмельчения
  3. Выдувное формование
  4. Компрессионное формование
  5. Ротационное формование
  6. Литье под давлением с раздувом
  7. Экструзионно-выдувное формование
  8. Литье под давлением с раздувом и вытяжкой
  9. Универсальная экструзия

Вспененный полипропилен (EPP) может быть отформован в специальном процессе.Являясь идеальным материалом для процесса литья под давлением, он в основном используется для серийного и непрерывного производства.

3D-печать из полипропилена

Как прочный, устойчивый к усталости и долговечный полимер, полипропилен идеально подходит для применений с низкой прочностью. Из-за его полукристаллической структуры и сильной деформации полипропилен в настоящее время трудно использовать для процессов 3D-печати .

Сегодня несколько производителей оптимизировали свойства полипропилена или даже создали смеси с улучшенной прочностью, что делает его пригодным для применения в 3D-печати.Следовательно, рекомендуется тщательно обращаться к документации, предоставленной поставщиком, для определения температуры печати, печатной платформы и т. Д., В то время как 3D-печать с полипропиленом … Посмотреть все марки PP, подходящие для 3D-печати

Полипропилен подходит для:

  • Сложные модели
  • Прототипы
  • Небольшая серия компонентов и
  • Функциональные модели


(Источник: FormFutura)

Токсичен ли полипропилен? Как утилизировать ПП?

Все пластмассы имеют «Идентификационный код смолы / Код вторичной переработки пластмасс», основанный на типе используемой смолы. Идентификационный код смолы PP 5 .


ПП на 100% пригоден для вторичной переработки
. Корпуса автомобильных аккумуляторов, сигнальные лампы, аккумуляторные кабели, щетки, скребки для льда и т. Д. — вот несколько примеров, которые могут быть изготовлены из переработанного полипропилена (rPP).

Процесс рециклинга полипропилена в основном включает плавление пластиковых отходов до 250 ° C для удаления загрязнений с последующим удалением остаточных молекул в вакууме и отверждением при температуре около 140 ° C. Этот переработанный полипропилен можно смешивать с первичным полипропиленом в количестве до 50%.Основная проблема при переработке полипропилена связана с его потребляемым количеством — в настоящее время перерабатывается почти 1% бутылок из полипропилена по сравнению с 98% переработкой бутылок из полиэтилена и полиэтилена высокой плотности вместе.

Использование полипропилена считается безопасным, поскольку он не оказывает заметного воздействия с точки зрения охраны труда и техники безопасности с точки зрения химической токсичности.

Коммерчески доступный полипропилен (ПП) марок

Свойства полипропилена и их значения

Имущество Значение
Стабильность размеров
Коэффициент линейного теплового расширения 6-17 x 10 -5 / ° C
Усадка 1-3%
Водопоглощение 24 часа 0.01 — 0,1%
Электрические характеристики
Сопротивление дуги 135 — 180 сек
Диэлектрическая постоянная 2,3
Диэлектрическая прочность 20-28 кВ / мм
Коэффициент рассеяния 3-5 x 10 -4
Удельное объемное сопротивление 16-18 x 10 15 Ом.см
Пожарные характеристики
Огнестойкость (LOI) 17–18%
Воспламеняемость UL94 HB
Механические свойства
Удлинение при разрыве 150-600%
Гибкость (модуль упругости при изгибе) 1.2 — 1,6 ГПа
Твердость по Роквеллу M 1–30
Твердость по Шору D 70–83
Жесткость (модуль упругости при изгибе) 1,2 — 1,6 ГПа
Прочность на разрыв (растяжение) 20-40 МПа
Предел текучести (при растяжении) 35-40 МПа
Вязкость (удар по Изоду с надрезом при комнатной температуре) 20-60 Дж / м
Вязкость при низкой температуре (удар по Изоду с надрезом при низкой температуре) 27-107 Дж / м
Модуль Юнга 1.1 — 1,6 ГПа
Оптические свойства
Глянец 75–90%
дымка 11%
Прозрачность (% пропускания видимого света) 85 — 90%
Физические свойства
Плотность 0,9 — 0,91 г / см 3
Температура стеклования -10 ° С
Радиационная стойкость
Устойчивость к гамма-излучению Плохо
Устойчивость к ультрафиолетовому излучению Ярмарка
Рабочая температура
Температура перехода пластичное / хрупкое от -20 до -10 ° C
HDT @ 0.46 МПа (67 фунтов на кв. Дюйм) 100 — 120 ° С
HDT @ 1,8 МПа (264 фунт / кв. Дюйм) 50-60 ° С
Максимальная температура непрерывной эксплуатации 100 — 130 ° С
Мин. Непрерывная рабочая температура от -20 до -10 ° C
Прочие
Устойчивость к стерилизации (повторная) Плохо
Теплоизоляция (теплопроводность) 0.15 — 0,21 Вт / м. К
Химическая стойкость
Ацетон @ 100%, 20 ° C Удовлетворительно
Гидроксид аммония, 30% при 20 ° C
Гидроксид аммония, разбавленный при 20 ° C Удовлетворительно
Ароматические углеводороды при 20 ° C Неудовлетворительно
Ароматические углеводороды при высоких температурах
Бензол, 100% при 20 ° C Limited
Бутилацетат, 100% при 20 ° C
Бутилацетат, 100% при 60 ° C Неудовлетворительно
Хлорированные растворители при 20 ° C
Хлороформ при 20 ° C Limited
Диоктилфталат, 100% при 20 ° C Удовлетворительно
Диоктилфталат, 100% при 60 ° C Limited
Этанол, 96% при 20 ° C Удовлетворительно
Этиленгликоль (этандиол), 100% при 100 ° C
Этиленгликоль (этандиол), 100% при 20 ° C
Этиленгликоль (этандиол), 100% при 50 ° C
Глицерин, 100% при 20 ° C
Перекись водорода @ 30%, 60 ° C Limited
Керосин при 20 ° C
Метанол, 100% при 20 ° C Удовлетворительно
Метилэтилкетон, 100% при 20 ° C
Минеральное масло при 20 ° C Удовлетворительно
Фенол при 20 ° C
Силиконовое масло при 20 ° C Удовлетворительно
Гидроксид натрия, 40%
Гидроксид натрия, 10% при 20 ° C Удовлетворительно
Гидроксид натрия, 10% при 60 ° C Удовлетворительно
Гипохлорит натрия, 20% при 20 ° C
Сильные кислоты, концентрированные при 20 ° C Удовлетворительно
Толуол при 20 ° C Limited
Толуол при 60 ° C Неудовлетворительно
Ксилол при 20 ° C

Заглушки и заглушки: как сравнивать полиэтилен высокой плотности и полипропилен? | Центр знаний

5
минут | 26 марта 2019 г.

Заглушки и заглушки можно использовать в самых разных областях, но как вы подбираете подходящий материал для своего проекта? Как работает полипропилен (PP) и является ли полиэтилен высокой плотности (HDPE) более эффективным? Чтобы помочь вам определиться, мы опишем характеристики каждого из них.

ПП является термопластичным полимером, который применяется в самых разных областях, включая автомобильные компоненты, упаковку и даже текстиль, из мономера, известного как пропилен.

Между тем, HDPE может быть более жестким, чем PP, из-за его меньшей плотности. Давайте посмотрим на характеристики обоих материалов:

Недвижимость

ПП

ПНД

Предел прочности при растяжении

0.95 — 1,30 Н / мм²

0,20 — 0,40 Н / мм²

Коэффициент теплового расширения

3,0 — 30,0 кДж / м²

без перерыва кДж / м²

Макс.температура непрерывного использования

80˚C / 176˚F

65˚C / 149˚F

Плотность

0.905 г / см3

0,944 — 0,965 г / см3

Химическая стойкость

ПВД

ПНД

Разбавленная кислота

Очень хорошо

Отлично

Разбавленная щелочь

Очень хорошо

Отлично

Масла и смазки

Умеренный (переменный)

Умеренный (переменный)

Алифатические углеводороды

Плохо

Плохо

Ароматические углеводороды

Плохо

Плохо

Галогенированные углеводороды

Плохо

Плохо

Спирты

Очень хорошо

Отлично

В чем разница между HDPE и PP?

Если вам интересно, есть ли какие-либо явные различия между HDPE и PP, вы правы, спросив.Ответ — «да», с множеством различий по плотности, температуре, ультрафиолетовому излучению и химической стойкости.

Плотность — ключевой фактор, который отличает HDPE от PP. Поскольку HDPE имеет более низкую плотность, он может быть более жестким. Однако благодаря более низкой плотности полипропилен можно использовать при формовании деталей с меньшим весом.

Как и HDPE, полипропилен обладает хорошей химической стойкостью. Однако устойчивость к ультрафиолетовому излучению оставляет желать лучшего; если он стабилизирован добавками, его можно улучшить. Устойчивые к воздействию множества растворителей, полиэтилен высокой плотности и полипропилен находят широкое применение.

Зачем использовать HDPE для заглушек и заглушек

Из

HDPE получаются отличные колпачки и заглушки с плотной посадкой. Предлагая гладкую и простую сборку, они могут защитить важные внутренние и внешние профили от повреждений, и существует множество доступных типов. К ним относятся конические, отрывные, гибкие, быстроразъемные колпачки и заглушки. Наряду с HDPE они также могут быть изготовлены из LDPE, PE, PVC, силикона, TPR или EVA.

Зачем использовать полипропилен для крышек и заглушек

Относительно недорогой материал, полипропилен — хороший выбор для крышек и заглушек.Он универсален, не подвержен повреждениям от солнца или непогоды, как другие пластмассы, и может выдерживать высокие температуры.

Кроме того, он не впитывает воду, как другие пластмассы, что делает его идеальным для использования на открытом воздухе. Он тоже вряд ли разобьется, хотя он не такой прочный, как, скажем, полиэтилен. Чтобы ваш проект — и его части — оставались функциональными и безопасными, крышки и заглушки, возможно, должны выдерживать воздействие определенных химикатов.

В частности, в электрических проектах идеально подходит полипропилен.Причина этого в том, что он имеет низкий уровень электропроводности, что означает, что он может бесперебойно работать в электронных продуктах и ​​приложениях.

Как правильно выбрать заглушки и заглушки

Прежде чем выбрать подходящие заглушки и заглушки для вашего конкретного проекта, вам следует учесть несколько вещей. К ним относятся ваша среда, само приложение, материал, производственный процесс и процесс удаления.

В случае вашей среды задайте себе следующие вопросы

  • Нужна ли защита от ультрафиолета?
  • Присутствуют ли едкие вещества?
  • А как насчет атмосферы; есть ли высокий уровень влажности или влажности?
  • Есть ли необходимость проводить или рассеивать электричество?
  • Есть ли соображения в фунтах на квадратный дюйм (PSI)?
  • Должно ли ваше приложение работать в холодных или жарких условиях?

Вы также должны понимать свое приложение и то, что ему требуется для правильной работы.Доступно множество крышек и заглушек, от уплотнительных колец до резьбовых заглушек, каждая из которых предлагает различные функции.

Выбрав подходящий материал для ваших заглушек и заглушек, вы настроите свой проект на дальнейший успех. Учитывайте тепло — и термостойкость выбранного вами материала. Также рекомендуется подумать о среде, в которой будут использоваться ваши заглушки и заглушки.

Производственный процесс также имеет жизненно важное значение — и, учитывая, как можно применять заглушки и заглушки, вы обеспечите более плавный проект.Также критически важен процесс удаления. Например: некоторые заглушки и заглушки могут быть повторно использованы после снятия, что позволяет сэкономить в рамках бюджетных затрат на проект. Между тем, другие заглушки и заглушки будет не так просто снять, иначе вы не сможете их удалить вообще.

Заглушки и заглушки из ПНД

Итак, с чего начать, заглушки и заглушки из ПНД; что лучше всего подходит для вашего проекта? Ниже мы приводим несколько примеров и некоторые подробности того, как их можно использовать в вашем приложении.

Заглушка или крышка типа


Характеристики заглушки или крышки

UNF / Заглушки с метрической резьбой

Для ограничения утечки жидкости на резьбе UNF, колпачок с резьбой UNF или метрической резьбой имеет высоту 452 дюйма (11,5 мм) и снижает вероятность порезов

Пробки с квадратной головкой с резьбой NPT

Заглушка с квадратной головкой и резьбой NPT имеет головку, удобную для захвата, для эффективного снятия и установки.Он также используется для защиты резьбы NPT от влаги и загрязнений.

Заглушки уплотнительного кольца с метрической резьбой

Оснащенная уплотнительным кольцом для защиты метрической резьбы M8 x 1 от утечки, заглушка с желтым резьбовым уплотнительным кольцом может быть установлена ​​или снята с помощью гаечного ключа, отвертки или торца. При необходимости его даже можно удалить вручную.

Пробки клапана цилиндра устройства предотвращения переполнения

Совместимые с пропаном для защиты резьбы клапана во время использования и транспортировки, заглушки клапана цилиндра устройства предотвращения переполнения легко устанавливаются с помощью устройства для крепления плоской ленты.

Резьбовые заглушки UNJ / UNJS

Резьбовая заглушка UNJ / UNJS, которую легко захватывать для эффективного снятия и установки, защищает компоненты от пыли, влаги и повреждений во время производства, хранения или транспортировки.

Стандартные резьбовые заглушки UNF

Резьбовая заглушка с зубчатой ​​рукояткой, стандартные резьбовые заглушки UNF могут использоваться в различных областях и сниматься вручную, шестигранным ключом или отверткой.

Заглушки и заглушки из полипропилена

Ищете заглушки и заглушки из полипропилена? Взгляните на некоторые из доступных вам опций и их характеристики:

Тип заглушки или крышки

Характеристики заглушки или крышки

Заглушки для абсорбции жидкости

Обеспечивает привлекательную отделку с установочной высотой 15.0 мм, заглушки для абсорбции жидкости могут предотвратить утечку излишков жидкости. Также возможна простая установка благодаря уникальному дизайну, а вилки безопаснее, чище и проще в использовании, чем их обычные аналоги.

Стандартные резьбовые заглушки UNF (уплотнительное кольцо опционально)

Наслаждайтесь эффективным применением и снятием стандартной резьбовой заглушки UNF (уплотнительное кольцо опционально). Их можно накладывать или снимать вручную, с помощью шестигранного ключа или отвертки, а дополнительное уплотнительное кольцо обеспечивает водонепроницаемость этого компонента.

Резьбовые заглушки NS и NF класса 1-2-3 (уплотнительное кольцо опционально)

С дополнительным уплотнительным кольцом, которое придает этому компоненту водонепроницаемое уплотнение, резьбовые заглушки NS & NF класса 1-2-3 имеют удобную головку для эффективного применения и снятия и подходят для NS и NF Стандартные резьбы класса 1-2-3.

Защитные кожухи фланцев

Защищая трубы размером DN10 дюймов с помощью фланца с номинальным давлением 10, 16, 25, 40, эти протекторы фланцев обеспечивают простую и экономичную защиту фланцев.Компонент с наружным диаметром и наружным диаметром, изготовленным из гофрированного полипропиленового материала, подходит для различных размеров по DIN и номинального давления.

HDPE против полипропилена: вкратце

Готовы выбрать заглушки и заглушки, которые вам нравятся? Есть над чем подумать, и ключевыми факторами являются безопасность, эффективность и стоимость. Легкий и гибкий, HDPE обеспечивает быструю установку, отличную прочность и длительный срок службы.

Продукты из полиэтилена высокой плотности также не передают никаких химикатов, что делает их безопасными для использования во всем, от упаковки пищевых продуктов до автомобильных компонентов.

Полипропилен, тем временем, может выдерживать более высокие температуры, что делает его идеальным для более жарких сред. Обладая высокой прочностью на изгиб, благодаря своей полукристаллической природе, это относительно недорогой материал, который может использоваться в различных областях.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *