Как выбрать термопару: Правильный выбор: термометр сопротивления или термопара

Содержание

Правильный выбор: термометр сопротивления или термопара

Измерение температуры является одним из основных требований практически при любых условиях технологических процессов перерабатывающей промышленности. В большинстве устройств используются датчики, основанные на двух технологиях. Выбор между этими двумя подходами определяется конкретными требованиями к технологическому процессу и его условиями.

Колебания температуры могут оказывать значительное влияние на прибыльность, безопасность и качество. Это справедливо в отношении разных отраслей промышленности, таких как нефтегазовая, энергетическая, нефтеперерабатывающая, нефтехимическая, фармацевтическая и др. Точность непрерывного контроля температуры зависит от нескольких факторов, в том числе от правильного выбора датчика для конкретных задач и технологических процессов.

Наиболее распространенными устройствами измерения температуры являются термометры сопротивления (ТС) и термопары (ТП). Эти устройства основаны на двух разных технологиях, каждая из которых обладает своими преимуществами, в соответствии с которыми и делается выбор в пользу той или иной технологии.

В конструкции ТС используется тот факт, что электрическое сопротивление металла возрастает с повышением температуры — явление, известное как тепловое сопротивление.

В отличие от ТС, ТП представляет собой замкнутый термоэлектрический датчик температуры, состоящий из двух отрезков проволоки из разнородных металлов, соединенных между собой на обоих концах. При этом если температура на одном конце этих отрезков проволоки (спае) отличается от таковой на другом, в ней возникает электрический ток. Такое явление известно под названием эффекта Зеебека. Возникающее напряжение зависит от конкретных используемых металлов, а также от текущей разницы температур. Сопоставление различных значений напряжения, возникающих при использовании разных металлов, представляет собой основу измерения температуры термопарой.

 

Сравнение технологий

Не существует однозначного ответа на вопрос, какой тип датчика является более эффективным в конкретной ситуации. При эксплуатации каждого из них возникают негативные побочные эффекты, которые необходимо принимать во внимание при выборе термодатчика с должной тщательностью.

Термометры сопротивления изготавливаются из резистивного материала с прикрепленными выводами и, как правило, помещаются в защитную оболочку. В качестве резистивного материала может выступать платина, медь или никель. Наибольшее распространение получила платина — благодаря высокой точности и стабильности результатов измерений и их исключительной линейности в широком диапазоне. Не существует однозначного ответа на вопрос, какой тип датчика является более эффективным в конкретной ситуации. При эксплуатации каждого из них возникают негативные побочные эффекты, которые необходимо принимать во внимание при выборе термодатчика с должной тщательностью.

ТС отличаются высоким изменением сопротивления в расчете на один градус изменения температуры. Наиболее распространенными типами датчиков ТС являются проволочный и тонкопленочный. ТС из витой проволоки изготавливаются либо путем навивания резистивной проволоки на керамический сердечник, либо путем помещения спирально витой проволоки в керамическую оболочку, отсюда и название «проволочные ТС». При изготовлении тонкопленочного ТС тонкое резистивное покрытие осаждается на плоскую керамическую подложку (обычно прямоугольной формы). Как правило, тонкопленочные ТС являются менее дорогими по сравнению с проволочными, поскольку для их изготовления требуется меньшее количество различных материалов.

ТП отличаются более высокой скоростью реакции и более широкими допустимыми диапазонами рабочей температуры, чем ТС, однако имеют более низкую точность.

Обычно показания термометров сопротивления являются значительно более стабильными, и ТС обладают более высокой чувствительностью по сравнению с ТП. Долгосрочное смещение показаний ТС является хорошо предсказуемым, в то время как ТП часто ведут себя неустойчиво в данном отношении. За счет этого обеспечивается такое преимущество ТС, как менее частая потребность в калибровке и, следовательно, пониженная стоимость их эксплуатации. Наконец, ТС обеспечивают исключительную линейность показаний. В сочетании с линеаризацией, произведенной в качественном передатчике, становится достижимой точность около 0,1 °C — значительно более высокая по сравнению с максимально возможной при использовании ТП.

Рис. 1. Конструкции термометра сопротивления и термопары

В отличие от ТС, ТП представляет собой замкнутый термоэлектрический датчик температуры, состоящий из двух отрезков проволоки из разнородных металлов, соединенных между собой на обоих концах. При этом различные сочетания металлов классифицируются как разные типы датчиков и, соответственно, обладают отличающимися характеристиками. Наиболее часто используемыми типами ТП являются тип J (железо и константан) и тип K (хромель и алюмель). ТП отличаются более высокой скоростью реакции и более широкими допустимыми диапазонами рабочей температуры, чем ТС, однако имеют более низкую точность. Конструкция кабелей ТП отличается повышенной прочностью, за счет чего они могут выдерживать высокие уровни вибрации (рис. 1). В таблице приводится сравнение основных характеристик датчиков.

Таблица. Сравнение характеристик рассматриваемых устройств для измерения температуры

Свойство

Термометр сопротивления

Термопара

Точность
Взаимозаменяемость

Класс A: ±[0,15+0,002] °C

Класс B: ±[0,30+0,005] °C

Согласно стандарту IEC 60751

Типичная точность составляет ±1,1 °C или ±0,4 % от измеренного значения температуры (большее из двух значений). Зависит от типа ТП и диапазона измерения. Снижается при использовании удлинительного провода.

Стабильность работы

±0,05 °C по истечении 1000 ч работы при температуре <300 °C. Отклонения повышаются с увеличением температуры. ТС проволочной конструкции имеют более высокую стабильность, чем тонкопленочные.

Сильно зависит от типа термопары, качества кабеля и рабочей температуры. Типичные отклонения составляют от ±2 до 10 °C на 1000 ч работы.

Скорость реакции при установке
в термокармане с погружением
в жидкость

Скорость реакции 6-мм датчика примерно равна скорости реакции термопары.

Скорость реакции 6-мм датчика примерно равна скорости реакции ТС. Немного выше
для 3-мм датчика.

Калибровка

С легкостью подвергается повторной калибровке, что обеспечивает длительный срок службы. Наивысшая точность достигается при специальной взаимной подгонке датчика и передатчика.

Ограничивается сравнением со «стандартной термопарой» на месте измерений.

Возможный диапазон измерения температуры, °C

–200…+850

–270…+2300

Срок службы

Многие годы. Сокращается при использовании под воздействием высоких температур.

Снижение чувствительности приводит
к необходимости частой замены ТП.
Срок службы заметно сокращается
при высоких температурах.
Более высокие издержки за срок службы.

Факторы, которые необходимо учитывать при установке

Используется стандартный медный провод. Достаточно высокая невосприимчивость
к ЭМП и радиопомехам.

Требуется использование дорогого удлинительного кабеля, подходящего
для конкретной ТП. Сигналы малой мощности в значительной степени подвержены ЭМП и радиопомехам.

Устойчивость к вибрации

Очень хорошая при тонкопленочной конструкции.

Очень хорошая при большом диаметре кабелей.

Издержки за срок службы

Более низкие.

Более высокие.

Стоимость приобретения

Тонкопленочная конструкция: примерно одинакова по сравнению с ТП. Проволочная конструкция дороже.

Наиболее дорогими являются термопары
типов R и S.

Эффективность использования
системы с передатчиком

Всегда выше при температурах до +650 °C.

Ниже на один порядок.

 

Выбор наиболее подходящего типа датчика

При выборе типа датчика, наиболее подходящего для конкретного технологического процесса и поставленной задачи, следует предварительно поставить несколько основных вопросов. Ответы на них предоставят ценную информацию.

Каков диапазон измеряемых температур?

При выборе датчика определение правильного температурного диапазона является очень важным. Если температура будет превышать +850 °C, необходимо использовать ТП. При температурах ниже +850 °C можно выбрать как ТС, так и ТП. Кроме того, не стоит забывать, что проволочные ТС обладают более широким диапазоном измерения температур, чем тонкопленочные (рис. 2).

Рис. 2. Диапазоны измерения температур различными типами термодатчиков

Какова требуемая точность измерения датчика?

Определение требуемого уровня точности является еще одним важным фактором при выборе датчика. Как правило, ТС имеют большую точность по сравнению с ТП, а проволочные ТС — по сравнению с тонкопленочными. Если предположить, что на выбор одной из двух технологий не оказывают влияние другие факторы, это правило помогает сделать выбор наиболее точного датчика.

Вызывает ли опасения вибрация, возникающая в ходе процесса обработки?

Уровень вибрации при технологическом процессе также необходимо учитывать при выборе датчика. ТП обладают наиболее высокой вибростойкостью из всех существующих технологий измерения температуры.

Существуют различные типы термопар, определяющиеся сочетанием используемой в них проволоки. ТП большинства типов могут использоваться для измерения более высоких температур, чем ТС.

Если достоверно известно, что в ходе процесса возникает сильная вибрация, использование ТП позволит достичь максимальной надежности измерения температуры. Тонкопленочные ТС также устойчивы к воздействию вибрации; тем не менее они не обладают достаточной прочностью. Использование проволочных ТС в условиях повышенной вибрации исключено.

 

Правильный выбор — точные результаты

Ключевым моментом для успешного применения датчиков температуры является постановка основополагающих вопросов и подбор датчика, наиболее пригодного для поставленных задач и конкретных технологических процессов с учетом всех имеющихся данных. В качестве примера можно привести принятие решения об использовании датчика температуры на участке трубопровода с постоянно изменяющимися условиями при непрерывной вибрации и изменении температуры в диапазоне –200…+300 °C. Целью такого решения является достижение максимально возможной точности, несмотря на описанные непростые условия. Для указанного диапазона температур пригодны термодатчики обоих типов. Хорошо известно, что ТП обладают высокой стойкостью к вибрации, поэтому на первый взгляд может показаться, что ТП являются хорошим вариантом решения поставленной задачи. Тем не менее в данном конкретном случае требуется выполнение измерений с максимально возможной точностью. Правильным выбором для данной задачи будет использование тонкопленочных ТС. Известно, что тонкопленочные ТС отличаются более высокой стойкостью к вибрации по сравнению с проволочными и обеспечивают более высокую точность измерений по сравнению с термопарами.

Приведем еще один пример: измерение температуры в реакторе в диапазоне +550…+900 °C при низком уровне вибрации. Поставлена цель измерения температуры с точностью ±5 °C. ТС дают стабильно точные показания, особенно в условиях невысокой вибрации. Однако не стоит забывать о диапазоне температур. Как правило, ТС не следует использовать при температурах свыше +850 °C. Поскольку температура данного процесса обработки может подниматься до +900 °C, следует остановить свой выбор на ТП. Вероятность получения неверных показаний датчиков или их отказа повышается при их использовании в неподходящих диапазонах температур.

Facebook

Twitter

Вконтакте

Google+

Как правильно выбрать термопару | Интмакс

Типы термопар

В мире определено несколько типов термопар, различаются они по составу материала. Наиболее распространены и известны термопары типа: J, Т, L, K, R, S, A-1, A-2, A-3.

Термопары имеют большой рабочих температур. Но следует помнить о том, что чем выше температура термопары, тем меньше ее чувствительность. Правильно подобрать датчик термопары на выбор клиенту предлагается около 50 моделей и разновидностей, которые употребляют в разных средах и для различного типа оборудования. С помощью небольшой термопары можно сделать замер температуры на небольшом участке или объекте.

Выбор термопары

При максимальной температуре замера в +200оС – можно применять датчики из медного или платинового термосопротивления. Для замера небольшого участка с минимальной теплоемкостью можно заказать термопару медь-констант, которая интересна тем, что легко монтируется над раствором медного купороса, а сама при этом имеет высокую степень чувствительности и небольшую стоимость.

При контроле экстремально высоких температур в +800оС, специалисты рекомендуют приобретать термопару типа L (хромель-копель). Данный тип датчиков работает в широком диапазоне температур от -200оС и до +800оС. Что интересно, что термопара типа L часто используется в странах СНГ (России, Украине, Беларусь, Казахстане, Азербайджане и др), но они практически не используются на территории Европы.

Один из самых популярных типов термопар – К (хромель-алюмель), потому как рабочий диапазон замера температур определен от -200оС и до +1300оС. Термопары типа К дают равномерный линейный результат измерения. Но наиболее плодотворная работа датчика проходит в диапазоне до +800оС, потому как уже при температуре в +1000оС можно наблюдать окисление провода, что дает погрешность в замерах. Можно увеличить диаметр провода термопары до 3 мм и тогда Вы сможете увеличить срок службы датчика в несколько раз.

В замере температуры в +1700оС используются термопары, которые изготовлены из платины и других драгоценных металлов. Но главным недостатком таких устройств является высокая цена, хотя датчик имеет крайне низкую чувствительность и высокую стабильность параметров.

Датчики, которые замеряют самую высокую температуру, называются вольфрам-рениевые, но они имеют значительный недостаток – термопара не работает в окисленной среде и оболочка датчика наполняется инертным газом. При этом необходимо использовать их только в специальной оболочке с постоянным наполнением инертным газом.

Термопары в составе цифровых датчиков температуры

Преобразователи термоэлектрические (термопары, ТП) типа ТХА и ТХК предназначены для измерения и контроля температуры жидких, твердых, газообразных и сыпучих сред в различных отраслях промышленности. Термопары применяются в составе цифровых датчиков температуры ZET 7020 TermoTC-485 и ZET 7120 TermoTC-CAN.

Цифровой датчик температуры ZET 7020

Цифровой датчик температуры ZET 7120

Термопары преобразуют воздействующую на них температуру в электрический сигнал, который еще требуется измерить для определения значения температуры. Термопара в составе с измерительным модулем является цифровым датчиком температуры, поскольку пользователь получает готовые данные, не требующие дополнительной обработки. Результаты измерений передаются в цифровом виде по интерфейсу RS-485 (с использованием модуля ZET 7020 TermoTC-485) или CAN (с использованием модуля ZET 7120 TermoTC-CAN) и могут использоваться для автоматического регулирования температуры, записываться регистратором температуры или отображаться на индикаторе — цифровом или виртуальном (на ПК).

Как купить цифровой датчик температуры?

1. Выбрать подходящую термопару, исходя из технических характеристик, представленных ниже, а также на страницах описания термопар.

2. Выбрать измерительный модуль ZET 7020 с интерфейсом RS-485 или ZET 7120 с интерфейсом CAN.

3. Добавить в корзину преобразователь интерфейса 7070 для измерительной линии RS-485, или выбрать подходящий модуль для подключения измерительной сети к компьютеру по USB, Ethernet, радиоканалу, GSM.

4. Если требуется работа в автономном режиме, добавить в корзину опцию «Автономные регистратор» (опция для ZET 7174 и ZET 7176).

5. Для отображения результатов измерений на индикаторе выбрать ZET 7176.

6. Указать в комментарии к заказу требуемую длину кабелей.

Типовые схемы измерительных сетей

Дополнительная информация по выбору устройств ZETSENSOR и построению измерительных систем представлена в разделе Помощь в настройке.

Технические характеристики преобразователей термоэлектрических типа ТХА, ТХК

По устойчивости к воздействию температуры и влажности окружающей среды термопары соответствуют группе исполнения С2 по ГОСТ Р 52931 — −40…+70 ºС. По устойчивости к механическим воздействиям термометры соответствуют группе N3 по ГОСТ Р 52931. Климатическое исполнение — У3, ТВ. Возможно изготовление ТП в климатическом исполнении УХЛ2 для работы при температурах от −60 до +70 ºС. Термопары, имеющие тропическое исполнение имеют в обозначении дополнительно ТВ (например, ТХА-1-3 ТВ).

Диапазон измеряемых температур для выпускаемых термопар соответствует ГОСТ 6616-94 и составляет:

— для ТП типа ТХА — от минус 40 до 1200 °С;

— для ТП типа ТХК — от минус 40 до 600 °С.

Номинальные статические характеристики (НСХ), их обозначения, материал термоэлектродов согласно ГОСТ 6616-94 приведены ниже:

Тип термопарыНСХМатериал термоэлектродов
положительныйотрицательный
ТХАXA(K)хромельалюмель
ТХКXK(L)хромелькопель

Положительный термоэлектрод маркируется красным цветом. Термопары выпускаются по классу допуска 1 или 2 согласно ГОСТ 6616-94.

Ниже приведены значения допусков по температуре для соответствующих классов термопар типа ТХА и ТХК (ГОСТ 6616-94):

Тип термопарыКлассДиапазон температур, °СПредел допускаемого отклонения от НСХ, °С
ТХА1от −40 до 3751,5
свыше 375 до 10000,004·|t|
2от −40 до 3332,5
свыше 333 до 12000,0075•|t|
ТХК2от −40 до 3002,5
свыше 300 до 8000,0075•|t|

где |t| — абсолютное значение температуры, °С

Преобразователь термоэлектрический (термопара) ТХК, ТХА конструктивно представляет собой два разнородных термоэлектрода (хромель-алюмель для ТХА, хромель-копель для ТХК), изолированных термостойкой изоляцией и сваренных с одного конца в рабочий спай. Защитная арматура выполняется из жаростойких и коррозионностойких сталей или из керамики (для измерения температуры в особо агрессивных высокотемпературных средах). Свободные концы термоэлектродов присоединяются к монтажной головке или выводятся при помощи кабеля. Рабочий спай может быть изолирован (И) или неизолирован (Н) от защитного корпуса. Изготавливаются преобразователи, имеющие два рабочих спая — две термопары одного типа, размещенные в одном корпусе (при обозначении указывается количество спаев −2). Головка преобразователей из прессматериала АГ-4В применяется в неагрессивной среде при окружающей температуре до 120°С; из полиамида — до 80°С. Максимальный диаметр выводного кабеля 10 мм. Каждая жила (провод) кабеля крепится на винт гайкой М4×0,7. Головка металлическая из сплава алюминия АК-12 (АЛ-2) (силумин) применяется в неагрессивной среде при окружающей температуре до 300°С. Максимальный диаметр выводного кабеля 12 мм. Каждая жила (провод) кабеля диаметром до 1,2 мм крепится на винт гайкой М4×0,7.

Технические характеристики преобразователей (термопар) платиновых типа ТТПП, ТТПР

Обозначение НСХ

Тип термопарыОбозначение НСХ
ТТПП — термопара ПП (платинородий 10 — платина)S
ТТПП — термопара ПП (платинородий 13 — платина)R
ТТПР — термопара ПР (платинородий 30 — платинородий 6)B

Допускаемые отклонения от НСХ

Обозначение НСХКласс допускаРабочий диапазон температур, °СПределы допускаемых отклонений от НСХ, °С
ПП (S)10…1100± 1,0
ПП ®21100…1300± 1,0 +0,003(t-1100)
0…600± 1,5
600…13000,0025•t
ПР (В)2600…1700± 0,0025•t
3600…800± 4,0
800…1700± 0,0050•t

Диаметр термоэлектродов

Тип термопарыДиаметр термоэлектродов, мм
ТТПП0,4 (0,5) для ПР-10 (+) и 0,5 для ПлТ (-)

0,4 (0,5) для ПР-13 (+) и 0,5 для ПлТ (-)

ТТПР0,4 (0,5) для ПР-30 (+) и 0,5 ПР-6 (-)

Термоэлектрический преобразователь: термопара и термометр сопротивления (датчик температуры Pt100 и Pt1000)

На протяжении многих лет компания WIKA является одним из лидирующих производителей высококачественных термоэлектрических преобразователей. Нашим главным отличием является огромный опыт и использование новых технологий для производства датчика температуры Pt100, Pt1000.

Что такое термоэлектрический преобразователь?

Термоэлектрический преобразователь – это узел, где есть или один датчик температуры Pt100, Pt1000, или более; со специальной защитой, которая может включать, например, соединительную головку, удлинительную шейку, защитную гильзу. Чувствительный элемент, встроенный в датчик температуры Pt100 или Pt1000, осуществляет фактическое измерение температуры и преобразовывает измеренную температуру в электрический сигнал.

Термоэлектрический преобразователь WIKA можно разделить по принципам измерения на следующие типы:

Термоэлектрический преобразователь — термопара

Термоэлектрический преобразователь типа термопара WIKA подходит для измерения высоких температур до +1 600 °C. Маленький диаметр зонда термопар обеспечивает быстрое время отклика, такое же как и для термометров сопротивления.

Данный термоэлектрический преобразователь имеет два провода из двух различных материалов, которые соединены в единую конструкцию. Точка соединения (горячий спай) представляет собой фактическую точку измерения температуры, а концы проводов называются холодным спаем. При изменении температуры на горячем спае из-за различной электронной плотности материалов и разницы температуры между горячим и холодным спаями образуется напряжение. Оно пропорционально температуре в точке измерения температуры (эффект Зеебека).

Термоэлектрический преобразователь — термометр сопротивления с датчиком температуры Pt100 и Pt1000

Термоэлектрический преобразователь типа термометр сопротивления преимущественно используется для измерения низкой и средней температуры в диапазоне от -200 … +600 °C. В промышленности главным образом применяются термометры с датчиком температуры Pt100 или Pt1000. Если чувствительный элемент датчика температуры Pt100 или Pt1000 обнаруживает повышение температуры, то повышается и его сопротивление (положительный температурный коэффициент).Сопротивление термометра с датчиком температуры Pt100 при 0 °C составляет 100 Ом, а типа Pt1000-1000 Ом.

Термоэлектрический преобразователь типа термометр сопротивления может иметь два типа сенсоров: тонкопленочный и проволочный. Преимуществами тонкопленочного сенсора являются его маленький размер и высокая виброустойчивость при надлежащей конструкции. Тонкопленочные сенсоры имеют стандартное исполнение, при условии, если они подходят для нужного диапазона температуры (диапазоны измерений для датчиков температуры с классом точности B: тонкопленочные сенсоры -50 … +500 °C, проволочные сенсоры -200 … +600°C).

Свяжитесь с нами

Вам нужна дополнительная информация? Напишите нам:

Термопары и термосопротивления — Техноавтоматика

В группе электрических термометров сортамента компании «Техноавтоматика» представлены серии приборов, использование которых может удовлетворить любые нужды промышленных циклов. Нормирующие преобразователи — для устранения помех и повышения точности поступающих данных с датчиков. Электрические термометры сопротивления – для вычисления параметров нагрева в агрессивных и опасных для человека средах. Высокотемпературные термопары, изготовленные из высокоустойчивых материалов – для снятия показаний в местах с критическими параметрами.

Требования, предъявляемые к электрическим термометрам сопротивления

Активное использование этой группы контрольно-измерительной аппаратуры в промышленных целях обусловлено высокой устойчивостью устройств к критическим значениям температур. Пределы измерений термометров находятся в диапазоне от 250 до 750 градусов. Принцип работы основывается на изменении физических свойств веществ (электрического сопротивления) при колебаниях температуры. Почти все чистые металлы уже при амплитуде в 1 градус меняют сопротивление на несколько десятых процента.

Серия продуктов ПК «Тесей»

Электрические термометры сопротивления отечественного производителя измеряют температуру в точках контроля жидких и газообразных сред. Использование устройств для детектирования агрессивных сред допускается если не произойдет разрушения материала защитной гильзы. Пределы измерений зависят от конкретной модификации изделий. Например, для работы при нагреве среды 850 градусов вам потребуется подобрать прибор с маркировкой PT 100, который доступен клиентам по специальному заказу. Диаметр линейки устройств составляет всего 6-8 мм. Максимальный размер сечения (модель ТСМТ) составляет 10 мм, что позволяет эксплуатацию термометра при номинальном давлении 6,3 Мпа. Вся группа изделий в обязательном порядке должна отправляться на поверку. Для устройств с пределом измерения 160 градусов меж поверочный интервал составляет 4 года. Более стойкие термометры следует проверять на точность измерений каждые 2 года.

Особые условия производства — термопары

Для организации контроля рабочих параметров сверхсильного нагрева на предприятиях металлургической и химической промышленности используют термоэлектрические преобразователи платиновые. Чувствительным элементом в устройствах является платиновая нить, которая меняет свои свойства параллельно с процессом нагрева. Только платина выдерживает температуру, при которой остальные металлы плавятся. Предел измерений для устройства ТППТ составляет 1300 градусов. Для прибора ТПРТ 1600 градусов.

На каких условиях можно купить электрические термометры сопротивления

Компания «Техноавтоматика» располагает достаточным опытом выполнения технических заданий клиента, в том числе отработкой заказов по индивидуальным проектам. Производственные мощности справятся с изготовлением и доставкой любых партий. Чтобы купить выбранные вами изделия, на момент оформления у вас должен быть заполнен заявочный лист с указанием явных параметров термометров. При наличии затруднений технический отдел всегда поможет в их решении.

Датчики температуры на базе PT100/PT1000, типов K и J и термопары


GRO 200

Датчик для измерения температуры трубных поверхностей

Подключение к процессу / Габариты или монтажная длина, мм: — / 14,8x20x12
Тип чувствительного элемента / Предел измерения, °C: Термосопротивление Pt100 или Pt1000, Термоэлемент типа K (NiCr-Ni)/-50…+200
Электрическое подключение: Кабель длиной 2 м с силиконовым покрытием и оголенными концами
Материал корпуса / Среда измерения: Алюминий / Поверхность труб
Класс защиты: IP54

Документация на сайте производителя

  на немецком >>  


7122

Датчик для измерения температуры трубных поверхностей

Подключение к процессу / Габариты или монтажная длина, мм: Защелкивающийся хомут/ Ø 16…130
Тип чувствительного элемента / Предел измерения, °C: Термосопротивление Pt100/до +250
Электрическое подключение: Кабель длиной 2 м с силиконовым покрытием в проволочной оплетке
Материал корпуса / Среда измерения: Нержавеющая сталь / Поверхность труб

Документация на сайте производителя

на английском >>      на немецком >>  


7131

Датчик температуры (плоской) поверхности

Подключение к процессу / Габариты или монтажная длина, мм: Двумя винтами M4x20 / 22x30x10
Тип чувствительного элемента / Предел измерения, °C: Термосопротивление Pt100/до +400
Электрическое подключение: 2…4-жильный кабель со стекловолоконной изоляцией в проволочной оплетке
Материал корпуса / Среда измерения: Никелированная латунь / Поверхность

Документация на сайте производителя

на английском >>      на немецком >> 


 

GTT

Термоэлемент в оболочке из хром-никелевого сплава с изоляцией из прессованной окиси магния

Подключение к процессу / Габариты или монтажная длина, мм: — / 150, 250, 500, 1000, 1500
Тип чувствительного элемента / Предел измерения, °C: Термоэлемент типа K (NiCr-Ni)/-200…+1150
Электрическое подключение: Плоский миниатюрный штекер
Материал корпуса / Среда измерения: Сплав INCONEL ® 600 / Воздух, газы и жидкости

Документация на сайте производителя

 на немецком >>  


GTF 101 P

Датчик температуры в трубке из нержавеющей стали с кабельной гильзой

Подключение к процессу / Габариты или монтажная длина, мм: — / 50, 100, 150, 250, 500, 1000, 1500
Тип чувствительного элемента / Предел измерения, °C: Термосопротивление Pt100 или Pt100/-50…+400, -200…+400, -200…+600, -50…+850
Электрическое подключение: Кабель длиной 1 м с оголенными концами
Материал корпуса / Среда измерения: Нержавеющая сталь /Воздух, газы и жидкости (в том числе агрессивные)

Документация на сайте производителя

на английском >>      на немецком >>  


GTF 101 K

Датчик температуры в трубке из нержавеющей стали с кабельной гильзой

Подключение к процессу / Габариты или монтажная длина, мм: — /150, 250, 500, 1000, 1500
Тип чувствительного элемента / Предел измерения, °C: Термоэлемент типа K (NiCr-Ni) / -200…+1150
Электрическое подключение: Кабель длиной 1 м с оголенными концами
Материал корпуса / Среда измерения: Нержавеющая сталь /Воздух, газы и жидкости (в том числе агрессивные)

Документация на сайте производителя

на английском >>      на немецком >>  


7132

Датчик температуры  в защитной перфорированной трубке

Подключение к процессу / Габариты или монтажная длина, мм: — /50, 100
Тип чувствительного элемента / Предел измерения, °C: Термосопротивление Pt100/до +400
Электрическое подключение: 2-жильный кабель со стекловолоконной изоляцией в проволочной оплетке
Материал корпуса / Среда измерения: Нержавеющая сталь / —

Документация на сайте производителя

на английском >>      на немецком >>  


7024 / 7124

Датчик температуры в защитном кожухе

Подключение к процессу / Габариты или монтажная длина, мм: — /30, 40, 60
Тип чувствительного элемента / Предел измерения, °C: Термосопротивление Pt100, Термоэлементы типа K (NiCr-Ni) или J (FeCu-Ni) / до +400
Электрическое подключение: 2-жильный кабель со стекловолоконной изоляцией в проволочной оплетке
Материал корпуса / Среда измерения: Нержавеющая сталь / —

Документация на сайте производителя

на английском >>      на немецком >>  


7012 / 7112

Датчик температуры со спиральной резьбой в защитной трубке

Подключение к процессу / Габариты или монтажная длина, мм: Байонетная накидная гайка /180, 250
Тип чувствительного элемента / Предел измерения, °C: Термосопротивление Pt100, Термоэлементы типа K (NiCr-Ni) или J (FeCu-Ni)/ до +400
Электрическое подключение: 2-жильный кабель со стекловолоконной изоляцией в проволочной оплетке
Материал корпуса / Среда измерения: Нержавеющая сталь / —

Документация на сайте производителя

на английском >>      на немецком >>  


GES 21

Датчик — щуп температуры

Подключение к процессу / Габариты или монтажная длина, мм: — /100
Тип чувствительного элемента / Предел измерения, °C: Термосопротивление Pt100 или Pt1000, Термоэлемент типа K (NiCr-Ni)/ -200…+250
Электрическое подключение: Кабель длиной 1 м с оголенными концами
Материал корпуса / Среда измерения: Нержавеющая сталь / Мягкие пластичные среды

Документация на сайте производителя

на английском >>      на немецком >>  

GTF 102

Встраиваемый датчик температуры в защитной трубке

Подключение к процессу / Габариты или монтажная длина, мм: Внешняя резьба G 1/4…3/4», M5…M14 /100, 150, 250, 500, 1000, 1500
Тип чувствительного элемента / Предел измерения, °C: Термосопротивление Pt100 или Pt1000 / -50…+400; Термоэлемент типа K (NiCr-Ni)/ -200…+1000
Электрическое подключение: Кабель длиной 1 м с оголенными концами
Материал корпуса / Среда измерения: Нержавеющая сталь /Воздух, газы и жидкости (в том числе агрессивные)

Документация на сайте производителя

на английском >>      на немецком >>  


8100 A / 8100 C

Встраиваемый датчик температуры в цилиндрической защитной трубке

Подключение к процессу / Габариты или монтажная длина, мм: Внешняя резьба G 1/2…1» / 40, 100, 160, 250, 400, 600
Тип чувствительного элемента / Предел измерения, °C: Термосопротивление Pt100 или Pt1000 / до +400
Электрическое подключение: Кабельный ввод
Материал корпуса / Среда измерения: Нержавеющая сталь / —
Класс защиты: IP65

Документация на сайте производителя

на английском >>      на немецком >>  


8101 A

Встраиваемый датчик температуры в цилиндрической защитной трубке

Подключение к процессу / Габариты или монтажная длина, мм: Внешняя резьба G 1/2…1» / 40, 100, 160, 250, 400, 600
Тип чувствительного элемента / Предел измерения, °C: Термосопротивление Pt100 / до +250
Электрическое подключение: Кабельный ввод
Материал корпуса / Среда измерения: Нержавеющая сталь / —
Класс защиты: IP65

Документация на сайте производителя

на английском >>      на немецком >>  


8105

Канальный датчик температуры в цилиндрической защитной трубке

Подключение к процессу / Габариты или монтажная длина, мм: Крепление на монтажном фланце /140, 300
Тип чувствительного элемента / Предел измерения, °C: Термосопротивление Pt100 / до +250
Электрическое подключение: Кабельный ввод
Материал корпуса / Среда измерения: Нержавеющая сталь / —
Класс защиты: IP65

Документация на сайте производителя

на английском >>      на немецком >>  


GTF 101-Ex

Взрывозащищенный датчик температуры без резьбы (виды защиты «i» — искробезопасный и «e»- повышенной безопасности)

Подключение к процессу / Габариты или монтажная длина, мм: — / Произвольная, кратная 100
Тип чувствительного элемента / Предел измерения, °C: Термосопротивления Pt100 или экранированное Pt1000 / -200…+600; Термоэлементы типа K (NiCr-Ni) или экранированный N(NiCrSi-NiSi)/ -200…+900
Электрическое подключение: Кабель длиной 1 м с силиконовым покрытием
Материал корпуса / Среда измерения: Нержавеющая сталь / —

Документация на сайте производителя

на английском >>      на немецком >>  


GTF 102-Ex

Взрывозащищенный датчик температуры с резьбой (виды защиты «i» — искробезопасный и «e»- повышенной безопасности)

Подключение к процессу / Габариты или монтажная длина, мм: Внешняя резьба G 1/8…3/4», M8x1, M10x1, M14x1 / Произвольная, кратная 100
Тип чувствительного элемента / Предел измерения, °C: Термосопротивления Pt100 или экранированное Pt1000 / -200…+600; Термоэлементы типа K (NiCr-Ni) или экранированный N(NiCrSi-NiSi)/ -200…+900
Электрическое подключение: Кабель длиной 1 м с силиконовым покрытием
Материал корпуса / Среда измерения: Нержавеющая сталь / —

Документация на сайте производителя

на английском >>      на немецком >>  


GTF 103-Ex

Взрывозащищенный датчик температуры с резьбой и головкой (виды защиты «i» — искробезопасный и «e»- повышенной безопасности)

Подключение к процессу / Габариты или монтажная длина, мм: Внешняя резьба G 1/8…3/4», M8x1, M10x1, M14x1 /Произвольная, кратная 100
Тип чувствительного элемента / Предел измерения, °C: Термосопротивления Pt100 или экранированное Pt1000 / -200…+600; Термоэлементы типа K (NiCr-Ni) или экранированный N(NiCrSi-NiSi)/ -200…+900
Электрическое подключение: Кабель длиной 1 м с силиконовым покрытием
Материал корпуса / Среда измерения: Нержавеющая сталь / —

Документация на сайте производителя

на английском >>      на немецком >>  


TC293(Ex)

Взрывозащищенный термоэлемент (Допуск ATEX)

Подключение к процессу / Габариты или монтажная длина, мм: Зажимное винтовое соединение /100, 160, 250, 400, 600
Тип чувствительного элемента / Предел измерения, °C: Термоэлементы: Тип J (FeCu-Ni)/-100…+600; Тип K (NiCr-Ni) / -100…+900; Тип N (NiCrSI-NiSi)/ -100…+1000
Электрическое подключение: Присоединительная головка с алюминиевой откидной крышкой
Материал корпуса / Среда измерения: Нержавеющая сталь / Воздух, газы и газообразные отходы

Документация на сайте производителя

на английском >>      на немецком >>  


TR293(Ex)

Взрывозащищенный датчик температуры (Допуск ATEX)

Подключение к процессу / Габариты или монтажная длина, мм: Зажимное винтовое соединение /100, 160, 250, 400, 600
Тип чувствительного элемента / Предел измерения, °C: Двойное термосопротивление Pt100/ до +600
Электрическое подключение: Присоединительная головка с алюминиевой откидной крышкой
Материал корпуса / Среда измерения: Нержавеющая сталь / Воздух, газы и газообразные отходы

Документация на сайте производителя

на английском >>      на немецком >>  


TC296(Ex)

Взрывозащищенный термоэлемент (Допуск ATEX)

Подключение к процессу / Габариты или монтажная длина, мм: Внешняя резьба G 1/2» B /100, 160, 250, 400, 600
Тип чувствительного элемента / Предел измерения, °C: Термоэлементы: Тип J (FeCu-Ni)/-100…+600; Тип K (NiCr-Ni) / -100…+900; Тип N (NiCrSI-NiSi)/ -100…+1000
Электрическое подключение: Присоединительная головка с алюминиевой откидной крышкой
Материал корпуса / Среда измерения: Нержавеющая сталь / Вода, масло и воздух

Документация на сайте производителя

на английском >>      на немецком >>  


TR296(Ex)

Взрывозащищенный датчик температуры (Допуск ATEX)

Подключение к процессу / Габариты или монтажная длина, мм: Внешняя резьба G 1/2» B /100, 160, 250, 400, 600
Тип чувствительного элемента / Предел измерения, °C: Двойное термосопротивление Pt100/ до +600
Электрическое подключение: Присоединительная головка с алюминиевой откидной крышкой
Материал корпуса / Среда измерения: Нержавеющая сталь / Вода, масло и воздух

Документация на сайте производителя

на английском >>      на немецком >>  


7134 / 7135

Датчик температуры воздуха в корпусе

Подключение к процессу / Габариты или монтажная длина, мм: Измерительный элемент снаружи или внутри монтажного корпуса /50×65
Тип чувствительного элемента / Предел измерения, °C: Термосопротивление Pt100/ -50…+90, -40…+120
Электрическое подключение: Кабельный ввод
Материал корпуса / Среда измерения: Поликарбонат или алюминий / Воздух
Класс защиты: IP65

Документация на сайте производителя

на английском >>      на немецком >> 


 

GTMU-OMU

Датчик температуры воздуха в корпусе

Подключение к процессу / Габариты или монтажная длина, мм: Внешняя резьба G 1/2», настенный монтаж, монтаж в трубе / 50, 100
Тип чувствительного элемента / Предел измерения, °C: Термосопротивления Pt100 или экранированное Pt1000 / -200…+600; Термоэлемент типа K (NiCr-Ni)/ -40…+1150
Электрическое подключение: Угловой штекер
Материал корпуса / Среда измерения: Пластик АБС / Воздух
Класс защиты: IP65

Документация на сайте производителя

на английском >>      на немецком >>  


Датчики типа K (NiCr-Ni) с плоским мини-разъемом

По вопросам приобретения ниже перечисленных моделей просьба обращаться с запросом к нам в офис: GTF 300, GTF 300 GS, GTF 300-UV, GTF 300 GS, GTF 300 GS-UV, GTF 300-SP, GTF 300 GS-SP, GMF 250

ДТПХхх5 термопары с коммутационной головкой EXIA

015

D=8 мм

ДТПL сталь 12Х18Н10Т

(-40…+600 °С)

ДТПК сталь 12Х18Н10Т

(-40…+800 °С)

60, 80, 100,

120, 160, 180,

200, 250, 320,

400, 500, 630,

800, 1000, 1250,

1600, 2000

025

D=10 мм

ДТПL сталь 12Х18Н10Т

(-40…+600 °С)

ДТПК сталь 12Х18Н10Т

(-40…+800 °С)

ДТПК сталь 10Х23Н18

(-40…+900 °С)

Подвижный штуцер

035

D=8 мм,

M=20×1,5 мм**, S=22 мм

ДТПL сталь 12Х18Н10Т

(-40…+600 °С)

ДТПК сталь 12Х18Н10Т

(-40…+800 °С)

045

D=10 мм,

M=20×1,5 мм**, S=22 мм

ДТПL сталь 12Х18Н10Т

(-40…+600 °С)

ДТПК сталь 12Х18Н10Т

(-40…+800 С)

ДТПК сталь 10Х23Н18

(-40…+900 °С)

Подвижный штуцер

055

D=10 мм,

M=20×1,5 мм**, S=22 мм

ДТПL сталь 12Х18Н10Т

 (-40…+600 °С)

ДТПК сталь 12Х18Н10Т

(-40…+800 °С)

80, 100, 120,

160, 180, 200,

250, 320, 400,

500, 630, 800,

1000, 1250, 1600,

2000

065

D=8 мм,

M=20×1,5 мм**, S=27 мм

ДТПL сталь 12Х18Н10Т

(-40…+600 °С)

ДТПК сталь 12Х18Н10Т

(-40…+800 °С) 

60, 80, 100,

120, 160, 180,

200, 250, 320,

400, 500, 630,

800, 1000, 1250,

1600, 2000

075

D=10 мм,

M=20×1,5 мм**, S=27 мм

ДТПL сталь 12Х18Н10Т

(-40…+600 °С)

ДТПК сталь 12Х18Н10Т

(-40…+800 °С)

ДТПК сталь 10Х23Н18

(-40…+900 °С)

085

D=10 мм,

M=27×2 мм**, S=32 мм

ДТПL сталь 12Х18Н10Т

(-40…+600 °С)

ДТПК сталь 12Х18Н10Т

(-40…+800 °С)

ДТПК сталь 10Х23Н18

(-40…+900 °С)

Подвижный штуцер

095

D=10 мм,

M=20×1,5 мм**, S=22 мм

ДТПL сталь 12Х18Н10Т

(-40…+600 °С)

ДТПК сталь 12Х18Н10Т

(-40…+800 °С)

ДТПК сталь 10Х23Н18 

(-40…+900 °С), диаметр 10 мм

105

D=8 мм,

M=20×1,5 мм**, S=2 мм

ДТПL сталь 12Х18Н10Т

(-40…+600 °С)

ДТПК сталь 12Х18Н10Т

(-40…+800 °С)

Подвижный штуцер

185

D=10 мм, M=22×1,5 мм**,

S=27 мм

ДТПL сталь 12Х18Н10Т

(-40…+600 °С)

ДТПК сталь 12Х18Н10Т

(-40…+800 °С)

ДТПК сталь 10Х23Н18

(-40…+900 °С), диаметр 10 мм

80, 100, 120,

160, 180,200,

250, 320, 400

195

D=10 мм, M=27×2 мм**,

S=27 мм

Подвижный штуцер

205

D=10 мм, M=22×1,5 мм**,

S=27 мм, R=9,5 мм

215

D=10 мм, M=27×2 мм**,

S=32 мм, R=12 мм

Подвижный штуцер

265

D=6 мм, M=22×1,5 мм**,

S=27 мм

 ДТПL сталь 12Х18Н10Т

(-40…+600 °С)

ДТПК сталь 12Х18Н10Т

(-40…+800 °С)

80, 100, 120,

160, 180, 200,

250, 320, 400,

500, 630, 800,

1000

Как выбрать термопару

Поскольку термопара может принимать разные формы и формы, важно понимать, как правильно выбрать правильный датчик.

Наиболее часто используемые критерии для выбора — это диапазон температур, химическая стойкость, стойкость к истиранию и вибрации, а также требования к установке. Требования к установке также будут определять ваш выбор датчика термопары.

Существуют разные типы термопар, и их применение может отличаться.Открытая термопара будет работать лучше всего, когда требуется большое время отклика, но незаземленная термопара лучше в агрессивных средах. Вот пять рекомендаций, которые помогут вам определить лучшую термопару для ваших целей:

  1. Определите область применения, в которой вы будете использовать датчик термопары
    Термопары
    могут использоваться в различных отраслях и сферах применения, поэтому выбор подходящей для ваших целей начинается с точного знания того, как и где вы хотите ее использовать.
  2. Определите диапазоны температур, в которых будет работать зонд

    Когда вы узнаете необходимый диапазон температур термопары, вы можете обратиться к нашей таблице диапазонов термопар, чтобы определить, какая термопара лучше всего подходит для нужных диапазонов температур.

    Термопара типа K обеспечивает широкий диапазон температур и является одной из наиболее часто используемых термопар. Однако, если зонд термопары будет подвергаться воздействию экстремальных температур, термопара типа N более устойчива при высоких температурах, а термопара типа T лучше всего подходит для чрезвычайно низких температур.

  3. Определите, насколько важно быстрое время отклика

    Существует три типа спаев термопар: открытые, заземленные и незаземленные.Открытый переход обеспечит самое быстрое время отклика. Однако, если зонд будет подвергаться воздействию агрессивного газа или высокого давления, не следует использовать открытый переход. Незаземленная термопара обеспечивает самое низкое время отклика, но все же может быть лучшим выбором, если также желательно, чтобы термопара была электрически изолирована от оболочки и экранирована ею.
  4. Учитывать любую химическую стойкость, стойкость к истиранию или вибрации

    Открытая термопара может использоваться только в некоррозионных приложениях. Как заземленную, так и незаземленную термопару можно использовать в агрессивных средах или в среде с высоким давлением, но лучше всего использовать незаземленный зонд, если необходимо, чтобы термопара была электрически изолирована от оболочки и экранирована ею. Если более быстрое время отклика имеет приоритет в агрессивной среде, то лучше всего использовать заземленную термопару.
  5. Учитывать любые требования по установке

    Может потребоваться, чтобы термопара была совместима с существующим оборудованием.Например, существующие отверстия могут определять диаметр зонда

Как выбрать тип термопары

Поскольку термопара измеряет в широком диапазоне температур и может быть относительно прочной, термопары очень часто используются в промышленности. Перед выбором термопары необходимо ответить на следующие вопросы:

  • Определите область применения, в которой будет использоваться термопара
  • Диапазон температур
  • Химическая стойкость материала термопары или оболочки
  • Устойчивость к истиранию и вибрации
  • Требования к установке (может потребоваться совместимость с существующим оборудованием; диаметр зонда может определяться имеющимися отверстиями)

Как мне узнать, какой тип разветвления выбрать?

Доступны зонды с термопарами в оболочке с одним из трех типов спая: заземленный, незаземленный или открытый. Посмотрите также наше видео о спаях термопар:

Термопары с заземленным спаем

На конце зонда с заземленным спаем провода термопары физически прикреплены к внутренней стороне стенки зонда. Это приводит к хорошей передаче тепла снаружи через стенку зонда к спайу термопары.

Это означает, что заземленные термопары будут иметь более быстрое время отклика, чем незаземленные термопары.

Заземленный переход рекомендуется для измерения статических или текущих температур агрессивных газов и жидкостей, а также для приложений с высоким давлением.Спай заземленной термопары приварен к защитной оболочке, обеспечивая более быстрый отклик, чем спай незаземленного типа.

Однако заземленные термопары очень чувствительны к шуму, вызванному контурами заземления, что приводит к менее точным показаниям.

Термопары с незаземленным спаем

В незаземленном зонде спай термопары отсоединен от стенки зонда. Время отклика ниже, чем у заземленного стиля.

С другой стороны, переход электрически изолирован от оболочки, что предотвращает влияние электрических помех на сигнал.Это дает гораздо большую точность измерения температуры, особенно для сигналов очень низкого уровня.

Незаземленный спай рекомендуется для измерений в агрессивных средах, где желательно иметь термопару с электронной изоляцией и экранированием оболочки. Термопара из сварной проволоки физически изолирована от оболочки термопары порошком MgO (мягкий).

Термопары с открытым спаем

Термопара с открытым спаем выступает из конца оболочки и подвергается воздействию окружающей среды.Этот тип обеспечивает лучшее время отклика, но его использование ограничено некоррозионными и негерметичными приложениями.

Открытый переход рекомендуется для измерения статических или текущих температур некоррозионных газов, когда требуется быстрое время отклика. Соединение выходит за пределы защитной металлической оболочки, обеспечивая точный и быстрый отклик. Изоляция оболочки герметизирована там, где простирается переход, чтобы предотвратить проникновение влаги или газа, которое может вызвать ошибки.

Полное описание типов соединений см. На рисунках справа.

В этом PDF-файле вы можете найти дополнительную информацию о термоизоляции.

Какая термопара мне нужна?

Различные диапазоны температур для различных
Измерения температуры


Термопара из бисерной проволоки — это простейшая форма термопары. Он состоит из двух отрезков проволоки для термопар, соединенных между собой сварным валиком.Поскольку выступ термопары обнажен, существует несколько ограничений применения. Термопара из проволоки с бусами не должна использоваться с жидкостями, которые могут вызвать коррозию или окисление сплава термопары. Металлические поверхности также могут быть проблематичными. Часто металлические поверхности, особенно трубы, используются для заземления электрических систем. Непрямое подключение к электрической системе может повлиять на измерения термопары. Как правило, термопары из бисерной проволоки являются хорошим выбором для измерения температуры газа.Поскольку они могут быть очень маленькими, они также обеспечивают очень быстрое время отклика.

Учить больше

Датчик термопары

Зонд термопары состоит из провода термопары, помещенного в металлическую трубку. Стенка трубки называется оболочкой зонда.Обычные материалы оболочки включают нержавеющую сталь и Inconel®. Инконель поддерживает более высокие температурные диапазоны, чем нержавеющая сталь, однако нержавеющая сталь часто предпочтительнее из-за ее широкой химической совместимости. Для очень высоких температур также доступны другие экзотические материалы для оболочки. Ознакомьтесь с нашей линейкой экзотических термопар для высоких температур.

Наконечник зонда термопары доступен в трех различных стилях. Заземленный, незаземленный и незащищенный.С заземленным наконечником термопара контактирует со стенкой оболочки. Заземленный переход обеспечивает быстрое время отклика, но он наиболее чувствителен к контурам электрического заземления. В незаземленных спаях термопара отделена от стенки оболочки слоем изоляции. Наконечник термопары выступает за пределы стенки оболочки с открытым спаем. Термопары с открытым спаем лучше всего подходят для измерения воздуха.

Учить больше

Поверхностный зонд

Измерение температуры твердой поверхности затруднено для большинства типов датчиков температуры. Чтобы обеспечить точное измерение, вся измерительная область датчика должна соприкасаться с поверхностью. Это сложно при работе с жестким датчиком и жесткой поверхностью. Поскольку термопары изготовлены из гибких металлов, спай может быть плоским и тонким, чтобы обеспечить максимальный контакт с жесткой твердой поверхностью. Эти термопары — отличный выбор для измерения поверхности. Термопара может быть даже встроена в механизм, который вращается, что делает ее пригодной для измерения температуры движущейся поверхности.Термопара типа K — ChrOMEGA ™ / AlOMEGA ™.

Учить больше

Беспроводные термопары

Эти беспроводные преобразователи измеряют различные входные сигналы датчиков, включая, помимо прочего, pH, RTD, относительную влажность. Передача данных осуществляется по беспроводной сети на компьютер или в сеть.

Учить больше

Информация о продукте

Техническое обучение

Термопары

Введение в измерение температуры

Термопара — датчик для измерения температуры.Этот датчик состоит из двух разнородных металлических проводов, соединенных одним концом и подключенных к
термометр с термопарой или другое устройство с функцией термопары на другом конце. При правильной настройке термопары могут обеспечивать измерения температуры.
в широком диапазоне температур. Термопары

известны своей универсальностью в качестве датчиков температуры, поэтому широко используются в широком диапазоне приложений — от термопар промышленного использования до обычных термопар, используемых в коммунальных службах и обычных приборах. Из-за широкого диапазона моделей и технических характеристик чрезвычайно важно понимать его основную структуру, принцип работы и диапазоны, чтобы лучше определить, какой тип и материал термопары подходит для вашего применения.

Подробнее о термопарах

Эффект Зеебека

В 1821 году Томас Зеебек обнаружил непрерывный ток в термоэлектрической цепи, когда два провода из разнородных металлов соединяются на обоих.
заканчивается и один из концов нагревается.

Как работает термопара?

Когда два провода, состоящие из разнородных металлов, соединяются на обоих концах и один из концов нагревается, в проводе протекает постоянный ток.
термоэлектрическая цепь. Если эта цепь разорвана в центре, сетевое напряжение холостого хода (напряжение Зеебека) является функцией соединения
температура и состав двух металлов. Это означает, что когда соединение двух металлов нагревается или охлаждается, создается напряжение, которое может быть обратно коррелировано с
температура.

Типы термопар

Термопары доступны в различных комбинациях металлов или калибровок. Наиболее распространены термопары из «основного металла», известные как типы J, K, T, E.
и N. Существуют также высокотемпературные калибровки — также известные как термопары из благородных металлов — типов R, S, C и GB.

Каждая калибровка имеет свой диапазон температур и среду, хотя максимальная температура зависит от диаметра провода, используемого в
термопара.

Хотя калибровка термопары определяет диапазон температур, максимальный диапазон также ограничен диаметром термопары.
провод. То есть очень тонкая термопара может не достичь полного диапазона температур.

Термопары типа

K известны как универсальные
термопара из-за невысокой стоимости и температурного диапазона.

Как выбрать термопару

1.Определите область применения, в которой будет использоваться термопара.

2. Проанализируйте диапазоны температур, в которых будет работать термопара.

3. Рассмотрите любую химическую стойкость, необходимую для материала термопары или оболочки.

4. Оцените потребность в стойкости к истиранию и вибрации.

5. Перечислите все требования для установки.

Как выбрать тип термопары?

Поскольку термопары измеряют в широком диапазоне температур и могут быть относительно прочными, термопары очень часто используются в промышленности.При выборе термопары используются следующие критерии:
— Диапазон температур
— Химическая стойкость термопары или материала оболочки
— Устойчивость к истиранию и вибрации
— Требования к установке (может потребоваться совместимость с существующим оборудованием; существующие отверстия могут определять диаметр зонда)

Каково время отклика термопары?

Постоянная времени определяется как время, необходимое датчику для достижения 63. 2% ступенчатого изменения температуры при заданном наборе условий.
Чтобы датчик приблизился к 100% значения ступенчатого изменения, требуется пять постоянных времени. Термопара с открытым спаем обеспечивает самый быстрый отклик.
Кроме того, чем меньше диаметр оболочки зонда, тем быстрее отклик, но максимальная температура может быть ниже. Однако имейте в виду, что иногда
оболочка зонда не может выдерживать полный диапазон температур термопары.Узнайте больше о времени отклика термопар.

Как мне узнать, какой тип соединения выбрать?

Доступны зонды с термопарами в оболочке с одним из трех типов спая: заземленный, незаземленный или открытый.
На конце зонда с заземленным переходом провода термопары физически прикреплены к внутренней стороне стенки зонда. Это приводит к хорошей теплопередаче.
снаружи через стенку зонда до спая термопары.В незаземленном зонде спай термопары отделен от стенки зонда.
Время отклика ниже, чем у заземленного типа, но незаземленный обеспечивает гальваническую развязку.

Выберите подходящую термопару

Термопара из бисерной проволоки

Формы вращающихся анемометров с механической скоростью могут быть описаны как принадлежащие к классу лопастных или пропеллерных.С этим стилем
анемометра ось вращения должна быть параллельна направлению ветра и, следовательно, обычно горизонтальна. На открытых пространствах
ветер меняется по направлению, и ось должна следовать за его изменениями. В случаях, когда направление движения воздуха всегда одно и то же,
как, например, в вентиляционных шахтах шахт и зданий, используются ветровые лопатки, известные как счетчики воздуха, которые дают наиболее удовлетворительный результат.
полученные результаты.Пластинчатые анемометры доступны с дополнительными функциями, такими как измерение температуры, влажности и точки росы, измерение объема.
возможность преобразования и регистрации данных.

Датчик термопары

Зонд термопары состоит из провода термопары, помещенного внутри металлической трубки. Стенка трубки называется оболочкой зонда. Общий
материалы оболочки включают нержавеющую сталь и Inconel®. Инконель поддерживает более высокие диапазоны температур, чем нержавеющая сталь, однако нержавеющая сталь часто
предпочтительнее из-за его широкой химической совместимости. Для очень высоких температур также доступны другие экзотические материалы для оболочки. Посмотреть нашу линию высоких
температурные экзотические термопары.

Наконечник зонда термопары доступен в трех различных стилях. Заземленный, незаземленный и незащищенный. С заземленным наконечником термопара находится в
контакт со стенкой оболочки. Заземленный переход обеспечивает быстрое время отклика, но он наиболее чувствителен к контурам электрического заземления. В необоснованном
спаев термопара отделяется от стенки оболочки слоем изоляции. Наконечник термопары выступает за пределы стенки оболочки с открытым спаем. Термопары с открытым спаем лучше всего подходят для измерения воздуха.

Поверхностный зонд

Для большинства типов датчиков температуры измерение температуры твердой поверхности затруднено. Чтобы обеспечить точное измерение, весь
область измерения датчика должна соприкасаться с поверхностью.Это сложно при работе с жестким датчиком и жесткой поверхностью. С
термопары изготовлены из гибких металлов, спай может быть плоским и тонким, чтобы обеспечить максимальный контакт с жесткой твердой поверхностью. Эти термопары
являются отличным выбором для измерения поверхности. Термопару можно даже встроить в механизм, который вращается, что делает ее пригодной для измерения
температура движущейся поверхности. Тип K — это ChrOMEGA ™ / AlOMEGA ™.

Беспроводные термопары

Беспроводные передатчики Bluetooth, которые подключаются к смартфонам или столам для регистрации и мониторинга измерений температуры.Эти преобразователи измеряют различные входные сигналы датчиков, включая, помимо прочего, температуру, pH, RTD, относительную влажность.
Передача данных осуществляется по беспроводной технологии Bluetooth на смартфон или планшет.
с установленным приложением. Приложение позволит смартфону выполнить сопряжение и настроить несколько передатчиков.

Часто задаваемые вопросы

Какова точность и температурный диапазон различных термопар?

Вы можете узнать больше о точности термопары и диапазонах температур с помощью этого цветового кода термопары.
Таблица.Важно помнить, что и точность, и дальность зависят от таких факторов, как
сплавы термопары, измеряемая температура, конструкция датчика, материал оболочки, измеряемая среда, состояние
среды (жидкой, твердой или газообразной) и диаметром провода термопары (если он оголен) или диаметром оболочки (если провод термопары не
обнажены, но обшиты).

Что использовать: заземленный или незаземленный зонд?

Это зависит от приборов.Если есть вероятность, что может быть ссылка на землю (обычная для контроллеров с неизолированными входами), тогда
требуется незаземленный зонд. Если прибор представляет собой портативный измеритель, то почти всегда можно использовать заземленный зонд.

Можно ли использовать какой-либо мультиметр для измерения температуры с помощью термопар?

Величина термоэлектрического напряжения зависит от закрытого (чувствительного) конца, а также открытого (измерительного) конца отдельных выводов термопары из сплава. Приборы для измерения температуры, в которых используются термопары, учитывают температуру на измерительном конце для определения температуры на измерительном конце.
Большинство милливольтметров не имеют этой возможности, и они не имеют возможности выполнять нелинейное масштабирование для преобразования измерения милливольтметра в
значение температуры. Можно использовать справочные таблицы для корректировки определенных показаний милливольт и расчета измеряемой температуры.Тем не менее
значение коррекции необходимо постоянно пересчитывать, так как оно обычно не является постоянным во времени. Небольшие изменения температуры на измерительном приборе
и чувствительный конец изменит значение коррекции.

Как выбрать между термопарами, резистивными датчиками температуры (RTD), термисторами и инфракрасными приборами?

Вы должны учитывать характеристики и стоимость различных датчиков, а также доступное оборудование. Кроме того, термопары обычно могут
измерять температуры в широком диапазоне температур, недорого и очень надежно, но они не так точны и стабильны, как термометры сопротивления и термисторы. RTD
стабильны и имеют довольно широкий диапазон температур, но не такие прочные и недорогие, как термопары. Поскольку они требуют использования электрического тока для
При проведении измерений RTD могут иметь неточности из-за самонагрева.Термисторы, как правило, более точны, чем RTD или термопары, но у них гораздо больше
более ограниченный температурный диапазон. Также они подвержены самонагреву. Инфракрасные датчики можно использовать для измерения температуры выше, чем у любого другого устройства.
и делать это без прямого контакта с измеряемыми поверхностями. Однако они, как правило, не так точны и чувствительны к поверхностному излучению.
эффективность (точнее, коэффициент излучения поверхности). Используя оптоволоконные кабели, они могут измерять поверхности, которые находятся вне прямой видимости.

Справочные таблицы термопар

Термопары создают выходное напряжение, которое можно соотнести с температурой, которую измеряет термопара. Документы в таблице ниже
укажите термоэлектрическое напряжение и соответствующую температуру для данного типа термопары. В большинстве документов также указывается термопара.
диапазон температур, пределы погрешности и условия окружающей среды.

Термопара типа B (° C)
Термопара типа B (° F)
Тип термопары C (° C)
Тип термопары C (° F)
Термопара типа E (° C)
Термопара типа E (° F)
Термопара типа J (° C)
Термопара типа J (° F)
Термопара типа K (° C)
Термопара типа K (° F)
Термопара типа N (° C)
Термопара типа N (° F)
Термопара типа R (° C)
Термопара типа R (° F)
Термопара типа S (° C)
Термопара типа S (° F)
Тип термопары T (° C)
Тип термопары T (° F)
Вольфрам и вольфрам / Рений
CHROMEGA ™ vs. Золото-0,07
атомных процентов железа

Термопары | Сопутствующие товары

↓ Посмотреть эту страницу на другом языке или регионе ↓

Поиск подходящего типа термопары для вашего проекта

Выбор подходящей термопары для вашего испытательного или производственного процесса имеет важное значение для сбора точных данных и обеспечения качества и согласованности продукции.Ранее мы обсудили некоторые соображения, которые следует учитывать при выборе термопар, такие как диапазон рабочих температур и химическая среда, время отклика термопары и физическое место, где будут проводиться измерения. После того, как вы определили рабочие параметры и определили требования к термопарам, пора перейти к алфавитному списку типов термопар, чтобы сделать свой выбор.

Термопары

бывают разных типов, каждая с уникальным составом легированной проволоки.Свойства проволоки определяют диапазон рабочих температур термопары, уровень точности и характеристики технологической среды. При выборе термопары вы должны сравнить эти характеристики с вашими требованиями к испытаниям. Имея это в виду, давайте обсудим несколько распространенных типов термопар, и когда наиболее распространенный тип термопары может быть , а не , лучшим выбором.

Популярные термопары: тип K, тип J и тип T

Термопары

типа K часто выбирают, потому что они являются долговечным и недорогим вариантом, подходящим для различных промышленных процессов и испытаний.Эти термопары распространены, потому что они работают в широком диапазоне температур: от нескольких сотен градусов ниже нуля до более 2000 ° F. Термопары типа K обычно используются для измерения высоких температур в химической промышленности, автомобильных двигателях и некоторых процессах производства электроэнергии.

Хотя они могут показаться универсальными термопарами, термопары типа K не всегда подходят для определенных процессов тестирования и производства. Например, термопары типа K превосходны в большинстве химических сред, но могут не работать хорошо в процессах, которые включают в себя восстановительную атмосферу.Если этот сценарий применим к вам, рассмотрите термопару типа J. Эти термопары также хорошо работают при давлении на уровне вакуума. Тип J не имеет такого широкого диапазона рабочих температур, как тип K, но они аналогичны по точности и стоимости.

А как насчет точного измерения низких температур? Термопары типа T могут быть предпочтительнее, чем тип K, несмотря на широкий диапазон измерения температуры типа K. Тип T может выдерживать большинство химических атмосфер, но также может измерять чрезвычайно низкие температуры с большей точностью.Эти термопары часто подходят для пищевой промышленности, где рабочие температуры значительно ниже нуля, а точные измерения имеют решающее значение для безопасности продукции.

Новый лидер в области измерения температуры: термопары типа N

В K-Tec Systems мы работаем со многими отраслями промышленности над модернизацией термопар типа K до термопар типа N для многих производственных и испытательных процессов. Эти два типа термопар работают в одном и том же диапазоне температур и в одинаковых рабочих условиях, но изменения в составе проводов увеличивают срок службы и стабильность типа N при очень высоких рабочих температурах.В результате термопары типа N набирают обороты, особенно в автомобильной промышленности и в процессах термообработки. Хотя базовая цена термопар типа N немного выше, их более длительный срок службы может сделать их экономичным выбором для жестких условий эксплуатации — и с дополнительным преимуществом более надежного измерения при очень высоких температурах.

Следующие шаги в выборе подходящей термопары

Выбор подходящего типа термопары для вашего процесса — отличный первый шаг в планировании стратегии измерения температуры. Имейте в виду, что другие факторы, такие как диаметр провода, изоляция провода и оболочки термопар, также должны быть тщательно выбраны для вашего приложения, и поэтому мы рекомендуем проконсультироваться со специалистом K-Tec Systems. K-Tec Systems может помочь вам выбрать наиболее точную термопару, соответствующую вашим требованиям к испытаниям.

Датчик термопары

: что это такое, типы и руководство по покупке

Термопара — это устройство, известное для измерения температуры, которое состоит из датчиков различных типов, из которых потребители могут выбирать.От термопары типа K до типа J, типа T и т. Д., Понимание их различий и покупка термопары, подходящей для вашего следующего проекта Arduino, может оказаться непростой задачей!

Не бойтесь, через это руководство я помогу вам, объяснив:

  • Что такое термопара?
  • Как работает термопара?
  • Какой тип термопары?
  • Как выбрать термопару?
  • Как использовать термопару с Arduino?

Что такое термопара? Определение

Термопара типа K

Термопара — это датчик, сделанный из двух металлических частей, используемый для измерения температуры. Эти два куска металла свариваются на одном конце, образуя стык, на котором измеряется температура.

На изображении выше изображена термопара типа K, которую можно приобрести в Seeed! Вы можете нажать здесь, чтобы узнать больше!

Как работают термопары?

Принцип работы термопар

Термопара работает по принципу эффекта Зеебека (также известного как термоэлектрический эффект), принципа, открытого немецким физиком Томасом Иоганном Зеебеком еще в 18 веке.

Эффект Зеебека утверждает, что когда два разных металла соединяются вместе в двух стыках, создается электродвижущая сила (ЭДС).

Чтобы лучше понять этот принцип работы, мы рассмотрим схему термопары!

Описание схемы термопары

На схеме ниже показана электрическая цепь, которая обычно встречается в термопарах. Вот как работают термопары на этой иллюстрации:

  • Два куска металла свариваются вместе на одном конце, образуя соединение
  • Горячий спай — это источник тепла, который генерирует температуру
  • При изменении температуры между металлами возникает перепад напряжения
  • Термопара справочные таблицы затем используются для интерпретации напряжения для рассчитываемой температуры

Для чего используются термопары?

Теперь, когда мы поняли, как работают термопары, мы рассмотрим их применение.

Термопары используются не только в промышленности, но и в повседневных бытовых приборах:

  • Промышленное применение:
    • Измерение температуры металлов
    • Измерение температуры печей, двигателей, технологических процессов
    • Пищевая промышленность; пастеризация молока и криогенное применение
  • Повседневные применения:
    • Печь с термопарой
    • Печи
    • Тостеры

В целом термопары являются широко используемым типом датчиков температуры для измерения и контроля, хотя и содержит различия по сравнению с другими типами датчиков температуры, такими как RTD и термостат.О различиях мы поговорим позже.

В чем разница между термопарой, RTD, термистором?

Термопару можно сравнить с RTD и термисторами, поскольку все они являются распространенными типами датчиков для измерения температуры.

Примечание. Следующая таблица предназначена только для сравнения, где пригодность каждого датчика зависит от того, что вы пытаетесь с ним сделать.

RTD Термизистор Термопара
Как измеряется температура Использует металлические резисторы и измеряет температуру путем изменения сопротивления Использует керамический / полимерный резистор и измеряет температуру через изменения сопротивления Использует два металлических провода и измеряет температуру через перепад напряжения в соединениях
Типичный диапазон температур от -200 до 650 ° C от -100 до 325 ° C от 200 до 1750 ° C
Стоимость Самые дорогие От низкой до умеренной Самый низкий
Чувствительность срабатывания Низкая чувствительность, общее время отклика от 1 до 50 с Достойная чувствительность с общим временем отклика Хорошая чувствительность при общем времени отклика 0.От 10 до 10 с
Линейность Довольно линейный Экспоненциальная Нелинейный
Тепловое возбуждение Обязательно, текущий источник Обязательно, источник напряжения Не требуется
Долговременная стабильность стабильный, 0,05 ° C стабильный, 0,2 ° C Переменная
Лучше всего подходит для Более стабильные показания с типичной точностью ± 0.1 ° С Постоянные показания с типичной точностью ± 0,1 ° C Более высокий температурный диапазон с типичной точностью ± 0,5 ° C

Помимо приведенного выше сравнения термопар, термопар и термисторов, также часто говорят о различиях между термопарами и термобатареями.

Чтобы вам было проще понять, есть только одно главное отличие, которое вы должны принять к сведению:

  • Термопара — это датчик, состоящий из двух металлических частей, используемый для измерения температуры.
  • Термобатарея — это устройство, преобразующее тепловую энергию в электрическую

Какие типы термопар?

Теперь, когда вы поняли, что такое термопары и как они работают, теперь мы более подробно рассмотрим типы термопар.

Существует 8 типов термопар, классифицируемых как «недрагоценный металл» и «благородный металл», а именно:

  • Тип термопары, изготовленный из основного металла:
    • Тип K
    • Тип J
    • Тип T
    • Тип E
    • Тип N
  • Тип термопары, изготовленный из благородного металла:

Тип K Термопара ( Самый популярный)

Несомненно, самым популярным типом термопар является термопара типа K.Он известен своим широким диапазоном температур и долговечностью, поэтому многие считают его незаменимым!

Вот все о термопаре типа К:

Использованный свинец:

  • Никель-хром (+), алюминий (-)

Цветовой код:

  • ANSI (Америка): желтый (+), красный (-)
  • IEC: зеленый (+), белый (-)

Диапазон температур:

  • от -200 ° C до 1250 ° C
  • по Фаренгейту: от -328 до 2,282F

Точность

  • Стандарт: +/- 2.2 ° C или +/- 0,75%
  • Специальные пределы погрешности: +/- 1,1 ° C или +/- 0,4%

Термопара типа J (менее мощный вариант, чем K)

Во-вторых, в списке основных металлов стоит термопара J-типа. Несмотря на меньший температурный диапазон и меньшую чувствительность при более высоких температурах, это все еще распространенный вариант!

Вот все о термопарах типа J:

Использованный свинец:

Цветовой код:

  • ANSI (Америка): белый (+), красный (-)
  • IEC: черный (+), белый (-)

Диапазон температур:

  • от -210 до 760 ° C
  • по Фаренгейту: от –346 до 1,400F

Точность:

  • Стандарт: +/- 2.2 ° C или +/- 0,75%
  • Специальные пределы погрешности: +/- 1,1 ° C или +/- 0,4%

Термопара типа T (низкотемпературная опция)

В-третьих, термопары типа T. Обычно используется в пищевой промышленности, где требуются чрезвычайно низкие температуры, например, в криогенике, и обеспечивает более низкие показания температуры, несмотря на меньший температурный диапазон.

Вот все о термопреобразователях типа T:

Использованный свинец:

  • Медь (+), константан (-)

Цветовой код:

  • ANSI (Америка): синий (+), красный (-)
  • IEC: коричневый (+), белый (-)

Диапазон температур:

  • от -270 до 370 ° C
  • по Фаренгейту: от -454 до 700F

Точность:

  • Стандарт: +/- 1.0 ° C или +/- 0,75%
    Специальные пределы погрешности: +/- 0,5 ° C или 0,4%

Термопара типа E (точность выше, чем у K&J)

Прежде чем вы прочитаете заголовок и поймете, что тип E — лучший тип термопары, потому что он имеет более высокую точность, чем популярные, подождите!

Термопара типа

E обеспечивает более высокую точность и более сильный сигнал, чем тип K&J, но только при умеренных диапазонах температур и ниже!

Вот и все о термопаре типа Е!

Использованный свинец:

  • Никель-хром (+), константан (-)

Цветовой код:

  • ANSI (Америка): фиолетовый (+), красный (-)
  • IEC: фиолетовый (+), белый (-)

Диапазон температур:

  • от -200 до 900 ° C
  • по Фаренгейту: от -328 до 1652F

Точность:

  • Стандарт: +/- 1.7 ° C или +/- 0,5%
  • Специальные пределы погрешности: +/- 1,0C или 0,4%

Термопара типа N (дорогая версия типа K)

Термопара типа N имеет аналогичные характеристики с популярным типом K с точки зрения предела температуры и точности, хотя и стоит дороже.

Вот все о термопаре типа N:

Использованный свинец:

Цветовой код:

  • ANSI (Америка): оранжевый (+), красный (-)
  • IEC: розовый (+), белый (-)

Диапазон температур:

  • от -270 до 392 ° C
  • по Фаренгейту: от -454 до 2300F

Точность:

  • Стандарт: +/- 2.2 ° C или +/- 0,75%
  • Специальные пределы погрешности: +/- 1,1 ° C или 0,4%

Термопара типа S (высокотемпературная термопара)

Первая из трех термопар из благородных металлов — это тип S. Разработанная с возможностью измерения высоких температур, она обычно используется в условиях, которые этого требуют. Такими условиями являются фармацевтическая промышленность, биотехнологии и т. Д.

Вот все о термопаре типа S:

Использованный свинец:

  • Платина Родий (+), Платина (-)

Цветовой код:

  • ANSI (Америка): черный (+), красный (-)
  • IEC: оранжевый (+), белый (-)

Диапазон температур:

  • от 0 до 1450 ° C
  • по Фаренгейту: от 32 до 2642F

Точность:

  • Стандарт: +/- 1.5 ° C или +/- 0,25%
  • Специальные пределы погрешности: +/- 0,6 ° C или 0,1%

Термопара типа R (аналогична, но дороже, чем тип S)

Во-вторых, три термопары из благородных металлов относятся к типу R. Подобно типу S, он разработан с возможностью измерения высоких температур. Однако тип R дороже, чем тип S, поскольку он состоит с более высоким процентным содержанием родия.

Вот все о термопаре типа R:

Использованный свинец:

  • Платина Родий (+), Платина (-)

Цветовой код:

  • ANSI (Америка): черный (+), красный (-)
  • IEC: оранжевый (+), белый (-)

Диапазон температур:

  • от 0 до 1450 ° C
  • по Фаренгейту: от 32 до 2642F

Точность:

  • Стандарт: +/- 1.5 ° C или +/- 0,25%
  • Специальные пределы погрешности: +/- 0,6 ° C или 0,1%

Термопара типа B (верхний предел температуры)

Последней в этом списке находится термопара типа B. Думал, что у Type R и Type S есть предел высокой температуры? Тип B улучшает это, имея более высокий температурный предел среди всех перечисленных!

Он не только предлагает самый высокий температурный предел, но также поддерживает точность и стабильность при таких высоких температурах!

Вот все о термопаре типа B:

Использованный свинец:

  • Платиновый родий (+), Платиновый родий (-)

Цветовой код:

  • ANSI (Америка): черный (+), красный (-)
  • IEC: оранжевый (+), белый (-)

Диапазон температур:

  • от 0 до 1700 ° C
  • по Фаренгейту: от 32 до 3100F

Точность:

  • Стандарт: +/- 0.5%
  • Специальные пределы погрешности: +/- 0,25%

Каковы различия между всеми термопарами типа

Вот сводная сравнительная таблица между всеми типами термопар. Вы можете обратиться к этому при принятии решения о выборе термопары

.

От

Используемый свинец Цветовой код Диапазон температур Точность
Тип К Никель-Хром (+)
Алюмель (-)
ANSI (Америка): желтый (+), красный (-)

IEC: зеленый (+), белый (-)

от 200 ° C до 1250 ° C

по Фаренгейту: от –328 до 2,282F

Стандарт: +/- 2.2 ° C или +/- 0,75%

Специальный: +/- 1,1 ° C или +/- 0,4%

Тип J Железо (+)
Константин (-)
ANSI (Америка): белый (+), красный (-)

IEC: черный (+), белый (-)

от -210 до 760 ° C

по Фаренгейту: от –346 до 1,400F

Стандартный: +/- 2,2 ° C или +/- 0,75%

Специальный: +/- 1,1 ° C или +/- 0,4%

Тип Т Медь (+)
Константин (-)
ANSI (Америка): синий (+), красный (-)

IEC: коричневый (+), белый (-)

до 370 ° C

по Фаренгейту: от –454 до 700F

Стандарт: +/- 1.0 ° C или +/- 0,75%

Специальный: +/- 0,5 ° C или 0,4%

Тип E Никель-хром (+)
Константин (-)
ANSI (Америка): фиолетовый (+), красный (-)

IEC: фиолетовый (+), белый (-)

от -200 до 900 ° C

по Фаренгейту: от -454 до 1600F

Стандартный: +/- 1,7 ° C или +/- 0,5%

Специальный: +/- 1,0C или 0,4%

Тип N Никросил (+)
Нисил (-)
ANSI (Америка): оранжевый (+), красный (-)

IEC: розовый (+), белый (-)

от 270 до 392 ° C

по Фаренгейту: от -454 до 2300F

Стандарт: +/- 2.2 ° C или +/- 0,75%

Специальный: +/- 1,1 ° C или 0,4%

Тип S Платина Родий (+)
Платина (-)
ANSI (Америка): черный (+), красный (-)

IEC: оранжевый (+), белый (-)

от 0 до 1450 ° C

по Фаренгейту: от -32 до 2642F

Стандартный: +/- 1,5 ° C или +/- 0,25%

Специальный: +/- 0,6 ° C или 0,1%

Тип R Платина Родий (+)
Платина (-)

Более высокое содержание родия

ANSI (Америка): черный (+), красный (-)

IEC: оранжевый (+), белый (-)

от 0 до 1450 ° C

по Фаренгейту: от -32 до 2642F

Стандарт: +/- 1.5 ° C или +/- 0,25%

Специальный: +/- 0,6 ° C или 0,1%

Тип B Платина Родий (+)

Платина Родий (-)

ANSI (Америка): черный (+), красный (-)

IEC: оранжевый (+), белый (-)

от 0 до 1700 ° C

по Фаренгейту: от 32 до 3100F

Стандартный: +/- 0,5%

Специальный: +/- 0,25%

Как выбрать датчик термопары?

Выбор термопары в конечном итоге сводится к тому, для чего вы планируете ее использовать.Вы можете сначала обратиться к таблице из приведенного выше раздела, чтобы получить общее представление обо всех типах термопар, прежде чем принимать во внимание следующие факторы:

Диапазон температур:

  • Для самого широкого диапазона температур: выберите термопару типа k
  • Для стабильности при высоких температурах: выберите термопару типа N
  • Для низкотемпературного использования: выберите термопару типа T

Среда, в которой вы ее используете в:

  • Для использования в безопасной среде без химикатов и истирания; выбирайте незаземленную термопару, так как она обеспечивает более быстрое время отклика
    • Незаземленная термопара — это оголенные провода термопары, которые не касаются оболочки
  • Для использования в среде, подверженной химическим воздействиям или истиранию, заземленная термопара работает лучше всего

Как сделать использовать термопару с Arduino?

Независимо от того, решили ли вы, какой тип термопары покупать или нет, одной только термопары
недостаточно для использования с Arduino.

Следовательно, в этом разделе будут представлены рекомендации по продуктам, которые можно использовать с термопарой с Arduino!

Grove — Датчик высокой температуры

В датчике Grove — High Temperature Sensor используется датчик температуры термопары типа K с термистором для определения температуры окружающей среды в качестве температурной компенсации.

Благодаря нашей системе Grove и выделенному порту Grove на этом датчике, вы можете подключить его к Arduino через plug-and-play, что делает термопару Arduino простой реальностью!

Хотите узнать больше? Вы можете перейти на страницу нашего продукта здесь! Мы также предоставляем руководство по термопарам Arduino вместе с ним!

Усилители термопары

Еще один вариант, который вы можете рассмотреть для сопряжения термопары с Arduino, — это наши усилители термопар!

Примечание. Все наши усилители термопар имеют компенсацию холодного спая и встроенный преобразователь термопары в цифровой.

Grove — усилитель с термопарой 1-Wire (MAX31850K)

Вы, наверное, слышали об усилителях с термопарой MAX31855, но этот усилитель с термопарой, основанный на MAX31850, предлагает такое же разрешение при сравнении.

Специально разработанный для термопар типа k, он имеет 64-битное ПЗУ и однопроводный интерфейс, что позволяет использовать несколько термопар с одним микроконтроллером!

Хотите узнать больше о его функциях, характеристиках и приложениях? Вы можете перейти на страницу нашего продукта здесь! Мы также предоставляем руководство по Arduino вместе с ним!

Grove — усилитель термопары I2C (MCP9600)

Другой вариант — это усилитель термопары, основанный на MCP9600.По сравнению с MAX31855 эта опция предлагает более высокое разрешение, несмотря на использование того же интерфейса I2C.

Подобно предыдущему варианту усилителя термопары, этот модуль разработан для использования вместе с термопарой k-типа!

Хотите узнать больше о его функциях, характеристиках и приложениях? Вы можете перейти на страницу нашего продукта здесь! Мы также предоставляем руководство по Arduino вместе с ним!

Сводка

На сегодня на сегодня все о термопарах и руководстве по их выбору.Я надеюсь, что из этого блога вы узнали больше о термопарах, типах и о том, как выбрать подходящую для вашего следующего проекта термопары Arduino!

Для получения дополнительной информации о термопарах типа k, которые мы предлагаем, вы можете посетить нашу страницу продукта!

Для получения дополнительной информации об усилении термопар и сравнении max31855 вы можете ознакомиться с этой статьей!

Следите за нами и ставьте лайки:

Теги: хромель, термопара для фурнитуры, GROVE, как использовать термопару, термопара типа j, термопара типа k, термопара типа k, MAX31855, термопара типа t, датчик температуры, термопара, усилитель термопары, термопара Arduino, руководство по термопаре, датчик термопары, типы термопар , что такое термопара

Продолжить чтение

Промышленная термопара

— как правильно выбрать

Промышленная термопара — выбор подходящей.Ответ на вопрос «что за термопара?» зависит от нескольких факторов, относящихся к контролируемому процессу, таких как его совместимость со средой / технологической средой, частота и точность требуемых измерений, а также нормативная среда в вашей отрасли.

Измерение температуры является ключевым параметром при производстве и обработке во многих отраслях, от нефтепереработки до фармацевтики. Точный мониторинг температуры помогает обеспечить безопасные, эффективные и оптимальные результаты.Двумя наиболее распространенными промышленными технологиями измерения температуры сегодня являются резистивные датчики температуры (RTD) и термопары. У каждого есть свои преимущества и недостатки. Термопары предлагают относительно низкую стоимость, надежность, быстрое время отклика и возможность измерения температуры среды до 2300 ° C (RTD подходят для использования только при температуре до 850 ° C). Однако термопары менее точны, чем термометры сопротивления (их точность со временем ухудшается), а их выходной сигнал является нелинейным. RTD обеспечивают большую точность, повторяемость и стабильность, но они имеют более медленное время отклика и более дорогие, чем термопары.

Промышленная термопара — критерии выбора

Термопара почти всегда является предпочтительным измерительным прибором для приложений с температурой выше 800–900 ° C, но выбор идеальной промышленной термопары также требует некоторых знаний о процессе, в котором будет использоваться прибор.

Приварная защитная гильза (цельноточеная), модель TW20

Во-первых, определите, будет ли термопара непосредственно контактировать с технологическим процессом или она будет интегрирована в узел защитной гильзы.Защитные гильзы защищают термопару от коррозионных, быстротекучих или очень горячих технологических сред. Примерно от 75% до 80% промышленных термопар, устанавливаемых в нефтегазовой, нефтеперерабатывающей, нефтехимической, энергетической и целлюлозно-бумажной промышленности, сегодня используют узлы защитных гильз. Второе решение — это материал. Подавляющее большинство промышленных термопар изготовлено из нержавеющей стали, но для некоторых применений требуются специальные сплавы, такие как Inconel 600, Hastelloy X, Monel или подобные.Обратите внимание, что термопары для высокотемпературных применений используют специальные керамические защитные гильзы для изоляции металлических проводов в сборке прибора. Затем определите, нужен ли вам традиционный промышленный узел термопары или гибкий датчик термопары для использования в тесном или труднодоступном месте. Наконец, вы должны определиться с типом необходимой промышленной термопары. Тип в данном контексте относится к металлической проволоке в приборе, который используется для измерения изменений температуры. Различные металлы имеют разные диапазоны температур и другие свойства, которые делают их подходящими — или непригодными — для использования в определенных областях применения.

Типы промышленных термопар

WIKA предлагает восемь типов термопар. Основные критерии для принятия решения о том, какой из них использовать, зависят от свойств среды, с которой будет контактировать инструмент, а также от температуры приложения.

  • Тип K Термопары NiCr-NiAl — обычно используются в окислительных или инертных газовых средах до 1200 ° C, 2200 ° F (ASTM E230: 1260 ° C, 2300 ° F).
  • Тип J Термопары Fe-CuNi — обычно используются в условиях вакуума, окислительной и восстановительной атмосфере или в атмосфере инертного газа для измерения температуры до 750 ° C, 1380 ° F (ASTM E230: 760 ° C, 1400 ° F).
  • Тип N Термопары NiCrSi-NiSi — обычно используются в окислительной атмосфере, в атмосфере инертного газа или в атмосфере сухого восстановления при температуре до 1200 ° C, 2200 ° F (ASTM E230: 1260 ° C, 2300 ° F). Термопары типа N очень точны при высоких температурах; они часто используются вместо термопар типа K в приложениях, где требуется более длительный срок службы и большая стабильность.
  • Тип E Термопары NiCr-CuNi — обычно используются в окислительных или инертных газовых средах до 900 ° C, 1650 ° F (ASTM E230: 870 ° C, 1600 ° F).
  • Тип T Термопары Cu-CuNi — обычно используются при температурах ниже 0 ° C, 32 ° F с верхним пределом температуры 350 ° C, 660 ° F (ASTM E230: 370 ° C, 700 ° F) в окислительной, восстановительной или инертной газовой среде. Эти термопары обладают высокой устойчивостью к коррозии даже во влажной атмосфере.
  • Типы R, S и B — это термопары из благородных металлов, которые обычно используются для высокотемпературных применений. Типы R и S также используются в некоторых специализированных приложениях из-за их высокой точности и стабильности.

Чтобы найти подходящую промышленную термопару для вашего применения, взгляните на Краткое руководство по электрическим измерениям WIKA. Независимо от того, используете ли вы предварительно выбранные коды продуктов для популярных продуктов или выбираете Quick Order Code Builder, включенный в руководство, легко заказать именно ту термопару, которая вам нужна для вашего конкретного процесса.

Как выбрать термопары для систем измерения температуры

Для многих тестовых приложений измерение температуры является необходимостью.Например, при испытании авиационного двигателя вам может потребоваться измерить температуру коллектора или температуру выхлопных газов. Чтобы помочь вам выполнить эти измерения, VTI Instruments предлагает ряд опций, в том числе серию прецизионных приборов для измерения напряжения EX1000A и надежную систему измерения термопар RX1032.

Термопары

, возможно, являются наиболее распространенным типом датчиков температуры, хотя вы также можете использовать резистивные датчики температуры (RTD) или термисторы.Серия EX1000A поддерживает все три типа датчиков, а RX1032 поддерживает только термопары.

Термопары изготавливаются путем сварки двух разных типов металлов вместе. Это соединение разнородных металлов будет генерировать напряжение, пропорциональное температуре. Существует много различных типов термопар, и разные типы обозначаются буквой. Некоторые из наиболее распространенных типов термопар: J, K, T, E, S, R, B и N.

Поскольку существует множество разновидностей термопар и они измеряют температуру в широком диапазоне температур (до 1800 ° C), термопары являются предпочтительным выбором для многих приложений, требующих использования сильного тепла.При использовании в высокотемпературных условиях датчик помещается в металлический зонд, который защищает датчик от тепла. Термопары, как правило, недорогие, хотя цены могут резко возрасти, если для вашего приложения требуется специальный корпус.

Тип термопары, которую вы должны выбрать, зависит от точности и диапазона температур, который вам нужен. Например, термопары типа J имеют диапазон температур от -200 ° C до 1200 ° C, а термопары типа K имеют диапазон температур от -200 ° C до 1372 ° C.При подключении к RX1032 термопары типа J и типа K имеют типичную точность ± 0,53 ° C. Другие типы термопар охватывают другие диапазоны температур и имеют разную точность, как показано на рисунке ниже.

При использовании термопар следует учитывать компенсацию холодного спая, обеспечиваемую прибором. Когда вы подключаете термопару ко входу прибора, вы фактически формируете там еще одну термопару. Если температура на входном соединении неизвестна, напряжение, генерируемое соединением разнородных металлов на клеммной колодке, приведет к нарушению измерения.

Для достижения максимально возможной точности и стабильности приборы для измерения температуры VTI имеют встроенные изотермические входные секции, которые контролируются прецизионными термисторами, по одному на каждые четыре входных канала. Чтобы гарантировать, что измерения температуры холодного спая коррелируют по току и времени с входными каналами, каналы термистора измеряются при каждом сканировании, обеспечивая максимальное временное разделение менее 4 мс между измерением входного канала и связанного с ним холодного спая. измерение температуры.Для пользователей, которые предпочитают использовать внешний холодный спай, EX10xxA также позволяет программировать до 48 уникальных температур внешнего холодного спая, по одному для каждого входного канала, а входы внутреннего и внешнего термистора холодного спая могут быть смешаны по всему блоку на одном на канал.

Для получения дополнительной информации о термопарах и их использовании в вашей тестовой системе, свяжитесь с одним из наших торговых представителей, посетив powerandtest.com/sales. Вы также можете написать нам по электронной почте в отдел продаж[email protected] или позвоните по телефону 800-733-5427 или 858-450-0085.

Как выбрать и использовать правильный датчик температуры

Вернуться на предыдущую страницу

Введение

Я занимался разработкой, производством и применением датчиков температуры в течение двадцати лет. Я провел несколько обучающих семинаров по датчикам температуры. После длинных объяснений того, как сконструированы и используются резистивные датчики температуры (RTD) и термопары, люди обычно задают вопрос: «Хорошо, а как мне определить, какой датчик использовать в моем приложении?».Настоящая статья призвана ответить на этот вопрос.

После краткого обзора конструкции и использования RTD и термопар для измерения температуры, мы обсудим, что отличает эти датчики друг от друга. Мы обсудим темы температурного диапазона, допусков, точности, взаимозаменяемости, а также относительные сильные и слабые стороны каждого типа. Изучив эти темы, вы лучше поймете, когда следует использовать каждый тип датчика и почему.

Обзор основ RTD и термопар

RTD:

ТС

содержат чувствительный элемент, представляющий собой электрический резистор, сопротивление которого изменяется в зависимости от температуры. Это изменение сопротивления хорошо известно и может повторяться. Чувствительный элемент в RTD обычно содержит катушку с проводом или сетку из проводящей пленки, на которой вырезан рисунок проводника (см. Рисунок 1). Удлинители прикрепляются к чувствительному элементу, поэтому его электрическое сопротивление можно измерить на некотором расстоянии.Затем чувствительный элемент упаковывается, чтобы его можно было разместить в процессе, где он будет достигать той же температуры, которая существует в процессе (см. Рисунок 2).

Термопары:

С другой стороны, термопары

содержат два электрических проводника, изготовленных из разных материалов, которые соединены одним концом. Конец проводов, который будет подвергаться воздействию технологической температуры, называется измерительным переходом. Точка, в которой заканчиваются проводники термопары (обычно там, где проводники подключаются к измерительному устройству), называется опорным спаем (см. Рисунок 3).

Когда измерительный и эталонный спая термопары находятся при разных температурах, внутри проводников образуется милливольтный потенциал. Знание типа используемой термопары, величины милливольтного потенциала внутри термопары и температуры эталонного спая позволяет пользователю определять температуру на измерительном спай.

Милливольтный потенциал, создаваемый проводниками термопары, различается в зависимости от используемых материалов.Некоторые материалы делают термопары лучше, чем другие, потому что милливольтные потенциалы, создаваемые этими материалами, более воспроизводимы и хорошо известны. Этим термопарам присвоены определенные обозначения типа, такие как Тип E, J, K, N, T, B, R и S. Различия между этими типами термопар будут объяснены ниже.

Ограничения температуры для RTD и термопар:

Материалы, используемые в RTD и термопарах, имеют температурные ограничения, которые могут быть важным фактором при их использовании.

RTD

Как указывалось ранее, RTD состоит из чувствительного элемента, проводов для подключения чувствительного элемента к измерительному прибору и какой-то опоры для позиционирования чувствительного элемента в процессе. Каждый из этих материалов устанавливает пределы температуры, которой может подвергаться RTD.

Таблица 1: Материалы чувствительного элемента и пределы температуры
Материал Рабочий диапазон температур
Платина от -450 ° F до 1200 ° F
Никель от -150 ° F до 600 ° F
Медь от -100 ° F до 300 ° F
Никель / железо от 32 ° F до 400 ° F

Чувствительный элемент в RTD обычно содержит платиновый провод или пленку, керамический корпус и керамический цемент или стекло для герметизации чувствительного элемента и поддержки провода элемента.Обычно платиновые чувствительные элементы могут подвергаться воздействию температур примерно до 1200 ° F. Также можно использовать другие материалы, такие как никель, медь и сплав никель / железо, однако их полезные температурные диапазоны несколько ниже, чем для платины. Температуры использования для всех этих материалов показаны в Таблице 1.

Провода, соединяющие чувствительный элемент с измерительными приборами или контрольно-измерительными приборами, обычно изготавливаются из таких материалов, как никель, никелевые сплавы, луженая медь, посеребренная медь или никелированная медь.Используемая изоляция провода также напрямую влияет на температуру, которой может подвергаться RTD. В таблице 2 представлены обычно используемые провода и изоляционные материалы, а также их максимальные температуры использования.

Таблица 2: Пределы температуры соединительного провода
Провода / изоляционные материалы Максимальная рабочая температура
Луженая медь / изоляция ПВХ 221 ° F
Посеребренная медь / FEP с тефлоновой изоляцией 400 ° F
Посеребренная медь / ТФЭ с тефлоновой изоляцией 500 ° F
Никелированная медь / ТФЭ с тефлоновой изоляцией 500 ° F
Никелированная медь / изоляция из стекловолокна 900 ° F
Сплошная никелевая проволока 1200 ° F

Размещение чувствительного элемента в технологическом процессе также требует использования материалов.Наиболее распространенная компоновка заключается в помещении резистора и присоединенных проводов в металлическую трубку с закрытым концом, заполнение трубки демпфирующим вибрацию и / или теплопередающим материалом, например керамическим порошком, и герметизация открытого конца трубки эпоксидной смолой или керамический цемент. Металлические трубки, обычно используемые в RTD, изготовлены из нержавеющей стали (используется при температуре примерно 900 ° F) или инконеля (используется примерно до 1200 ° F). Используемые материалы для гашения вибрации / теплопередачи широко различаются по температурному диапазону.Эти материалы выбираются производителем для обеспечения оптимальных характеристик в зависимости от максимальной температуры, ожидаемой при использовании. Эпоксидные герметики обычно никогда не используются при температуре выше 400-500 ° F. Керамический цемент может подвергаться воздействию температур 2000 ° F и более, но для этого требуются герметики, чтобы не допустить попадания влаги в цемент и материал, поглощающий вибрацию / теплопередачу под ним.

Материалом платинового RTD с наименьшими температурами обычно являются провод и изоляция, используемые для подключения чувствительного элемента к приборам.Производители обычно предлагают две конструкции: низкотемпературную и высокотемпературную. В низкотемпературных конструкциях используется никелированная проволока с тефлоновой изоляцией или посеребренная медная проволока вместе с эпоксидным уплотнением. Эта конструкция обычно ограничивается температурой от 400 до 500 ° F.

В высокотемпературных конструкциях обычно используются никелированная медная проволока с изоляцией из стекловолокна и керамический цемент с максимальной температурой от 900 ° F до 1200 ° F. Некоторые производители также предлагают линейку RTD, в которых используется проволока из никеля или никелевого сплава с керамической изоляцией для работы при температуре до 1200 ° F.

Термопары:

Материалы для термопар

доступны в типах E, J, K, N, T, R, S и B. Эти типы термопар можно разделить на две категории: термопары из недрагоценных металлов и термопары из благородных металлов.

Термопары типа E, J, K, N и T известны как термопары из недрагоценных металлов, потому что они сделаны из обычных материалов, таких как медь, никель, алюминий, железо, хром и кремний. Каждый тип термопары имеет предпочтительные условия использования, например, использование голых термопар типа J (железо / константан) обычно ограничено максимальной температурой 1000 ° F и не рекомендуется для использования в окислительной или сернистой атмосфере из-за разрушения железа. дирижер.Термопары типа T без оболочки (медь / константан) не используются при температуре выше 700 ° F из-за износа медного проводника. Температурные диапазоны для этих типов термопар включены в Таблицу 3, а дополнительная информация о применении — в Таблице 4.

Термопары

типа R, S и B известны как термопары из благородных металлов, потому что они сделаны из платины и родия. Эти термопары используются в приложениях, которые превосходят возможности термопар из недрагоценных металлов. Термопары типов R и S рассчитаны на использование при температурах от 1000 ° F до 2700 ° F, а термопары типа B рассчитаны на использование от 1000 ° F до 3100 ° F.Если ожидается длительное воздействие при температурах выше 2500 ° F, разумно указать термопары типа B для увеличения срока службы термопар. В термопарах типа R&S может наблюдаться значительный рост зерна, если они удерживаются около их верхнего предела использования в течение длительных периодов времени.

Поскольку термопары не имеют чувствительных элементов, они не содержат многих материалов для ограничения температуры, которые есть в RTD. Термопары обычно конструируются с использованием неизолированных проводников, которые затем изолируются спрессованным керамическим порошком или формованными керамическими изоляторами.Такая конструкция позволяет использовать термопары при гораздо более высоких температурах, чем термометры сопротивления.

Допуск, точность и взаимозаменяемость:

Допуск и точность — это наиболее неправильно понимаемые термины при измерении температуры. Термин толерантность относится к определенному требованию, которое обычно составляет плюс или минус некоторая сумма. С другой стороны, точность относится к бесконечному количеству допусков в указанном диапазоне.

Например, RTD содержат чувствительный элемент, который изготовлен так, чтобы иметь определенное электрическое сопротивление при определенной температуре.Самый распространенный пример этого требования — так называемый стандарт DIN. Чтобы соответствовать требованиям стандарта DIN, RTD должен иметь сопротивление 100 Ом — 0,12% (или 0,12 Ом) при 32 ° F (0 ° C), чтобы считаться датчиком класса B (датчик класса A имеет сопротивление 100 Ом. — 0,06%). Допуск — 0,12 Ом применяется только к сопротивлению при 32 ° F и не может применяться к любой другой температуре. Многие поставщики предоставят таблицу взаимозаменяемости для

.

Таблица 3: Типы термопар, диапазоны температур, пределы погрешности
Стандартный Специальный
Тип Материалы Диапазон температур Пределы ошибки Диапазон температур Пределы ошибки
Дж Утюг / константан 32 до 559F (от 0 до 293C) 4F (2.2C) 32 до 527F (от 0 до 275C) 2F (1.1C)
550 до 1400F (от 293 до 760 ° C) 0,75% 527 до 1400F (от 275 до 760C) 0,40%
К Хромель / Алюмель от -328 до -166F (от -200 до -110C) 2%
-166 до 32F (-110 до 0C) 4F (2.2C)
32 до 559F (от 0 до 293C) 4F (2.2C) 32 до 527F (от 0 до 275C) 2F (1.1C)
559 до 2282F (от 293 до 1250C) 0,75% 527 до 2282F (от 275 до 1250C) 0,40%
т Медь / константан от -328 до -89F (от -200 до -67C) 1.50%
-89 до 32F (-67 до 0C) 1,8F (1C)
32 до 271F (от 0 до 133C) 1,8F (1C) от 32 до 257F (от 0 до 125 ° C) 0,9F (0,05 ° C)
271 до 662F (от 133 до 350 ° C) 0,75% 257 до 662F (от 125 до 350 ° C) 0,40%
E хромель / константан от -328 до -89F (от -200 до -67C) 1%
-274 до 32F (от -170 до 0C) 3.1F (1,7 ° C)
32 до 644F (от 0 до 340 ° C) 3,1F (1,7 ° C) от 32 до 482F (от 0 до 250 ° C) 1,8F (1C)
644 до 1652F (от 340 до 900C) 0,50% 482 до 1652F (от 250 до 900 ° C) 0,40%
N Никросил / Нисил 32 до 559F (от 0 до 293C) 4F (2.2C)
559 до 2300F (от 293 до 1260C) 0,75%
R Платина / Платина — 13% родий от 32 до 1112F (от 0 до 600 ° C) 2,7F (1,5 ° C) от 32 до 1112F (от 0 до 600 ° C) 1,1F (0,6C)
1112F до 2642F (от 600 до 1450C) 0,25% 112F до 2642F (от 600 до 1450C) 0.10%
S Платина / Платина-10% родий от 32 до 1112F (от 0 до 600 ° C) 2,7F (1,5 ° C) от 32 до 1112F (от 0 до 600 ° C) 1,1F (0,6C)
1112F до 2642F (от 600 до 1450C) 0,25% 112F до 2642F (от 600 до 1450C) 0,10%
B Платина / Платина-30% родий от 1472 до 3092F (от 800 до 1700 ° C) 0.50% от 1472 до 3092F (от 800 до 1700 ° C)

Таблица 4: Информация о применении термопары

Тип Информация о приложении
E Рекомендуется для постоянно окислительной или инертной атмосферы. Минусовые пределы погрешности не установлены. Самый высокий термоэлектрический выход из распространенных типов термопар.
Дж Подходит для вакуума, восстановительной или инертной атмосферы, окислительной атмосферы с сокращенным сроком службы.Железо быстро окисляется при температуре выше 1000 ° F (538 ° C), поэтому для высоких температур рекомендуется использовать только толстую проволоку. Открытые элементы не должны подвергаться воздействию сернистой атмосферы выше 1000 ° F (538 ° C).
К Рекомендуется для постоянной окислительной или нейтральной атмосферы. В основном используется при температуре выше 1000 ° F (538 ° C). Возможны поломки при контакте с серой. Предпочтительное окисление хрома в положительной ветви при определенных низких концентрациях кислорода вызывает «зеленую гниль» и большие отрицательные отклонения калибровки, наиболее серьезные в диапазоне 1500–1900 ° F (816 1038 ° C).Этому может помешать вентиляция или инертное уплотнение защитной трубки.
Может использоваться в приложениях, где элементы типа K имеют более короткий срок службы и проблемы со стабильностью из-за окисления и развития «зеленой гнили».
Т Может использоваться в окислительной, восстановительной или инертной атмосфере, а также в вакууме. Не подвержен коррозии во влажной атмосфере. Пределы погрешности опубликованы для диапазонов отрицательных температур.
R&S Рекомендуется для высоких температур. Должен быть защищен неметаллической защитной трубкой и керамическими изоляторами. Продолжительное использование при высоких температурах вызывает рост зерна, что может привести к механическому повреждению. Отрицательный калибровочный дрейф, вызванный диффузией родия в чистую часть платины, а также испарением родия. Тип R используется в промышленности, тип S — в лаборатории.
B То же, что и R&S, но имеет меньшую мощность.Кроме того, имеет более высокую максимальную температуру и менее подвержен росту зерна.

RTD, которые предоставляют пользователю таблицу допусков при определенных температурах (см. Таблицу 5):

Таблица 5: Типовая таблица взаимозаменяемости RTD
Температура Допуск при температуре
Температура Сопротивление
-200 ° C –1.3 ° С –0,56 Ом
-100 ° C — 0,8 ° С — 0,32 Ом
0 ° С — 0,3 ° С — 0,12 Ом
100 ° С — 0,8 ° С — 0,30 Ом
200 ° С — 1,3 ° С — 0.48 Ом
300 ° С — 1,8 ° С — 0,64 Ом
400 ° С — 2,3 ° С — 0,79 Ом
500 ° С — 2,8 ° С — 0,93 Ом
600 ° С — 3,3 ° С — 1,06 Ом

С другой стороны, термопары специфицированы иначе, чем термометры сопротивления, потому что они изготавливаются по-другому.В отличие от чувствительного элемента в RTD, милливольтный потенциал, генерируемый термопарой, является функцией состава материала и металлургической структуры проводников. Следовательно, термопарам не присваивается значение при определенной температуре, а задаются пределы погрешности, которые охватывают весь температурный диапазон.

Эти пределы, присвоенные термопарам, известны как стандартные или специальные пределы погрешности. Таблица 3 содержит стандартные и специальные пределы погрешностей для каждого стандартного типа термопары.Следует отметить, что пределы значений погрешности, перечисленные в таблице 3, относятся к новым термопарам перед использованием. Когда термопары подвергаются воздействию технологических условий, изменения в проводниках термопары могут привести к увеличению ошибок. Пользователям рекомендуется периодически выполнять тесты для определения состояния термопар, используемых в приложениях с высокой надежностью или высокой точностью.

Сильные и слабые стороны

У каждого типа датчика температуры есть свои сильные и слабые стороны.

RTD Сильные стороны:

ТС

обычно используются в приложениях, где важны повторяемость и точность. Правильно сконструированные платиновые термометры сопротивления имеют очень стабильные характеристики сопротивления в зависимости от температуры во времени. Если процесс будет выполняться при определенной температуре, удельное сопротивление RTD при этой температуре может быть определено в лаборатории, и оно не будет существенно меняться с течением времени. RTD также допускают более легкую взаимозаменяемость, поскольку их первоначальная вариация намного ниже, чем у термопар.Например, термопара типа K, используемая при 400 ° F, имеет стандартный предел погрешности — 4 ° F. Платиновый RTD стандарта DIN 100 Ом класса B имеет взаимозаменяемость — 2,2 ° F при той же температуре. RTD также могут использоваться со стандартным измерительным кабелем для подключения к дисплею или контрольному оборудованию, где термопары должны иметь соответствующий провод термопары для получения точных измерений.

Слабые стороны RTD:

В той же конфигурации вы можете рассчитывать заплатить от 4 до 10 раз больше за RTD, чем за термопару из недрагоценных металлов.RTD дороже, чем термопары, потому что для его изготовления требуется более сложная конструкция, включая изготовление чувствительного элемента, подключение удлинительных проводов и сборку датчика. RTD не работают так же хорошо, как термопары в условиях сильной вибрации и механических ударов из-за конструкции чувствительного элемента. RTD также ограничены по температуре примерно до 1200 ° F, а термопары могут использоваться до 3100 ° F

.

Прочность термопары:

Термопары

могут использоваться при температурах до 3100 ° F, как правило, стоят меньше, чем RTD, и их можно сделать меньше по размеру (примерно до 30 ° C).020 дюймов в диаметре), чтобы обеспечить более быструю реакцию на температуру. Термопары также более долговечны, чем RTD, и поэтому могут использоваться в приложениях с высокой вибрацией и ударами.

Слабые стороны термопары:

Термопары

менее стабильны, чем термометры сопротивления, при воздействии умеренных или высоких температур. В критических случаях применения термопары следует снимать и испытывать в контролируемых условиях, чтобы проверить работоспособность. Удлинительный провод термопары должен использоваться для подключения датчиков термопары к прибору термопар или контрольному оборудованию.Использование измерительного провода (покрытого медью) приведет к ошибкам при изменении температуры окружающей среды.

Резюме:

И термопары, и термометры сопротивления являются полезными приборами для определения температуры процесса. RTD обеспечивает более высокую точность, чем термопары в своем температурном диапазоне, поскольку платина является более стабильным материалом, чем большинство материалов для термопар. В RTD также используется стандартный измерительный провод для подключения к измерительному или контрольному оборудованию.

Термопары

, как правило, дешевле, чем термометры сопротивления, они более долговечны в условиях сильной вибрации или механических ударов и могут использоваться при более высоких температурах.Термопары могут быть меньше по размеру, чем большинство RTD, чтобы их можно было подобрать для конкретного применения.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *