Калькулятор теплого водяного пола: Расчет трубы для теплого пола водяного, Ватт/М² тепловой и гидравлический

Содержание

Калькулятора теплых полов

Для чего это нужно

Калькулятор теплого пола позволяет легко рассчитать необходимое количество греющего кабеля для основных типов помещений.

Кнопка «Рассчитать» запускает расчет параметров монтажа.

Вы можете сохранить результаты расчета в формате pdf и перейти в каталог для заказа товара.

Результаты программы расчета могут отличаться от результатов профессиональных инженерных расчетов.

Памятка перед монтажем. Частично аккумулирующее отопление

Снижение затрат на электроэнергию может достигаться за счет использования систем отопления, задействованных в ночные часы. Для этого необходимо, чтобы тепло накапливалось в бетонной стяжке во время действия низких тарифов, и обогревало помещение днем. Бетонная стяжка прогревается нагревательными кабелями, интенсивность, скорость прогревании накопление тепла зависит от толщины стяжки, глубины залегания кабеля и материала покрытия пола. Нагревательные кабели можно использовать как для укладки в базовую, так и выравнивающую стяжку. Частично аккумулирующее отопление обычно используется с такими материалами покрытия пола как линолеум, дерево, ковролин. Необходимо убедиться в том, что толщина стяжки достаточна для накопления тепла, в противном случае требуется заложить дополнительные источники отопления.

Правильный температурный режим

Для достижения максимального уровня комфорта мы рекомендуем поддерживать следующие температуры поверхности пола:

  • Линолеум 26-28 °C
  • Керамическая плитка/ бетонный пол 26-28 °C
  • Ламинат 23-27 °C

Максимальная температура пола может быть ограничена терморегулятором.

Если Вам неизвестна максимально допустимая температура поверхности для Вашего материала покрытия пола, пожалуйста, свяжитесь с его производителем.

Важно! Дерево является хорошим теплоизоляционным материалом.

Что нужно учесть при монтаже теплого пола

  • Нагревательные кабели не устанавливаются под мебелью и стационарными предметами
  • Необходимо соблюдать монтажный интервал в расчетных пределах и минимальный радиус изгиба
  • Нельзя допускать пересечения нагревательных кабелей друг с другом
  • Кабель должен находиться в равномерной и однородной среде по всей его длине
  • Во избежание перегрева, кабель нельзя устанавливать внутри теплоизоляционного слоя
  • Во избежание физических повреждений, кабель укладывается только на очищенную поверхность
  • Нагревательный кабель не должен проходить через подвижный шов, изломы или монтироваться в зонах возможного перегрева. Расстояние до источников тепла, например, камина, печи в сауне и т.п. должно быть не менее 0,5 м
  • Возможность использования нагревательного кабеля с материалами покрытия пола регламентируется их производителями
  • Резистивный нагревательный кабель нельзя укорачивать или наращивать
  • Во всех зонах необходимо использовать устройство защитного отключения на 30 мA
  • Угол установки гофро-трубки под датчик на стене должен быть таким, чтобы датчик было легко извлечь в случае его выхода из строя. Датчик устанавливается посередине между витками кабеля
  • Монтажный интервал может быть меньше в зонах максимальных теплопотерь, например, окон, но не менее 2-х радиусов изгиба
  • Нельзя включать кабель до окончательного высыхания стяжки или выравнивающего раствора. Точные сроки регламентируются производителями. Для бетонной стяжки этот срок составляет около 30 дней, для выравнивающего раствора или клея — до 14 дней.

Программа теплый пол 3D калькулькулятор —  

  • Калькулятор для расчета водяного теплого пола онлайн
  • Калькулятора теплых полов
  • Теплый пол (водяной теплый пол)
  • Расчет теплого водяного пола: программа калькулятор
  • Подбор этажных распределительных узлов для систем водяного отопления
  • Вода — удельная теплоемкость
  • 04 [BTU (IT) / (моль ° R)] [BTu (IT) / (фунт м ° F)] [ккал / (кг · K)] [кДж / ( кг K)] [BTU (IT) / кмоль ° R] [BTu (IT) / фунт м ° F] [ккал / кг K] [кДж / кг К] 32. 2 40,0 1,007 4,217 40,032 1,008 4,220 40 39,9 1,005 4,208 39,916 1,005 4,208 1,005 4,208 900 1,001 4,191 39,801 1,002 4,196 60 39,6 0,996 4.169 39,739 1,001 4,189 80 39,2 0,986 4,128 39,660 0,999 4,181 100 38,7 0,975 4,082 39,682 0,998 4,179 120 38,3 0,963 4,033 39,662 0,999 4.181 140 37,7 0,950 3,977 39,702 1.000 4,185 160 37,2 0,937 3,923 39,761 1,001 39,761 1,001 180 36,7 0,923 3,865 39,835 1,003 4,199 200 36.1 0,909 3,805 39,927 1,005 4,209 212 35,7 0,900 3,768 39,993 1,007 4,216 22083 4,216 22083 3,745 40,042 1,008 4,221 240 35,0 0,880 3,686 40.186 1,012 4,236 260 34,4 0,867 3,629 40,364 1,016 4,255 280 33,9 0,854 3,574 40,580 1,0 4,278 300 33,4 0,841 3,522 40,838 1,028 4,305 350 32.3 0,813 3,404 41,685 1,050 4,394 400 31,3 0,789 3,302 42,902 1,080 4,522 450 30,4 3,209 44,009 1,108 4,639 500 29,7 0,748 3,130 47.296 1,191 4,986 550 28,8 0,725 3,035 51,318 1,292 5,410 600 28,3 0,713 2,987 59,6903 900 6,292 625 28,4 0,716 2,997 66,611 1,677 7,022 650 28.9 0,728 3,047 82,851 2,086 8,734 675 29,9 0,754 3,156 126,670 3,189 13,353 . Расчет рекуперации водонагревателя
  • Расчет ОВК
  • куб. Футов в минуту
    720 галлонов в минуту
    210 галлонов в минуту
    . Испарение с водной поверхности

Калькулятор для расчета водяного теплого пола онлайн

Как самостоятельно рассчитываются отдельные элементы отопительной системы

Для начала представим вашему вниманию простую и понятную схему – рисунок, на которой изображено расположение водяных контуров в жилых помещениях.

Рассчитывать мощность следует начинать с элементарных, простых шагов. План расположения водяного отопительного контура станет основной для последующих расчетов. На схеме обычно указывается так же расположение оконных и дверных проемов.

Такие схемы выполняются на миллиметровой бумаге, в масштабе 10 мм соответствует 0,5 м.

Для определения полезной отапливаемой площади следует отталкиваться от шага. Обычно применяются следующие соотношения:

  • при шаге 15 см – полезная площадь не должна превышать 12 кв. метров;
  • при шаге 20 см – не более 16 м2;
  • при шаге 25 см —  не более 20 м2;
  • шаг в 30 см позволяет эффективно отапливать помещение площадью в 25 м2.

Если площадь меньше рекомендуемых параметров, контуры лучше оставлять целым.

Выбираем трубы: материал, диаметр, количество

Для скрытых систем отопления можно использовать металлические и полимерные трубы. Наиболее долговечной и эффективной по праву считается медная система. Однако в нашей стране этот материал используется достаточно редко. Причиной тому – высокая цена. Кроме того, для монтажа медных труб необходимо специальное дорогостоящее оборудование, а значит, самостоятельная их укладка не рентабельна.

Немного чаще чем медь для монтажа «подпольных» систем домашние умельцы используют полипропилен и сшитый полиэтилен (РЕХ-труба). Но и эти материалы нельзя назвать самыми попу

Калькулятора теплых полов

Для чего это нужно

Калькулятор теплого пола позволяет легко рассчитать необходимое количество греющего кабеля для основных типов помещений.

Кнопка «Рассчитать» запускает расчет параметров монтажа.

Вы можете сохранить результаты расчета в формате pdf и перейти в каталог для заказа товара.

Результаты программы расчета могут отличаться от результатов профессиональных инженерных расчетов.

Памятка перед монтажем. Частично аккумулирующее отопление

Снижение затрат на электроэнергию может достигаться за счет использования систем отопления, задействованных в ночные часы. Для этого необходимо, чтобы тепло накапливалось в бетонной стяжке во время действия низких тарифов, и обогревало помещение днем. Бетонная стяжка прогревается нагревательными кабелями, интенсивность, скорость прогревании накопление тепла зависит от толщины стяжки, глубины залегания кабеля и материала покрытия пола. Нагревательные кабели можно использовать как для укладки в базовую, так и выравнивающую стяжку. Частично аккумулирующее отопление обычно используется с такими материалами покрытия пола как линолеум, дерево, ковролин. Необходимо убедиться в том, что толщина стяжки достаточна для накопления тепла, в противном случае требуется заложить дополнительные источники отопления.

Правильный температурный режим

Для достижения максимального уровня комфорта мы рекомендуем поддерживать следующие температуры поверхности пола:

  • Линолеум 26-28 °C
  • Керамическая плитка/ бетонный пол 26-28 °C
  • Ламинат 23-27 °C

Максимальная температура пола может быть ограничена терморегулятором.

Если Вам неизвестна максимально допустимая температура поверхности для Вашего материала покрытия пола, пожалуйста, свяжитесь с его производителем.

Важно! Дерево является хорошим теплоизоляционным материалом.

Что нужно учесть при монтаже теплого пола

  • Нагревательные кабели не устанавливаются под мебелью и стационарными предметами
  • Необходимо соблюдать монтажный интервал в расчетных пределах и минимальный радиус изгиба
  • Нельзя допускать пересечения нагревательных кабелей друг с другом
  • Кабель должен находиться в равномерной и однородной среде по всей его длине
  • Во избежание перегрева, кабель нельзя устанавливать внутри теплоизоляционного слоя
  • Во избежание физических повреждений, кабель укладывается только на очищенную поверхность
  • Нагревательный кабель не должен проходить через подвижный шов, изломы или монтироваться в зонах возможного перегрева. Расстояние до источников тепла, например, камина, печи в сауне и т.п. должно быть не менее 0,5 м
  • Возможность использования нагревательного кабеля с материалами покрытия пола регламентируется их производителями
  • Резистивный нагревательный кабель нельзя укорачивать или наращивать
  • Во всех зонах необходимо использовать устройство защитного отключения на 30 мA
  • Угол установки гофро-трубки под датчик на стене должен быть таким, чтобы датчик было легко извлечь в случае его выхода из строя. Датчик устанавливается посередине между витками кабеля
  • Монтажный интервал может быть меньше в зонах максимальных теплопотерь, например, окон, но не менее 2-х радиусов изгиба
  • Нельзя включать кабель до окончательного высыхания стяжки или выравнивающего раствора. Точные сроки регламентируются производителями. Для бетонной стяжки этот срок составляет около 30 дней, для выравнивающего раствора или клея — до 14 дней.

Теплый пол (водяной теплый пол)

  • VALTEC
  • Теплый пол (водяной теплый пол)

Водяное напольное отопление становится все более популярным, поскольку обладает рядом преимуществ и является более энергоэффективными, по сравнению с традиционными радиаторными системами. Поскольку тепло в данном случае передается излучением от нагретой поверхности, практически отсутствуют конвективные потоки. Вертикальное распределение тепла от пола к потолку не позволяет перегреваться верхним областям помещения, что существенно снижает теплопотери через кровлю, верхние части стен и создает оптимально комфортные температурные условия для находящихся в помещении людей. Экономия от применения водяных теплых полов может достигать 10–30 %. Это возможно благодаря снижению средней температуры воздуха в помещении на 2 °С и температуры нагрева теплоносителя до 30–45 °С. Кроме того, низкотемпературные системы отопления (теплый пол) обладают ярко выраженным эффектом саморегулирования, то есть теплоотдача с поверхности пола прекращается, когда температура в комнате, в результате внешних воздействий (выглянуло солнце) достигает температуры поверхности пола. В то же время, теплоотдача возрастает, когда снижается температура в помещении. Радиаторы работают по тому же принципу, но разница температур между воздухом в комнате и поверхностью радиаторов так велика, что эффект саморегулирования практически пропадает.

VALTEC поставляет на российский рынок широкий ассортимент качественной продукции, позволяющий реализовать систему напольного отопления любой сложности. Это металлополимерная труба, надежные обжимные и пресс-фитинги, коллекторные блоки, насосно-смесительные узлы, а также автоматика, обеспечивающая заданный уровень комфорта в помещениях. Для специалистов разработаны Альбом типовых схем водяного отопления для жилых домов, где собраны различные варианты организации одно- и многоконтурных систем, а также программный комплекс для расчета элементов инженерных систем VALTEC. Программа VALTEC.PRG дает возможность определить теплопотребность помещений и грамотно определить теплотехнические и гидравлические параметры напольного отопления.

Кроме того, инженеры VALTEC продумали готовые решения для монтажа водяного теплого пола с различным уровнем автоматизации («Эконом», «Комфорт», «Премиум») в помещениях площадью 20, 40, 60, 80 и 120 м2. Воспользовавшись этими спецификациями, можно самостоятельно укомплектовать систему напольного отопления своего дома или при выполнении монтажных работ на объекте заказчика.

В помощь специалистам и владельцам жилья разработан также «Типовой комплект водяного теплого пола для помещений площадью до 60 м2

».

Комплексный подход VALTEC к системам напольного отопления гарантирует их экономичность, оптимальную стоимость и длительную безаварийную работу.

Задай свой вопрос по водяным теплым полам

 

Интервью

 

Водяной теплый пол valtec: есть ответы на все вопросы

Каждый, кто начинал строительство нового дома, сталкивался с проблемой выбора. Сначала это выбор проекта, дизайна, строительной организации, затем – материалов, технологий и т.д. Желая помочь читателям в выборе системы отопления, мы пообщались с руководителем направления «Водяной теплый пол» VALTEC Сергеем Пискаревым.

Прежде всего, VALTEC известен как производитель труб и арматуры для внутренних инженерных систем. Почему с 2010 года одним из приоритетных направлений ее развития стали системы для напольного отопления?
– Любому бизнесу необходимо развитие. Малейший простой на месте – это шаг назад. Но и двигаться необходимо в перспективном и востребованном направлении. Проанализировав ситуацию на рынке и оценив свои возможности, мы пришли к решению, что водяной теплый пол – это именно то, что нужно. Специалисты VALTEC давно занимаются подобными системами. Большинство необходимого для их монтажа оборудования у нас уже было. А изучение рынка показало, что в перспективе данная технология может быть очень востребованной. Хотя многие пользователи до сих пор не знают о преимуществах напольного отопления и по старинке применяют только радиаторы.

В чем же заключаются эти преимущества?
– Их достаточно много. В первую очередь – комфорт. В отличие от традиционных отопительных приборов конвективного типа (радиаторов), напольное отопление передает тепло главным образом излучением, и оно распределяется по всему помещению равномерно, отсутствуют зоны локального перегрева или недостаточно прогреваемые участки. При этом температура воздуха постепенно понижается от пола до потолка, а для организма человека такие условия наиболее близки к оптимальным. Необходимо отметить и такие преимущества «теплого пола», как энергоэффективность, эстетика, гигиеничность.

Вы сказали, что водяное напольное отопление – это энергоэффективная система. А чем это обеспечивается?
– Экономия энергии при использовании системы «водяной теплый пол» может быть очень существенной. Дело в том, что температура теплоносителя, поступающего в трубы теплого пола, составляет всего 35–50 °С, что позволяет снизить энергозатраты на нагрев. При этом можно использовать низкотемпературный конденсационный котел с увеличенным КПД. Вертикальное распределение тепла от пола к потолку не позволяет перегреваться верхним областям помещения, поэтому уменьшаются теплопотери через кровлю и верхние части стен.
Поскольку тепло распределяется в помещении равномерно, средняя температура в комнате может быть понижена на 2 °С без изменений в ощущениях тепла человеком, что обеспечивает экономию энергии на 10–20 %. И это при стандартной высоте потолка в 3 м. В том случае, если мы используем теплый пол в помещении с высокими потолками, где нет необходимости прогрева верхних слоев воздуха, экономия составляет 30 % и более.

Вместе с тем, немаловажную роль в экономии играет эффект саморегулирования водяного теплого пола, то есть система сама реагирует на перепады температуры в помещении, изменяя мощность теплового потока. Например, представим себе, что выглянуло солнце, и воздух в комнате нагрелся на 2–4°С. При этом теплоотдача теплого пола самопроизвольно уменьшается на 36–70 %.

А в чем проявляются эстетика и гигиеничность «теплого пола»?
– Все элементы системы надежно скрыты под напольным покрытием, что, согласитесь, лучше подойдет для современных интерьеров, чем торчащие из пола и стен трубы. Это становится особенно важным при использовании в строительстве панорамных окон – от пола до потолка. Да и в ретро-интерьер радиаторы вписываются не очень органично.
Так как тепло передается не конвекцией, а излучением, в воздухе помещения практически отсутствует циркуляция пыли и микроорганизмов. Эта особенность напольного отопления как нельзя кстати для аллергиков. Кроме того, в отличие от электрического теплого пола, водяной не создает электромагнитных полей.
Плюс ко всему, напольное отопление исключает возможность детского травматизма, а в некоторых случаях, как например, при устройстве спортивного зала, оно является самым безопасным решением.

Скажите, какие «подводные камни» могут ожидать владельца коттеджа, если он примет решение использовать систему водяного напольного отопления?
– Главное сделать правильный выбор в пользу того или иного производителя и не ошибиться с монтажной организацией, а точнее – с квалификацией ее специалистов. Неграмотный монтаж способен свести на нет преимущества даже самого передового оборудования. Вот почему мы много внимания уделяем обучению монтажников. Ежемесячно наши специалиста посещают партнеров в различных регионах России и других стран СНГ, проводят семинары, отвечают на вопросы практиков. На семинары, которые каждую пятницу проводятся в офисе VALTEC, может записаться любой желающий. Кроме того, VALTEC издано большое количество технической литературы, разработана компьютерная программа для точного расчета системы.
Как и другая продукция VALTEC, компоненты для напольного отопления имеют 7-летнюю гарантию от производителя.

Водяной теплый пол: вопросы и ответы — проектирование, монтаж, эксплуатация

Расчет теплого водяного пола: программа калькулятор

Теплый пол … Водяной

Водяной теплый пол может быть как альтернативный, так и основной источник тепла. От этого следует отталкиваться при расчетах. Например, может использоваться схема, которая будет обеспечивать полноценный обогрев дома и наоборот, легкий подогрев. Если же напольное отопление будет основным, то должна быть хорошо продуманная и надежная система регулировки.

По этой причине расчет теплого водяного пола требует внимания. В помощь к этому имеются разные программы и онлайн калькулятор. Это поможет выполнить все предварительные расчеты без ошибок. Ошибка на данном этапе может закончиться плохими последствиями, вплоть до демонтажа стяжки.

к содержанию ↑

Что необходимо учесть при расчетах

Перед началом расчета важно знать основные характеристики объекта. Как уже говорилось, на этом этапе следует определиться с методом обогрева данной системы, она будет вспомогательной или основной. При расчете следует учесть конфигурацию и площадь комнаты. Для этого в помощь будет план или разрез указанных размеров.

Если у вас отсутствует план с точными размерами помещения, то первым делом необходимо его сделать!

Чтобы создать такой план потребуется знать такую информацию:

  • Из какого материала строился дом (бетон, дерево, блоки, кирпичи и прочее).
  • Остекление выполнено из стеклопакетов или профиля.
  • Средняя температура местности проживания в зимний период.
  • Имеется ли дополнительный или альтернативный источник тепла.

Более того, важно знать какая температура должна быть внутри помещения при работающем отоплении. Например, если в помещении будет постоянно находится люди, то достаточно будет 29°С. Для проходного и служебного помещения достаточно будет 35 и 33°С соответственно. Кроме всего прочего, важно выяснить тип и толщину теплоизоляции пола. Уже на этом этапе следует решить, какой будет использоваться отделочный материал для пола. Благодаря сбору такой информации получиться произвести точный расчет теплого водяного пола. Тем более что при использовании онлайн калькулятора все эти данные необходимо указать.

Видео об изготовлении схемы теплого пола:

Не менее важно определиться какую температуру должен иметь теплоноситель. В этом вопросе следует учесть два фактора:

  1. Ряд напольных покрытий имеют температурное ограничение нагревания до 35°С.
  2. Система, имеющая насос, котел, радиаторы и трубопровод никогда не будет иметь температуру теплоносителя более 60°С.

Другой вопрос, который следует учесть: как именно будет осуществляться контроль температуры нагрева пола? Как правило, для этого используют терморегулятор, а также датчик, который монтируется непосредственно в пол. Но для водяных систем этих датчиков быть два, для обратки и подачи.

к содержанию ↑

Важные условия для продуктивной работы водяного обогрева пола

Важно знать не только максимально точную информацию по техническим характеристикам дома, но и учитывать особенности трубопровода. Поэтому перед тем, как рассчитать теплый пол при помощи специальной программы следует узнать такие подробности:

  • Какая общая длина отопительного контура. По требованиям монтажа она не должна превышать 120 м.
  • Разница греющих труб не должна превышать 15 м.
  • Расстояние между трубами. В среднем оно будет находиться в пределах 100-200 мм.

Уже с этой информацией можно выполнить необходимые расчеты.

к содержанию ↑

Два метода расчета теплого водяного пола

Существует два решения проблемы по расчету теплых полов. В первом случае потребуется помощь квалифицированных специалистов или компании. Они произведут все необходимые вычисления и измерения. После, они предоставят для вас подробный расчет, учитывая индивидуальные особенности помещения.

В таких компаниях работаю высококвалифицированные специалисты, которые имеют опыт проектирования на промышленном уровне. Это позволит рассчитывать на максимально точный результат, где будут учитываться разные нюансы и тонкости.

Если вы пожелаете, то вам предоставят консультацию по выбору наилучшего напольного покрытия. Процесс изготовления проект получится быстрей, если вы сразу предоставите все чертежи по планировке комнат.

Другой метод не затратный. Для этого на помощь приходит онлайн калькулятор. При этом вы сможете самостоятельно произвести точные вычисления стоимости работ и необходимых материалов. Использование такой программы, позволит определить необходимую мощность пола. Этот показатель будет исходить из общих тепловых потерь. Так, чтобы узнать эту информацию, в калькуляторе следует ввести данные о площади комнаты. При этом в эту сумму не должны включаться зоны, где будет стоять мебель и другое оборудование.

Калькулятор позволит вам избавиться от потребности производить самостоятельные сложные расчеты. Хотя полученные данные будут относительные, от них можно дальше отталкиваться. Также вы сможете узнать о масштабах будущего проекта. При желании можно будет узнать сколько необходимо стяжки. Для этого в программу вводятся следующие показатели:

  • Этаж.
  • Площадь в м2.
  • Толщина стяжки.

Безусловно, точную сумму вы сможете узнать только у специалистов. Но в таком случае вам получиться получить предварительную информацию. В большей степени на конечную сумму за работу и материалы влияет сложность работ, особенности проекта здания и многое другое. Все эти нюансы учитывают специалисты из специализированной компании. Итак, перед тем, как рассчитать теплый водяной пол на калькуляторе помните, что вы получите приблизительные данные. На нашем сайте вы сможете воспользоваться программой онлайн калькулятор.

Видео расчета теплых полов программой:

Остались вопросы?

Подбор этажных распределительных узлов для систем водяного отопления

Подключение к стоякам:

СлеваСправа

Dy:

3/4″1″1 1/4″


Gmax = 1,13 м3/час
      
Qmax = 26,3 KВт

Вид балансировки узла:

Без регулировкиБалансировочный клапанРегулятор перепада давлений

Крепление:

РамаВстроенный шкафПристроенный шкаф

Коллекторы

Тип коллекторного блока:

Без перепускного клапанаС перепускным клапаном

Число выходов:

345678

Dy коллектора:

1″1 1/2″

Воздухоотводчики:

РучныеАвтоматические

Манометры:

НетЕсть

Дренажные краны:

НетЕсть

Теплосчетчики

Место установки:

На прямойНа обратной

Тип выхода:

НетM-BusИмпульсный + M-Bus

Выходы

Регулировка:

НетБалансировочный клапанНастроечный клапанВентильСтабилизатор расхода со скрытой настройкойСтабилизатор расхода с открытой настройкой

Выход


Gном ТС м3/час:   
Gрасч ТС м3/час:   
ΔPрасч КПа  

 

Вода — удельная теплоемкость

Удельная теплоемкость (C) — это количество тепла, необходимое для изменения температуры единицы массы вещества на один градус.

При расчете массового и объемного расхода в системах водяного отопления при более высоких температурах следует скорректировать удельную теплоемкость в соответствии с рисунками и таблицами ниже.

Удельная теплоемкость дается при различных температурах (° C и ° F) и давлении водонасыщения (которое для практического использования дает тот же результат, что и атмосферное давление при температурах

  • I удельная теплоемкость сохора (C v ) для воды в замкнутой системе постоянного объема , (= изометрической или изометрической ).
  • Изобарическая теплоемкость (C p ) для воды в системе постоянного давления (ΔP = 0).
Онлайн-калькулятор удельной теплоемкости воды

Калькулятор ниже можно использовать для расчета удельной теплоемкости жидкой воды при постоянном объеме или постоянном давлении и заданных температурах.
Выходная удельная теплоемкость выражается в кДж / (кмоль * K), кДж / (кг * K), кВтч / (кг * K), ккал / (кг K), британских тепловых единицах (IT) / (моль * ° R). и Btu (IT) / (фунт м * ° R)

Примечание! Температура должна быть в пределах 0–370 ° C, 32–700 ° F, 273–645 K и 492–1160 ° R, чтобы получить допустимые значения.

См. Вода и тяжелая вода — термодинамические свойства.
См. Также другие свойства Вода при меняющейся температуре и давлении : Точки кипения при высоком давлении, Точки кипения при вакуумном давлении, Плотность и удельный вес, Динамическая и кинематическая вязкость, Энтальпия и энтропия, Теплота испарения, Константа ионизации , pK w , нормальной и тяжелой воды, точки плавления при высоком давлении, число Прандтля, свойства в условиях равновесия газ-жидкость, давление насыщения, удельный вес, удельный объем, теплопроводность, температуропроводность и давление пара в газожидкостном состоянии. равновесие,
, а также Удельная теплоемкость воздуха — при постоянном давлении и переменной температуре, воздух — при постоянной температуре и переменном давлении, аммиак, бутан, диоксид углерода, монооксид углерода, этан, этанол, этилен, водород, метан, метанол , Азот, кислород и пропан.

Удельная теплоемкость для жидкой воды при температурах от 0 до 360 ° C:

Для полного стола с изобарической удельной теплоемкостью — поверните экран!

[Дж / (моль K)]

340

Температура Изохорная удельная теплоемкость (C v )
Изобарическая удельная теплоемкость (C p )
[° C] [кДж / (кг K)] [кВтч / (кг K)] [ккал / (кг K)]
[BTU ( IT) / фунт м ° F]
[Дж / (моль · K)] [кДж / (кг · K)] [кВтч / (кг · K)] [ккал / (кг · К)]
[британские тепловые единицы (IT) / фунт м ° F]
0. 01 75,981 4,2174 0,001172 1,0073 76,026 4,2199 0,001172 1,0079
10 75,505 4,1910 0,001164 1,0010 758 4,1910

0,001165 1,0021
20 74,893 4,1570 0,001155 0,9929 75.386 4,1844 0,001162 0,9994
25 74,548 4,1379 0,001149 0,9883 75,336 4,1816 0,001162 0,9988
74,11162 0,9988
74 0,001144 0,9834 75,309 4,1801 0,001161 0,9984
40 73.392 4,0737 0,001132 0,9730 75,300 4,1796 0,001161 0,9983
50 72,540 4,0264 0,001118 0,9617 75,31134 0,001118 0,9617 75,31134 0,9987
60 71,644 3,9767 0,001105 0,9498 75,399 4. 1851 0,001163 0,9996
70 70,716 3,9252 0,001090 0,9375 75,491 4,1902 0,001164 1.0008
80 69,78
80 69 0,9250 75,611 4,1969 0,001166 1,0024
90 68.828 3,8204 0,001061 0,9125 75,763 4,2053 0,001168 1,0044
100 67,888 3,7682 0,001047 0,9000 75.91511 1,0069
110 66,960 3,7167 0,001032 0,8877 76,177 4.2283 0,001175 1,0099
120 66,050 3,6662 0,001018 0,8757 76,451 4,2435 0,001179 1,0135
140 0,8525 77,155 4,2826 0,001190 1,0229
160 62. 674 3,4788 0,000966 0,8309 78,107 4,3354 0,001204 1,0355
180 61,163 3,3949 0,000943 0,81060 7 0,81060 1,0521
200 59,775 3,3179 0,000922 0,7925 80,996 4.4958 0,001249 1,0738
220 58,514 3,2479 0,000902 0,7757 83,137 4,6146 0,001282 1,1022
240 57003 0,7607 85,971 4,7719 0,001326 1,1397
260 56.392 3,1301 0,000869 0,7476 89,821 4,9856 0,001385 1,1908
280 55,578 3,0849 0,000857 0,7368 95,2857 0,7368 1,2632
300 55,003 3,0530 0,000848 0,7292 103,60 5. 7504 0,001597 1,3735
320 54,819 3,0428 0,000845 0,7268 117,78 6,5373 0,001816 1,5614
55514
340 0,7352 147,88 8,2080 0,002280 1,9604
360 59.402 3,2972 0,000916 0,7875 270,31 15,004 0,004168 3,5836

Удельная теплоемкость для жидкой воды при температурах от 32 до 675 ° F:

Для полной таблицы с изобарической температурой Тепло — поверните экран!

900

1,0

Температура Изохорная удельная теплоемкость (C v )
Изобарическая удельная теплоемкость (C p )
[° F]

04 [BTU (IT) / (моль ° R)]

[BTu (IT) / (фунт м ° F)]
[ккал / (кг · K)]
[кДж / ( кг K)] [BTU (IT) / кмоль ° R] [BTu (IT) / фунт м ° F]
[ккал / кг K]
[кДж / кг К]
32. 2 40,0 1,007 4,217 40,032 1,008 4,220
40 39,9 1,005 4,208 39,916 1,005 4,208 1,005 4,208
1,001 4,191 39,801 1,002 4,196
60 39,6 0,996 4.169 39,739 1,001 4,189
80 39,2 0,986 4,128 39,660 0,999 4,181
100 38,7 0,975 4,082 39,682 0,998 4,179
120 38,3 0,963 4,033 39,662 0,999 4.181
140 37,7 0,950 3,977 39,702 1.000 4,185
160 37,2 0,937 3,923 39,761 1,001 39,761 1,001180 36,7 0,923 3,865 39,835 1,003 4,199
200 36. 1 0,909 3,805 39,927 1,005 4,209
212 35,7 0,900 3,768 39,993 1,007 4,216
22083 4,216
22083 3,745 40,042 1,008 4,221
240 35,0 0,880 3,686 40.186 1,012 4,236
260 34,4 0,867 3,629 40,364 1,016 4,255
280 33,9 0,854 3,574 40,580 4,278
300 33,4 0,841 3,522 40,838 1,028 4,305
350 32.3 0,813 3,404 41,685 1,050 4,394
400 31,3 0,789 3,302 42,902 1,080 4,522
450 30,4 3,209 44,009 1,108 4,639
500 29,7 0,748 3,130 47. 296 1,191 4,986
550 28,8 0,725 3,035 51,318 1,292 5,410
600 28,3 0,713 2,987 59,6903 900 6,292
625 28,4 0,716 2,997 66,611 1,677 7,022
650 28.9 0,728 3,047 82,851 2,086 8,734
675 29,9 0,754 3,156 126,670 3,189 13,353

.

Расчет рекуперации водонагревателя

Расчет рекуперации электрической воды
обогреватель / лето и зима:

A) Типичный жилой неодновременный водонагреватель мощностью 4500 Вт
элементы.
Лето:
65 температура входящей воды. Ресурс: Средняя температура неглубоких грунтовых вод
Термостат установлен на
125F:
4500 ватт разделить на [повышение температуры 2,42 x 60] = 31 галлон в час.
Восстановление летом
Зима:
40 температура входящей воды.
Термостат настроен на
125F:
4500 ватт разделить на [2.42 x 85 повышение температуры] = 21 галлон / час
восстановление зимой

B) Бытовой водонагреватель переведен на одновременную проводку, где оба
элементы могут нагреваться одновременно
Установите 2 элемента — 5550 Вт каждый, подключенный к отдельному 30 А
выключатель. Ресурс: Как подключить синхронный водонагреватель
Лето:
65 температура входящей воды.
Термостат настроен на
125F. Ресурс: Как отрегулировать температуру водонагревателя
11000 ватт разделить на [повышение температуры 2,42 x 60] = 75 галлонов в час.
рекуперация для одновременного водонагревателя летом
Зима:
40 температура входящей воды.
Термостат настроен на
125F:
11000 ватт разделить на [повышение температуры 2,42 x 85] = 53 галлона в час.
рекуперация на одновременный водонагреватель зимой

Повышение
восстановление путем повышения температуры на термостате
Повышение рекуперации путем изменения настройки термостата. Ресурс: Как отрегулировать температуру водонагревателя
Верхний и нижний термостат можно настроить по-разному.
Таймер можно использовать для контроля разницы температур и экономии денег
путем переключения мощности нагрева воды в зависимости от пикового использования
раз.Ресурс: Используйте таймер для управления термостатами

Увеличить
восстановление путем установки темперирующего бака для пассивного подогрева входящего
холодная вода
Темперирующая емкость

Увеличение
рекуперация путем установки 2 водонагревателей
2 водонагревателя означают, что имеется больший объем горячей воды, и пользователь
меньше вероятность нехватки горячей воды
Ресурс: два водонагревателя

Мнение:
Повышение
термостат до 130F — самый простой способ увеличить восстановление. Установка
темперирующий резервуар — дополнительная работа, но эффективна для повышения температуры
холодной поступающей воды.

Если требуется очень высокое восстановление, подключите дополнительный выключатель и работайте.
еще один провод 10 калибра для одновременного
операция — лучший способ ускорить выздоровление.
Ресурс: Как подключить одновременный водонагреватель
Преобразование в одновременный — больше работы, но безопаснее, чем
повышение температуры воды до 140-150F.

.

Расчет ОВК

Расчеты размера системы HVAC
в зале Macalister будет проходить двумя способами. Первый метод будет
основываться на оценках кубических футов в минуту и ​​тоннажа, указанных в ASHRAE. Второй способ,
что более подробно, предполагает использование программы моделирования Carrier E-20
для расчета нагрузок.

Стандарты оценки ASHRAE:

ASHRAE устанавливает стандарты для
оценка кубических футов в минуту и ​​тоннажа в здании.При расходе 20 куб. Футов в минуту на человека
стандарт и система повторного нагрева, ASHRAE устанавливает следующие числа:

Расчетная охлаждающая нагрузка (тонны): от 0,25 до
0,35 тонны на 100 квадратных футов общей площади здания

Расчетная тепловая нагрузка (MBH): от 1,5 до
2,5 MBH на 100 квадратных футов общей площади здания

Расчетный кубический фут в минуту: от 75 до 125 кубических футов в минуту на 100
квадратных футов общей площади здания

охлажденной воды, галлонов в минуту: 2. 4 галлона в минуту на тонну
охлаждение

галлонов горячей воды в минуту: отопление MBH, разделенное на
10

Для наших оценок мы будем использовать
середины этих значений, чтобы дать ответ, который не будет ни слишком либеральным, ни
слишком консервативен.

Метод оценки ASHRAE для Macalister
Зал:

Общая площадь кондиционированных
место в Macalister
Зал выглядит следующим образом:

28400 футов 2 в подвале

24400 футов 2 в первом
этаж

13 500 футов 2 на каждой башне
этаж

10,500 футов 2 на факультете
клуб

Общая кондиционированная площадь: 117 300 футов 2

Исходя из рассчитанной площади
выше и стандартов ASHRAE, изложенных ранее, нагрузки на здание
рассчитывается по следующей таблице:

Охлаждающая нагрузка

Нагревательная нагрузка

Всего CFM

Охлажденная вода

Горячая вода

350 тонн

2350 МБХ

117300 куб. Футов в минуту

840 галлонов в минуту

235 галлонов в минуту

Программа Carrier E-20

Программа Carrier E-20 намного точнее, чем упомянутая ранее
предварительный расчет.С помощью этой программы рассчитываются нагрузки на здание.
с учетом строительных материалов, направленная облицовка,
инфильтрация, графики занятости, загрузка оборудования, загрузка людей и др.
уставки в системе HVAC. Обрисован ввод данных в программу.
ниже.

Температура воздуха в регионе Филадельфия

Сезон

Сухой термостат (F)

Мокрая лампа (F)

Суточный диапазон (F)

Зима

10

НЕТ

НЕТ

Лето

93

75

14

Филадельфия Высота над уровнем моря: 26 футов

Philadelphia Latitude Адрес: 40

Информация о строительных материалах:

В следующих разделах показаны две основные формы конструкции Macalister.
Зал.Башня состоит из 6-дюймовой сборной бетонной панели снаружи.
большое воздушное пространство и внутреннее пространство из 4-х дюймовых бетонных блоков. Первый
пол состоит из кирпича 4 дюйма, с воздушным зазором 1 дюйм и бетона 8 дюймов.
блочная стена.

Стена 1-го этажа
Секция Башня Стеновая Секция

Из приведенных выше секций стен я рассчитал общее значение U стен.
(БТЕ / час / фут 2 / F) в зависимости от используемых материалов и установленных стандартов
вперед в ASHRAE.Табличные значения следующие:

Строительство 1 этажа:

Строительные материалы

R-Value (часы x футы 2 x F / BTU)

Значение U (БТЕ / час / фут 2 / фут)

Сопротивление наружному воздуху

0. 33

3,03

Лицевой кирпич 4 «

0,43

2,33

Воздушный зазор 1 «

0,91

1,10

8 «CMU

2.02

0,50

Внутреннее сопротивление воздуха

0,69

1,45

Итого

4,38

8,41

Строительство башни:

Строительные материалы

R-Value (часы x футы 2 x F / BTU)

Значение U (БТЕ / час / фут 2 / фут)

Сопротивление наружному воздуху

0. 33

3,03

6-дюймовая сборная железобетонная панель

3,22

0,31

Воздушный зазор 6 дюймов

0,91

1,10

4 «CMU

1.11

0,90

Внутреннее сопротивление воздуха

0,69

1,45

Итого

6,26

6,79

Типовая конструкция окна:

Предполагается алюминиевое стеклопакетное окно с терморазрывом и светлыми плафонами.
на внутренней.Эти предположения приводят к следующим значениям:

Общее значение U: 0,537 (БТЕ / ч / фут 2 / фут)
Коэффициент затенения: 0,454

Типовая конструкция крыши:

Предполагается монолитная крыша на стальном настиле 22 колеи с изоляцией из плит Р-7.
Эти предположения приводят к следующему значению:

Общее значение U:.121 (БТЕ / ч / фут 2 / фут)

Типичная световая нагрузка: 1,5 Вт / фут 2

Типичная нагрузка на людей: 1 человек / 150 футов 2 при выполнении офисной работы:

Явная нагрузка: 245 BTUH
Скрытая нагрузка: 205 BTU

Типичные потери при инфильтрации: 2 воздухообмена в час

Типовая загрузка оборудования: . 5 Вт / фут 2

Уставки и коэффициенты безопасности:

Уравнения, используемые E-20 для расчета нагрузок:

1. Нагревательная нагрузка: Q = U x A x T

Где:

Q = Скорость теплопередачи, БТЕ / час
U = Общий коэффициент теплопередачи, БТЕ / час / фут 2 / F
A = Площадь поверхности, через которую тепло потоки, футы 2
T = разница температур, через которую течет тепло, F

Площадь стены рассчитана исходя из высоты пола 12 футов-0 дюймов.
в башне и 15′-0 «на первом этаже.

2. Охлаждающая нагрузка: Q = U x A x CLTD c

Где:

Q = Нагрузка на охлаждение для крыши, стекла или стены, БТЕ / час
U = Общий коэффициент теплопередачи для крыши, стекла или стены, БТЕ / час / фут 2 / F
A = Площадь крыши, стекла или стены, футы 2
CLTD c = Скорректированная разница температур охлаждающей нагрузки, F

CLTD c — это измененное значение разницы температур, которая
учитывает эффект накопления тепла и запаздывания.

3. Солнечное излучение через стекло: Q = SHGF x A x SC x CLF

Где:

SHGF основан на ориентации и времени года, а SC основан на
вид драпировки на окне.

4. Осветительная нагрузка: Q = 3,4 x Ш x BF x CLF

Где:

BF учитывает тепловые потери в балластах люминесцентных ламп и
CLF учитывает накопление тепла в осветительных приборах.

5. Нагрузка на людей: Q s = q s x n x CLF, Q l
= q l x n

Где:

Q с и Q л = Явное и скрытое тепловыделение, БТЕ / час
q с и q л = Явное и скрытое тепловыделение на
человек, БТЕ / час на человека
n = Количество человек
CLF = Коэффициент охлаждающей нагрузки для людей

Carrier E-20 Результаты:

Информация была введена на основе вышеуказанных уставок и уравнений в
Программа Carrier E-20 и были получены следующие результаты:

Охлаждающая нагрузка

Нагревательная нагрузка

Всего CFM

Охлажденная вода

Горячая вода

300 тонн

2100 МБХ

куб. Футов в минуту

720 галлонов в минуту

210 галлонов в минуту

.

Испарение с водной поверхности

Испарение воды с водной поверхности — например, из открытого резервуара, плавательного бассейна и т.п. — зависит от температуры воды, температуры воздуха, влажности воздуха и скорости воздуха над поверхностью воды.

Количество испарившейся воды можно выразить как:

г с = Θ A (x с — x) / 3600 (1)

или

г ч = Θ A (x с — x)

где

г с = количество испарившейся воды в секунду (кг / с)

г ч = количество испарившейся воды в час (кг / ч)

Θ = ( 25 + 19 v ) = коэффициент испарения (кг / м 2 ч)

v = скорость воздуха над водной поверхностью (м / с)

A = площадь водной поверхности (м 2 )

x с = максимальная влажность соотношение насыщенного воздуха при той же температуре, что и поверхность воды (кг / кг) (кг H 2 O в кг сухого воздуха)

x = соотношение влажности воздуха (кг / кг) (кг H 2 O в кг Сухого воздуха)

Примечание! Единицы для Θ не совпадают, так как это эмпирическое уравнение — результат опыта и экспериментов.

Необходимое теплоснабжение

Большая часть тепла или энергии, необходимых для испарения, берется из самой воды. Для поддержания температуры воды — в воду необходимо подводить тепло.

Необходимое количество тепла для покрытия испарения можно рассчитать как

q = h we g s (2)

где

q = подводимое тепло (кДж / с ( кВт))

h we = теплота испарения воды (кДж / кг)

Пример — Испаренная вода из плавательного бассейна

Имеется бассейн 50 м x 20 м с температурой воды 20 o С. Максимальный коэффициент насыщения влажности в воздухе над поверхностью воды составляет 0,014659 кг / кг. При температуре воздуха 25 o C и 50% относительной влажности коэффициент влажности в воздухе составляет 0,0098 кг / кг — см. Диаграмму Молье.

При скорости воздуха над поверхностью воды 0,5 м / с коэффициент испарения можно рассчитать как

Θ = (25 + 19 (0,5 м / с))

= 34.5 кг / м 2 h

Площадь бассейна можно рассчитать как

A = (50 м) (20 м)

= 1000 м 2

Испарение от поверхность может быть рассчитана как

г с = (34,5 кг / м 2 ч ) (1000 м 2 ) ((0,014659 кг / кг) — (0,0098 кг / кг) ) / 3600

= 0,047 кг / с

Теплота (энтальпия) испарения воды при температуре 20 o C составляет 2454 кДж / кг .Подвод тепла, необходимый для поддержания температуры воды в бассейне, можно рассчитать как

q = (2454 кДж / кг) (0,047 кг / с)

= 115,3 кВт

Потери энергии и необходимое количество тепла можно уменьшить на

  • уменьшение скорости воздуха над поверхностью воды — ограниченный эффект
  • уменьшение размера бассейна — не совсем практично
  • уменьшение температуры воды — не комфортное решение
  • снижение температуры воздуха — не комфортное решение
  • увеличение содержания влаги в воздухе — может увеличить конденсацию и повреждение строительных конструкций для закрытых бассейнов
  • удалить влажную поверхность — возможно с пластиковыми одеялами на поверхности воды снаружи время операции.Очень эффективный и часто используемый

Примечание! — во время работы в бассейне может резко увеличиваться испарение воды и необходимое количество тепла.

Чтобы снизить потребление энергии и избежать повреждения строительных конструкций из-за влаги, обычно используют устройства рециркуляции тепла с тепловыми насосами, передающими скрытое тепло из воздуха в воду в бассейне.

Калькулятор испарения с поверхности воды

.

Расчет теплого пола водяного калькулятор онлайн

Пол с водяным отоплением может использоваться как главный источник тепла в доме, так и как дополнительный.

Однако следует учитывать, что теплый пол в качестве основного источника отопления может применяться лишь тогда, когда площадь обогрева будет более 70% по отношению к общей площади помещения.

В зависимости от схемы, по которой теплый пол будет работать, производится его расчет. Например, будет ли он для большего комфорта только немного подогревать поверхность, или он должен обеспечить теплом все помещение? Второй вариант требует, чтобы наряду с устройством более сложной конструкции пола система его настройки была очень надежной.

Однако независимо от выбранного вами варианта отопления к расчету водяного теплого пола нужно подходить очень тщательно. Потому что, если на этапе проектирования вы допустите ошибку, она дорого обойдется. Для ее исправления придется вскрывать стяжку, что, соответственно, приведет к демонтажу напольного покрытия, повреждению внутренней отделки помещения и другим неприятностям. К тому же, на это уйдет много времени и денежных средств.

На что необходимо обратить внимание при составлении проекта водяного теплого пола?

Непременно должно быть учтено:

– какой площади отапливаемое здание и какая его конфигурация;

– размеры и виды остекления;

– структура стен и материалы, из которых они выполнены;

– размещение коллекторов;

– применяемое напольное покрытие;

– площадь дверей;

– как расположен тепловой генератор и какого он вида.

Определите температурный режим, оптимальный для вашего проживания в этом помещении.

Если вы учтете все эти данные, водяной пол обеспечит вам комфортное проживание в доме и будет надежным.

С большой точностью все вычисления можно сделать, воспользовавшись онлайн-калькулятором. За основу работы специальной программы взят метод коэффициентов, в соответствии с которым берутся эталонные расчеты теплых полов. Они изменяются в зависимости от вносимых данных (шага трубы, типа, высоты стяжки и т.д.).

Шаг трубы, м.


0.050.10.150.20.250.30.35

Труба


Pex-Al-Pex 16×2 (Металлопластик)Pex-Al-Pex 16×2.25 (Металлопластик)Pex-Al-Pex 20×2 (Металлопластик)Pex-Al-Pex 20×2.25 (Металлопластик)Pex 14×2 (Сшитый полиэтилен)Pex 16×2 (Сшитый полиэтилен)Pex 16×2.2 (Сшитый полиэтилен)Pex 18×2 (Сшитый полиэтилен)Pex 18×2.5 (Сшитый полиэтилен)Pex 20×2 (Сшитый полиэтилен)PP-R 20×3.4 (Полипропилен)PP-R 25×4.2 (Полипропилен)Cu 10×1 (Медь)Cu 12×1 (Медь)Cu 15×1 (Медь)Cu 18×1 (Медь)Cu 22×1 (Медь)

Напольное покрытие


ПлиткаЛаминат на подложкеПаркет на фанереКовролин

как правильно рассчитать площадь теплого водяного пола, верная формула расчета мощности в частном доме

Благоустройство дома должно начинаться с соответствующего расчета. Он даст примерные представления обо всех характеристиках запланированных работ и раскроет вопрос рентабельности идеи в целом. Особенно расчет важен в случае установки теплых полов в частном доме.

Особенности

Теплый пол является обогревающим оборудованием, и его устойчивая работа крайне важна. Она зависит не только от качества монтажа, но и от использованных материалов. Важнейшей составляющей эффективности работы пола является надежный расчет всех рабочих параметров. Еще из школьных задачек понятно, что сложно что-то рассчитать, не понимая смысла, поэтому нужно разобраться в принципах работы отопительной системы и в особенностях ее размещения. Существует два вида теплых полов:

  • теплые полы с водяным теплоносителем;
  • электрические теплые полы.

Конструкция водяных теплых полов устроена так, что обогрев происходит за счет тепла, отдаваемого отопительными контурами, состоящими из водяных труб небольшого диаметра. Эти трубки прокладываются под поверхностью пола и зацикливаются у обогревающего агрегата – котла, который отвечает за обогрев. В большинстве случаев система дополняется устройствами, обеспечивающими комфортный нагрев, а также средствами регулирования.

Теплые полы, работающие за счет электроэнергии, осуществляют нагрев поверхности пола по похожей технологии. Вместо трубок в конструкцию пола укладывается специальный двухжильный кабель, который является теплоизлучающим проводником. Интенсивность излучения регулируется специальным терморегулятором.

Нужно иметь представление и о том, как располагается эта система в обогреваемом помещении. Для простоты понимания нужно представить пол как слоеный торт. Первым каркасным слоем обычно является бетонная плита, на которую стелется рулон гидроизоляционного материала. Далее накладывают материал с маленьким сопротивлением теплопередаче, например, пенополистерол, который утепляется фольгой. Наконец, на это все накладывают стяжку, в которую монтируются отопительные трубы теплого пола.

Расчет теплых полов представляет собой довольно серьезную задачу. Выполнить его нужно максимально внимательно. В результате это позволит получить полное представление о необходимых характеристиках для насоса, протяженности трубок отопления, количестве теплоизлучения для конкретных случаев и многом другом. Конечно, если есть деньги, то можно заплатить за комплекс услуг специалистам, но лучше держать все под своим контролем.

Несмотря на то, что расчет непростой, следуя пошаговым указаниям, справиться с ним не будет сложно.

Таблица расчета в частном доме

Теплый пол может служить в качестве главного источника отопления в помещении или средством для обогрева только поверхности пола. В зависимости от того, какие конкретно функции планируется возложить на систему теплого пола, и ведется расчет его теплоотдачи. Помимо этого, входными данными также являются геометрические и структурные характеристики помещения. Сперва необходимо выяснить, какое количество тепла будет теряться за счет конструктивных особенностей помещения. Не зная этого параметра, нельзя понять, сколько тепла должен отдавать отопительный контур, на что в целом и ориентирован расчет.

Только после этого шага можно подобрать остальные параметры системы, такие как:

  • требуемая мощность насоса;
  • мощность электрокотла или газового котла;
  • материал и толщина трубок теплоносителя;
  • длина контуров.

В том случае, если система отопления в доме функционирует отлично, и от системы теплого пола требуется только утепление поверхности пола, главной расчетной величиной будет метраж отапливаемого помещения. Тепловые потери и длины прокладываемых трубных контуров теплого водяного пола главным образом будут зависеть от геометрии обогреваемой поверхности. Чтобы расчет был абсолютно точным, нужно учесть климат, строительные особенности, этажность и многое другое. В итоге получится довольно сложный тепловой расчет.

Может оказаться так, что потребитель не является профессионалом, а сэкономить на обустройстве дома все же хочет. В таком случае, имеется возможность воспользоваться усредненным показателями теплопотребления для частных домов. Обогрев дома с помощью теплого пола применяется достаточно давно, и опытными специалистами сформирована специальная таблица. Она показывает необходимое количество тепла для предполагаемой комнаты, в которой будут размещены отопительные контуры водяного пола.

Формула мощности

В большинстве случаев теплый пол используют как систему, заменяющую отопительные радиаторы. Тогда расчет, естественно, усложнится, потому что нужно учесть все факторы. Для того, чтобы была возможным обогреть весь внутренний объем комнаты, нужно располагать информацией о теплопотерях помещения. Только после этого, зная мощность отопительного контура, можно начать его проектировать. Итак, сам расчет выглядит следующим образом:

Мк = 1,2 x Q, где Мк – необходимая мощность теплоотдачи отопительного контура, Q – это те самые теплопотери, а 1,2 является коэффициентом погрешности.

Из формулы понятно, что целевым параметром является температура теплоносителя в контуре, для определения которой нужно вычислить потери тепла. Для их определения нужно будет пройтись по дому с рулеткой. Необходимо вымерить площади и толщины всех ограждающих объектов: стен, пола, окон, дверей и так далее. Для учета структуры материала всех объектов понадобится коэффициент, характеризующий теплопроводность отдельных материалов (λ). Соответственно, нужно знать, из чего сделано то, что подлежит расчету, будь то стена, дверь или потолок. Все популярные строительные материалы и их коэффициенты приведены в следующей таблице:

Теплопотери рассчитываются отдельно для каждого оградительного элемента помещения, так как каждый объект обладает разными свойствами. Вычисление производится по следующей формуле:

Q = (1/R) x (tвн-tн) x (1 + ∑β) х S, где R – это температурное сопротивление сырьевого материала, из которого сделано ограждающее сооружение, t – температура сооружения, индексы соответственно подразумевают наружную и внутреннюю температуру, S – геометрическая площадь элемента, β – климатические теплопотери в зависимости от стороны света, которые необходимо учесть.

Высчитанные потери тепла по отдельным элементам в итоге суммируются. Так, полученные общие теплопотери помещения подставляют в формулу для вычисления Мк – мощности теплоотдачи контура.

Для примера рассчитаем требуемую теплоотдачу контура для блочного помещения 20х20 м, ширина стен которого составляет 2,5 мм. Исходя из того, что термическое сопротивление пенобетонных блоков равно 0,29 (Вт/м x K), получим расчетное значение Rпб = 0,25/0.29 = 0,862 (Вт/м x K). Стены отштукатурены слоем в 3 мм, а это означает, что к полученному сопротивлению нужно прибавить Rшт = 0,03/0,29 = 0,1 (Вт/м x K). Значит, общее термическое сопротивление стены – Rст = 0,1 + 0,862 = 0,962 (Вт/м x K). Далее вычислим потери тепла по вышеуказанной формуле:

Q = (1/0,962) x (20 – (-10)) x (1 + 0,05) x 40 = 1309 Вт.

Абсолютно так же вычислим теплопотери через потолок, дверь и окна. Все полученное суммируем и подставляем в формулу для определения мощности контура отопления. К полученному значению нужно добавить 10%, которые внесут в расчет поправку на воздушную инфильтрацию. С этим может справиться любой калькулятор.

Как правильно рассчитать укладку?

После того, как выяснена мощность, необходимая теплому полу, можно ознакомиться с тонкостями расположения его контура. Далее останется лишь посчитать необходимую длину контура, что поможет составить представление о предстоящих расходахДля наглядности нужно сделать набросок на миллиметровке. Чертеж должен быть выполнен с учетом шага трубы и масштабных коэффициентов.

Шаг – это вымеренный промежуток пустот между трубами, он должен быть выбран в соответствии с несколькими условиями:

  • при перемещении по полу человеческая ступня не должна ощущать разницу температур, Так, если шаг слишком велик, то поверхность будет обогреваться полосами.
  • Шаг должен быть выбран таким образом, чтобы труба максимально экономично и эффективно выполняла свою функцию.

Для безошибочного монтажа трубопровода нужно понять достоинства и недостатки используемых типов укладки. В настоящее время для монтажа отопительного трубопровода пользуются 4 схемами:

  • «Улитка (спираль)» – самый востребованный вариант, потому что такая укладка обеспечивает равномерное распространение тепловой энергии. Расположение происходит от периферии к центру с постоянным уменьшением радиуса, а потом в другую сторону. При использовании данного метода длина шага может быть любой величины, начиная от 10 мм.

Также данный способ является самым легким в плане монтажа, нет ограничений в связи с формой помещения.

  • «Змейка» – довольно непопулярный метод контурного расположения. Огромный недостаток заключается в том, что подключение к питающему агрегату происходит с одной стороны, поэтому наблюдается значительный температурный перепад. Поверхность пола будет тем холоднее, чем дальше вы находитесь от котла. Вторым значительным минусом «змейки» является сложность монтажа. Такое расположение предусматривает изгибы трубы в180 градусов. Вследствие этого межтрубный шаг должен быть увеличен до 200 мм, в то время как универсальным значением принято считать 150 мм.
  • «Угловая змейка». Распространение теплого потока идет от угла, в котором расположен котел. Способ не популярен, потому что температура распространяется градиентом, что, по сути, создает эффект «солнца». Чем вы ближе, тем теплее.
  • «Двойная змейка» является модификацией обычной «змейки». Отличие состоит в том, что компенсируются потери тепла. Это происходит за счет циркуляции потока в обоих направлениях. Укладка таким способом так же сложна. «Змейка» применяется для небольших помещений, например, ванной комнаты.

Все вышеуказанные способы можно комбинировать друг с другом. «Змейкой» иногда покрывают небольшие площади, а «спиралью» обводят элементы, которые обогревать не нужно. Иногда комбинированные методы укладки трубы обеспечивают наименьшие затраты материала и минимальные вложения. Теперь, обладая необходимыми сведениями, можно приступать к расчету необходимой длины трубопровода. Расчет ведется по несложной формуле:

L = 1,1 x S\N. Приведенная формула отражает зависимость длины отопительной трубы (L) от площади контура (S) с учетом шага (N). Коэффициент 1,1 необходим для учета запаса трубы под изгибы. В конце следует также учесть отрезки, которые будут током и противотоком соединять укладку с котлом.

Чтобы не возникало недопониманий, рассчитаем длину отопительного контура для гостиной комнаты величиной 25 кв. м. Дабы снять ограничение в размерности шага, отдадим предпочтение методу спиральной укладки и выберем шаг 0,15 метра. В рассматриваемом случае получается, что длина прокладываемого трубопровода равна L = 1,1 x 25/0,15 = 183,4 м.

Допустим, система теплого пола работает от гребенки, которая расположена в 5 м от контура. При расчете необходимо удвоить это расстояние, так как коллектор имеет противоток. Следовательно, результирующая протяженность контура составит L = 183.4 + 5 + 5 = 193,4 м.

Советы профессионалов

Разобравшись с расчетом, можно идти с результатами к специалистам и конкретизировать их задачу. Не нужно спешить, не лишним будет ознакомиться с некоторыми нюансами. С ними можно столкнуться, только устанавливая теплый пол уже не в первый раз. Те, кто хорошо знают это дело, рекомендуют:

  • при нанесении на чертеж контура старайтесь придумать, как задействовать как можно меньше трубы. При незначительной длине трубопровода не будет ощутимых сопротивлений, а значит, и перепадов давления, то есть не нужно будет тратиться на мощный насос.

В целом, короткая труба потребует меньше затрат.

  • Когда закончен расчет длины трубопровода, полученное значение нужно сравнить с допустимой протяженностью контура. Она зависит от диаметра трубы, которая будет прокладываться. Если диаметр 16 мм, тогда допустимое значение длины контура равно 100 м, а если диаметр равен 20 мм, то ограничение составит 120 м.
  • Межтрубный шаг берется в оптимальном диапазоне, но зависит от диаметра отопительного трубопровода.
  • Проектируя укладку, нужно помнить, что в помещении не все зоны имеют одинаковую потребность в обогреве, поэтому у окон и дверных конструкций планируйте расположение трубы более плотно. Это обеспечит там интенсивный нагрев.
  • В случаях, когда проектируемая площадь превышает 40 кв. м, нужно подключать второй контур, так как работа одноконтурного теплого пола в больших помещениях неэффективна.

Таким образом, расчет теплого пола может быть произведен самостоятельно.

Рекомендуется выполнить расчет и вручную по формулам, и на специальном калькуляторе, а после – сравнить получившиеся значения.

Дополнительную информацию по этому вопросу, вы можете узнать посмотрев видео ниже.

Калькулятор теплого пол, онлайн расчет стоимости теплого пола

КАЛЬКУЛЯТОР ВНИЗУ СТРАНИЦИ

Часто так бывает, что человек хочет установить себе теплый пол, потому как у друга, например, выдел и понравилось. Время для поиска информации про технологию, производителей и всякие нюансы может попросту не быть, или нет на это желания. Вот в таких случаях и рекомендуется воспользоваться калькулятором для расчета теплого пола.

   Готовый расчет теплого пола элетрического под плитку (смотреть)

   Готовый расчет теплого пола электрического под ламинат, линолеум, ковролин (смотреть)

   Готовй расчет по водяному теплому полу

       — Программа раскладки трубы онлайн (перейти)

     Это работает следующим образом:

  • Вы максимально точно заполняете поля для ввода информации и отправляете заявку.
  • Получив заявку от вас, мы обрабатываем её и отправляем ответ в зависимости от предоставленного вами канала обратной связи.
  • Получив ответ, вам будут предоставлены варианты товаров и услуг, подходящих под ваш запрос и их ценники. 

ИНСТРУКЦИИ И БИБЛИОТЕКА ЗНАНИЙ ПО ТЕПЛОМУ ПОЛУ (прайсы)

    После ознакомления ответа и в случае удовлетворения предложенными условиями, принимайте решения о заключении сделки. А мы всегда рады ответить на интересующие клиентов вопросы.

СОТРУДНИЧЕСТВО ДЛЯ МОНТАЖНИКОВ И СТРОИТЕЛЕЙ до -35%

Часто задаваемые вопросы

1. Сколько нужно выделяемой тепловой энергии на м2 в теплом полу?

— 0,13 – 0,18 кВт м2, при этом потребление будет в 3-4 раза меньше мощности.

2. Сколько нужно трубы в водяном теплом полу на 1м2?

— В среднем 7-8 м\п на м2.

3. Какую площадь нужно покрыть, что бы теплый пол служил основным отоплением?

— Не менее 2\3 от общей площади помещения.

Универсальный калькулятор теплого пола. Сделает подсчет для водяных и электрических систем. Просчет можно осуществить без звонка, получив смс или результат сразу. Обязательно нужно указать обратную связь для получения Вами результата. 
   Для просчета водяных или электрических теплых полов калькулятором мы руководствуемся в первую очередь понятием теплопотерь. Тут нам помогают ваши данные такие как, этаж помещения, утепление, тип использования теплого пола. Также важно знать каким будет финишное напольное покрытия, так как отдельный тип теплого пола подходит под определенный вид покрытия наилучшим образом. Если Вам необходимо узнать потребление теплого пола мы с легкостью предоставим Вам расчет и всю необходимую информацию. Калькулятор просчитывает нагревательные маты, нагревательный кабель, пленочный теплый пол, водяной теплый пол, калькулятор трубы, калькулятор потребления электроэнергии. Спасибо!

Как рассчитать лучистое тепло? — MVOrganizing

Как рассчитать лучистое тепло?

Лучистая тепловая нагрузка

  1. Вычислите отапливаемую площадь в квадратных метрах. Площадь (м2) = Длина (м) x Ширина (м)
  2. Из приведенной выше таблицы выберите коэффициент, наиболее точно соответствующий типу здания. Тепловая нагрузка (кВт) = Площадь (м2) x коэффициент.
  3. Выберите инфракрасные лучистые обогреватели Activair, которые соответствуют или немного превышают требуемую тепловую нагрузку.

Какой размер теплый пол?

Чтобы определить размер источника тепла, просто умножьте тепловые потери на квадратный фут на площадь (в кв.ноги). Вам понадобится нагреватель или бойлер с такой номинальной мощностью. Ваш подрядчик должен подтвердить этот расчет.

Какая температура лучше всего подходит для теплого пола?

около 75 F

Сколько BTU мне нужно для теплого пола?

Типичная мощность водяной системы лучистого отопления жилых домов находится в пределах 25-35 БТЕ на квадратный фут, при этом 40 БТЕ — это редкий случай для старых домов и зданий с плохой изоляцией. 2. 12 Вт на квадратный фут равняется примерно 41 БТЕ на квадратный фут (оптимальная тепловая мощность при достаточной резервной мощности).

Как рассчитать BTU для теплого пола?

Вычтите температуру подаваемой воды из температуры обратной воды, чтобы найти изменение температуры системы. Чтобы найти систему, поставляемую в британских тепловых единицах, умножьте постоянную британских тепловых единиц на 500 x расчетное значение насоса (галлонов в минуту) на изменение температуры системы. Щелкните, чтобы увидеть полный ответ.

Сколько БТЕ котла Мне нужен калькулятор?

Простое практическое правило для требований BTU — это вычислить, что вам нужно около 50 BTU на квадратный фут внутреннего пространства в холодном климате; 35 БТЕ на квадратный фут в умеренном климате; и 20 БТЕ на квадратный фут в жарком климате.

Какой большой водонагреватель мне нужен для лучистого тепла?

Какой большой водонагреватель вам нужен для лучистого тепла? К сожалению, существует множество факторов, влияющих на размер водонагревателя, используемого для обогрева полов. Средняя необходимая мощность составляет 25 БТЕ на квадратный фут, но она может быть больше или меньше в зависимости от ваших обстоятельств.

PEX какого размера мне следует использовать для лучистого тепла?

Наиболее распространенные размеры труб PEX для систем лучистого отопления — 3/8 дюйма, 1/2 дюйма, 5/8 дюйма и 3/4 дюйма.Как правило, для жилых систем излучающего тепла мы рекомендуем трубы из полиэтиленгликоля 1/2 дюйма. Размер трубки PEX определяет достижимую скорость потока и, следовательно, максимальную длину петли трубки Pex.

Почему PEX запрещен в Калифорнии?

PEX был запрещен в Калифорнии из-за некоторых опасений по поводу утечки токсичных материалов через трубу в воду. С помощью различных национальных лабораторных испытаний PEX доказал свою полную безопасность и долговечность.

Могу ли я использовать обычный PEX для лучистого тепла?

Могу ли я использовать трубы PEX для систем лучистого или водяного тепла? Да, труба PEX одобрена для использования в системах лучистого или водяного отопления.Поскольку в системе могут присутствовать компоненты из черных металлов, важно использовать трубу PEX с кислородным барьером, чтобы предотвратить ржавление компонентов из железа.

Какие недостатки у PEX?

Недостатки сантехники PEX

  • PEX может выщелачивать BPA и другие токсичные химические вещества.
  • PEX чрезвычайно чувствителен к ультрафиолетовому излучению.
  • PEX может быть поврежден химическими веществами и вредителями.
  • PEX нельзя устанавливать в зонах с высокой температурой.
  • PEX является полупроницаемым, что означает, что жидкость может попасть в трубу.

Подходит ли синий PEX для горячей воды?

Голубая труба PEX предназначена для подачи холодной воды. Белая труба PEX может использоваться как для горячей, так и для холодной воды. Например, не возникнет проблем с использованием синего полиэтилена PEX для линий горячей воды или красного PEX для линий холодной воды. Другие типы PEX включают PEX-Aluminium-PEX, который часто имеет оранжевый цвет, и PEX для регенерированной воды, который обычно имеет фиолетовый цвет.

Как долго прослужит PEX?

100 лет

Что мне следует использовать: PEX-A или PEX B?

PEX-A является наиболее гибким из всех типов трубок PEX, имеет небольшую память катушки или не имеет ее и дает установщику возможность устранять перегибы с помощью теплового пистолета.PEX-B — явный победитель с точки зрения цены по сравнению с обоими другими типами.

Могу ли я закопать трубу PEX?

Трубка

PEX одобрена для непосредственного захоронения на открытом воздухе, что чаще всего требуется при прокладке водопровода в дом. PEX, поскольку он может расширяться, противостоит замерзанию более эффективно, чем жесткая труба, но PEX все равно может лопнуть, если вода замерзнет в трубопроводе. Засыпка PEX в песок защищает его от любых камней в почве.

Какой тип PEX лучше всего подходит для подземных работ?

Полиэтилен высокой плотности

Где нельзя использовать PEX?

Pex не допускается в коммерческих или промышленных зданиях и, следовательно, в жилых зданиях, считающихся «коммерчески промышленными».

Следует ли изолировать трубы PEX?

Нужна ли изоляция трубы PEX? Да, хотя трубы PEX могут выдерживать отрицательные температуры лучше, чем трубы из других материалов, но они не являются морозостойкими! Если температура упадет ниже 20 градусов по Фаренгейту, ваши трубы могут замерзнуть.

Плохо ли распыляемая пена для труб PEX?

Стабильность трубы PEX не должна подвергаться опасности, если герметики GREAT STUFF ™ и GREAT STUFF PRO ™ нанесены в соответствии с инструкциями производителя вокруг трубы.Однако адгезия между любой полиуретановой пеной для распыления и поверхностями PEX сомнительна.

Можете ли вы использовать горячий и холодный PEX бок о бок?

Линии горячей и холодной воды PEX проходят через одно и то же отверстие в каркасной стене. Это нетипичная установка; обе трубы должны иметь собственные отверстия для прохождения через каркас.

Как подготовить PEX к зиме?

Способы предотвращения замерзания труб из PEX

  1. Поддерживайте температуру в помещении выше 55 F.
  2. Добавьте теплоизоляцию в особо холодные места, такие как чердаки, гаражи и подвалы.
  3. Смесители для удержания воды в трубах.
  4. Перекройте подачу воды к внешним насадкам шланга (патрубкам) ​​и слейте воду из труб.
  5. Установить незамерзающие пороги.

При какой температуре замерзают трубы PEX?

20 градусов по Фаренгейту

Трескается ли труба PEX при замерзании?

Q: Разорвется ли труба PEX, если она замерзнет? О: Нет, труба PEX устойчива к замораживанию, это означает, что труба будет расширяться при замораживании и сжиматься до своей первоначальной формы при оттаивании.Однако труба PEX не является морозостойкой, а это означает, что вода в трубе может замерзнуть и заблокировать поток.

Каков срок службы фитингов SharkBite?

25 лет

Укусы акул когда-нибудь терпят неудачу?

Предрасположены ли фитинги Sharkbite к выходу из строя? да. Но вся фурнитура при неправильной установке.

Укусы акулы так же хороши, как припой?

Пока они кажутся такими же надежными, хотя, учитывая, что они присутствуют на рынке всего несколько лет, у них нет такой же истории, как у паяных соединений.Наконец, вы действительно не хотите использовать их для открытых труб, паяные соединения намного аккуратнее.

Можно ли использовать SharkBite в горячей воде?

Фитинги

SharkBite можно использовать как на линиях горячего, так и на холодном водоснабжении. Фитинги достаточно прочные, чтобы их можно было установить на водопровод внутри стен, и служат столько же, сколько и медные фитинги. SharkBite можно использовать на трубах из меди, CPVC и PEX, что делает его одним из самых универсальных доступных типов фитингов.

Как рассчитать количество проводов, необходимых для установки DITRA-HEAT

Итак, ваши клиенты выбрали роскошный пол с подогревом для вашего следующего проекта напольного покрытия и готовы получить коврик, кабель и термостат.Перед началом работы важно спланировать установку, и одной из самых сложных задач может быть заказ необходимого количества кабеля. Прочтите наши лучшие советы по определению того, где вы хотите разместить нагревательные кабели, и о том, как рассчитать правильное количество проволоки.

Совет 1: Кабель не перерезать! Это правило номер один, а это значит, что правильные размеры нагревательного кабеля жизненно важны.

Совет 2: Мембрану Schluter®-DITRA-HEAT следует выбирать в соответствии с размером области, которая будет облицована плиткой, а кабель выбирается в соответствии с размером области, которая должна быть обогреваемой .Не покупайте нагревательный кабель того же размера, что и площадь, которую вы планируете облицевать плиткой, иначе у вас останется слишком много кабеля. (И все мы знаем, что нельзя делать, если это произойдет… вернитесь к совету 1!)

Совет 3: Знайте, где не топить ! Минимальное расстояние между нагревательными кабелями составляет 2 дюйма от стен, перегородок и стационарных шкафов, 8 дюймов от любого источника тепла и 4 дюйма от водостоков. Кабели также не следует прокладывать под шкафами или мебелью.

Совет 4: Планируйте буферную зону! Не всегда можно предсказать, где закончится нагревательный кабель. Эта буферная зона — это область, где нагревание не является необходимым, но дает некоторое пространство для маневра, если вы в конечном итоге получите немного больше, чем вы ожидали. Оставив 6-дюйм. зазор между стеной и кабелем не повлияет на теплоту пола и оставит вам необходимую гибкость.

Если сомневаетесь, воспользуйтесь калькулятором! Калькулятор Ditra-Heat был специально создан, чтобы не гадать, сколько кабеля вам понадобится.Это даст вам окончательный расчет, который включает, сколько кабеля и мембраны вам действительно понадобится, с учетом минимального расстояния в три шпильки (3-1 / 2 дюйма или 9 см) между трассами нагревательного кабеля. Нужны еще советы? Посмотрите видео из серии «Советы и приемы»: «Советы по расчету длины кабеля для DITRA-HEAT», чтобы получить более точные советы по расчету длины кабеля для вашего следующего проекта по утеплению пола.

Калькулятор тепловых трубок пола

Разместите свои комментарии?

Калькулятор лучистого тепла SupplyHouse.com

Just Now Radiant Тепловой калькулятор . Q1 Как вы будете устанавливать трубку PEX ? Это поле обязательно к заполнению. В плите или переливе В отсеках балок с пластинами Joist Trak В Quik Trak над черным полом Пришивается скобами над черным полом В отсеках балок с зажимами PEX

Веб-сайт: Supplyhouse.com