Кпд котла твердотопливного: Как повысить КПД твердотопливного котла

Содержание

Как повысить КПД твердотопливного котла

03.08.2017

КПД твердотопливного котла – это величина достаточно относительная, которая определяет количество затраченного топлива по отношению к полученному объему тепла (полезная энергия).

Сейчас на рынке представлены твердотопливные котлы с высоким КПД (около 85-95%). Но показатели, которые указаны производителями, могут отличаться от тех, которые получены на практике. В чем причина такого несоответствия? Специалисты объясняют это тем, что в реальности показатели КПД твердотопливного котла могут зависеть от различных факторов. На КПД может повлиять качество топлива и интенсивность его горения, эффективность теплоносителей, наличие и количество потерь тепла при перемещении, общие теплопотери помещения. В действительности даже котлы на твердом топливе с высоким КПД могут гарантировать от 65% до 75%.

 

Как увеличить КПД котла на твердом топливе?

В среднем показатели коэффициента полезного действия можно повысить примерно от 3% до 7%. Главное, определиться с методом увеличения КПД твердотопливного котла, выбрав наиболее действенный.

Чтобы повысить экономичность котла, следует учесть следующие нюансы:

  • Не использовать для топки влажный уголь или дрова. Это существенно сократить количество энергии, которое устройство потратить только для просушки мокрого твердого топлива.
  • Не засорять дымоход и теплообменник. Засор в каналах может образоваться за счет регулярного скопления. Например, мелкими частицами угольной пыли, бытовым мусором, дефектными брикетами.
  • Снижение тяги негативно скажется на отдаче тепла и увеличит расход твердого топлива.

Эффективные методы повышения КПД

  1. Повышение качества топлива. Топливо играет ключевую роль в увеличении КПД котлов. Если отдать предпочтение более качественному виду топлива, можно увеличить срок службы агрегата для отопления. Прежде всего, предварительно сушить дрова и уголь. Не используйте для растопки различный бытовой мусор, ведь так вы со временем уменьшите тягу, забив дымоход сажей и прочими частицами от горения. Более того, это может повысить затраты на приобретение топлива.
  2. Частая чистка. Даже если вы используете исключительно качественное топливо, не забываете регулярно проводить чистку котла. Во время чистки больше времени уделите дымоходу, ведь именно там скапливаются все частицы, которые забивают канал.
  3. Котлу необходимо больше воздуха. К этому пункту следует отнестись со всей серьезностью, особенно учесть в процессе покупки и монтажа устройства. Помните, что кислород – обязательное условие горения. Нужно обеспечить постоянный поток воздуха в помещении, где будет установлен твердотопливный котел, в средине которого осуществляется горение топлива.
  4. Утеплить дом, чтобы уменьшить его теплопотери. Это еще один способ повысить КПД дома. Желаемого результата сложно достичь простой заменой твердотопливного котла или топлива, если помещение очень быстро отдает тепло и совершенно не сохраняет его. Поэтому так важно выполнить утепление дома, замену обычных окон на пластиковые. Также следует исключить потерю тепла через двери, по возможности заменить их или устранить все щели.
  5. Установка дополнительных устройств. Например, с помощью циркуляционного насоса можно выполнить равномерное прогревание дома. Это наиболее эффективный способ, приводящий к росту показателя КПД помещения. Недорогую модель твердотопливного котла можно приобрести в том случае, если ваш прежний агрегат не может покрыть ваши потребности. Для этого просто установите новый котел со старым в каскад.

Купить качественные твердотопливные котлы в Украине можно в интернет-магазине «Тепловик». В каталоге представлен большой выбор моделей, которые отличаются материалом, мощностью, количеством контуров, толщиной стали, площадью обогрева. Цена на твердотопливные котлы ориентирована на разных покупателей, ведь есть варианты как дорогостоящие, так и бюджетные, стоимостью до 6 тысяч гривен. С помощью удобного регулятора цены вы можете выбрать наиболее подходящий вариант для вашего бюджета. Можно не только выгодно приобрести котел, но и сэкономить, так как в магазине часто проводятся акции или предоставляется бесплатная доставка.

КПД и мощность твердотопливных котлов. Где вас обманывают?

Если Вы задумали строительство загородного дома в том месте, где нет возможности подключиться к централизованному отоплению, перед Вами обязательно встанет вопрос выбора автономной отопительной системы. Довольно часто в таких случаях приходится довольствоваться установкой твёрдотопливного котла, использующего в своей работе энергию дров или угля. Современный рынок предлагает множество решений, производители обещают высокую теплоотдачу и КПД, а так же низкий расход топлива. Но стоит ли доверять обещаниям производителей? Данная статья поможет Вам разобраться в вопросе подбора мощности твердотопливных котлов и их КПД. Поможет выяснить нюансы работы твёрдотопливного котла и на сколько он эффективен.

КПД твёрдотопливного котла

Мощность твердотопливного котла системы отопления, а значит способность обогревать помещение – это конечно важный параметр, но не настолько, чтобы ставить его во главу угла. Нужно обратить внимание ещё и на то, сколько он потребляет топлива для этого. Соотношение данных затрат к количеству полезного тепла, выделенного котлом для обогрева дома называется коэффициентом полезного действия, или сокращённо КПД.

От чего зависит КПД твёрдотопливного котла (а соответственно и мощность)? В первую очередь от потерь полезного тепла, которое может происходить из-за недожога выделяемых при горении газов (благодаря чему кстати образуется сажа), качественных характеристик топлива и степени выброса в трубу энергии тепла. Об этих и других факторах, снижающих показатель КПД, будет рассказано далее.

Почему не стоит доверять рекламе

При просмотре рекламных объявлений, относящихся к мощности твёрдотопливных котлов, часто можно увидеть предложения, обещающие от 90% КПД и выше. Однако если Вы запросите какой-нибудь официальный протокол или акт, подтверждающий этот показатель – Вам его не смогут предоставить, и вот почему.

Чтобы составить подобный документ, необходимо провести испытания, используя для этого соответствующим образом стандартизованное топливо. В отношении угля или дров получить такое топливо нельзя – потому что они по своим характеристикам и составу являются самыми нестабильными в мире. Как можно получить постоянный показатель, используя непостоянные составляющие?

Нестабильность твёрдого топлива

Рассмотрим, в чём же заключается нестабильность угля или дерева в качестве топлива. Начнём с угля.

Различных марок угля, предлагаемого на рынке, бесчисленное множество. Каждая марка отличается по структуре, химическому составу и влажностью. Может состоять как из крупных кусков, так и из мельчайших частиц, и все они могут быть смешаны в разных пропорциях. Соответственно теплотворность угля каждый раз будет разная. Соответственно КПД и мощность твердотопливного угля также будет разной.

Если говорить о дровах – то здесь ситуация точно такая же. Поленья обладают разными размерами, хранятся при различной влажности воздуха, а значит способность выделять тепло у них будет различная. Так, например, если при влажности дров, равной 15%, их теплотворность будет равна примерно 4.3 кВт*ч на килограмм, то при 20% она уже будет меньше 4 кВт*ч на килограмм. При большей влажности этот показатель будет ещё ниже.

Естественно, что при таких разбросах гарантировать точные КПД и мощность твёрдотопливного котла, равный 90% — мягко говоря вводить в заблуждение.

Рассмотрим другие факторы, влияющие на показатель коэффициента полезного действия.

Неправильная подача воздуха

От того, сколько кислорода поступает в топку, сильно зависит работа пламени. Чтобы топливо нормально горело и отдавало максимальное количество тепла, ему необходимо строго определённое количество воздуха – не больше, не меньше. Если воздуха будет мало – углеводороды, выделяемые при горении, будут плохо окисляться, а значит будет меньше выделяться тепла. Если же воздуха поступает много, а он, как правило, поступает охлаждённый, снижается температура выделяемых газов и они не успевают сгореть (оседая опять же сажей на трубах) и выделить тем самым полезное тепло. Стоит заметить, что в воздухе содержится влага, на испарение которой так же тратится тепло (вместо того, чтобы обогревать дом).

Большинство твёрдотопливных котлов, предлагаемых на рынке, работают по следующему принципу. В них установлен термостат, который регулирует температуру воды, циркулирующую по отопительной системе дома для его обогрева. Если вода становится слишком горячей – термостат уменьшает подачу воздуха в котёл (так регулируется мощность твердотопливного котла). Получается, что в тот момент, когда топливо разгорелось и КПД с мощность твердотопливного котла стало максимальным, а значит пламя стало нуждаться в большем количестве кислорода – термостат искусственно снижает КПД, ограничивая подачу воздуха.

После того, как температура снизилась, термостат опять начинает подавать воздух. Но к тому моменту топливо уже догорает и ему не нужно столько кислорода. Эффективность обогрева опять снижается за счёт охлаждения выделяемых газов, о чём было сказано ранее.

Получается, что принцип действия большинства твёрдотопливных котлов абсолютно противоречит понятию высокого КПД.

Холодные стенки котла

Обычно вокруг твёрдотопливного котла смонтирована ёмкость с водой, которая, нагреваясь, циркулирует по дому. Наличие воды способствует охлаждению стенок котла. Это опять же приводит к тому, что топливо не может нормально гореть. Его остатки вылетают в трубу и оседают на ней в виде сажи, не принеся никакой пользы. Ситуация усугубляется довольно тесным пространством в топке, что так же снижает количество кислорода, и без того низкое.

Круглосуточная потеря тепловой энергии

Для поддержания нужной температуры в доме твёрдотопливный котёл должен работать 24 часа в сутки. Теперь представьте, сколько за это время полезного тепла вылетает в трубу в виде сажи и несгоревших газов? КПД при такой работе никак не может быть 90%.

Здесь стоит упомянуть ещё такой тип котла, как пиролизный. В добавок к вышеуказанным недостаткам в его случае добавляется ещё два:

  1. Круглосуточно работающий вентилятор потребляет электроэнергию.
  2. Благодаря тому же вентилятору в котёл поступает избыточный кислород – снижается температура газов, они не успевают сгорать и улетают в трубу.

Ускоренное движение газов по трубе становится причиной снижения ещё одного параметра – КПД теплообмена. Из за особой конструкции котла пламя в нём не успевает догореть и поднимается в теплообменник, где и затухает, оставляя попутно сажу и выбрасывая в трубу не сгоревшие газы.

Необходимость постоянно следить за работой котла

В заключение стоит сказать о том, что мощность твёрдотопливного котла необходимо контролировать круглосуточно 7 дней в неделю. Вы не сможете нормально отлучиться, куда-нибудь уехать и оставить котёл без присмотра. Фактически Вы становитесь его заложником на все месяцы отопительного сезона.

Стоит ли устанавливать такой котёл – решать конечно Вам. Но всё-таки есть смысл поискать вариант более эффективный, экономичный и не имеющий таких требований к эксплуатации.

Читайте так же:

Увеличение времени горения и КПД печей и котлов на твердом топливе

      Что нужно делать, чтобы КПД вашего котла был как можно больше? Этот вопрос задают почти все, кто решил купить твердотопливный котел и все, кто увидел, что их новый или старый котел не справляется со своими обязанностями на все сто.

 

      Что такое КПД котла и от чего он зависит?

      КПД твердотопливного котла — это относительная величина, которая измеряется в процентах и определяется соотношением затраченных топливных затрат к количеству тепла (полезной энергии), которую выделяет котел для обогрева дома. Современные котлы на твердом топливе по характеристикам обладают очень высокими КПД от 85 до 95%. Но часто на практике КПД указанное на бумаге не соответствует тому, что есть на самом деле. Почему так происходит? Потому что коэффициент полезного действия котла в реальной жизни зависит от многих факторов: качества топлива, эффективности теплоносителей системы, потерь тепла во время перемещения, общих теплопотерь здания, эффективности сжигания топлива. Поэтому, в большинстве котлов коэффициент полезного действия составляет в лучшем случае лишь 65-70%.

 

      Как увеличить КПД твердотопливного котла?

      Мы модернизируем имеющийся у Вас твердотопливный котел с естественной подачей воздуха, установив на него дополнительное оборудование:




Больше воздуха для котла. Установка вентилятора обеспечит принудительную подача воздуха в топку твердотопливного котла для эффективного сжигания топлива.


 


 

Вентилятор имеет заслонку, которая управляется потоком выходящего воздуха. При отсутствии потока воздуха (выключен вентилятор) заслонка закрывается под действием грузика на оси заслонки вентилятора. Это позволяет исключить попадание воздуха в котел в выключенном состоянии вентилятора. За счет количества грузиков на оси можно компенсировать избыточную тягу дымовой трубы, так чтобы заслонка была полностью закрыта в выключенном состоянии вентилятора. За счет регулирования положения грузиков на оси можно устанавливать вентилятор в любом положении.

Управление работой насоса циркуляции воды и продувом (турбины). Для увеличения КПД твердотопливных котлов в системах отопления с естественной циркуляцией желательно установить Командо-контроллер.




Если температура котла равной или выше заданной температуры, регулятор находится в режиме поддержки. Когда температура котла ниже от заданной температуры, регулятор находится в режиме, в котором продув работает постоянно если включен режим розжига.

 

Дополнительно возможна комплектация датчиком температуры в теплоноситель (котлы) или комнатным термостатом (печи) и GSM модулем.

 

 

      Наши специалисты смогут автоматизировать практически любой котел (самодельный или промышленный), любой мощности и системы отопления!

      Как это будет выглядеть:

 

Да, я хочу автоматизировать свой котел.

Повышаем эффективность (КПД) твердотопливного котла

Отопительная техника, работающая на твердом топливе, представлена сегодня целой группой аппаратов. Каждый твердотопливный котел, выпускаемый сегодня отечественными и зарубежными компаниями-производителями – это совершенно новые, высокотехнологичные нагревательные приборы. Благодаря внедрению в конструкцию отопительных приборов технических новшеств и оснащения устройствами автоматического контроля, удалось значительно повысить КПД, оптимизировать работу твердотопливных котлов.

В нагревательных приборах этого вида используется традиционный принцип действия, аналогичный хорошо знакомому для нас варианту печного отопления. Основное действие обусловлено процессом  генерации тепловой энергии выделяемой при сгорании в топке котла угля, кокса, дров и других топливных ресурсов с последующей передачей тепла теплоносителю.

Как и другие устройства, обеспечивающие выработку, передачу энергии, котельное оборудование имеет свой коэффициент полезного действия. Рассмотрим более детально, что собой представляет КПД агрегатов, работающих на твердом топливе. Постараемся найти ответы на вопросы, связанные с этими параметрами.

Что такое КПД отопительных приборов

Для любого нагревательного агрегата, в задачу которого входит обогрев внутреннего пространства жилых зданий и сооружений различного назначения, важным компонентом была, есть и остается эффективность работы. Параметром, определяющим эффективность твердотопливных котлов, является коэффициент полезного действия. КПД показывает отношение затраченной тепловой энергии, выдаваемой котлом в процессе горения твердого топлива к полезному теплу, которым снабжается вся система отопления.

Выражается это соотношение в процентах. Чем лучше работает котел, тем выше проценты. Среди современных твердотопливных котлов есть модели с высоким КПД, высокотехнологичные, эффективные и экономичные агрегаты.

Для справки: в качестве грубого примера, следует оценить тепловой эффект, получаемый при сидении возле костра. Выделяемая при горении дров тепловая энергия способна обогреть ограниченное вокруг костра пространство и предметы. Большая часть тепла от горящего костра (до 50-60%) уходит в атмосферу, ни давая никакой пользы, кроме эстетического содержания, в то время как соседние предметы и воздух получают ограниченное количество килокалорий. Коэффициент полезного действия у костра минимальный.

Коэффициент полезного действия отопительной техники сильно зависит от того, какой вид топлива используется и каковы конструктивные особенности устройства.

*
К примеру: при горении угля, дров или пеллет выделяется разного количество тепловой энергии. Во многом КПД зависит от технологии сжигания топлива в камере сгорания и типа системы отопления. Другими словами, каждый вид нагревательных приборов (традиционные котлы на  твердом топливе, агрегаты длительного горения, пеллетные котлы и аппараты, работающие за счет пиролиза), обладает своими технологическими особенностями конструкции, влияющие на параметры КПД.

Отражаются на эффективности котлов так же условия эксплуатации и качество вентиляции. Слабая вентиляция становится причиной нехватки воздуха, необходимого для высокой интенсивности процесса сжигания топливной массы. От состояния дымохода зависит не только уровень комфорта во внутренних помещениях, но и КПД обогревательной техники, работоспособность всей системы отопления.

Сопроводительная документация на отопительный котел должна иметь заявленный производителем КПД оборудования. Соответствие реальных показателей заявленной информации достигается за счет правильного монтажа аппарата, обвязкой и последующей эксплуатацией.

Правила эксплуатации котельных устройств, соблюдение которых оказывает влияние на величину КПД

*

Любой вид отопительного агрегата имеет свои параметры оптимальной нагрузки, которая должна быть максимально полезной, с технологической и экономической точки зрения. Процесс эксплуатации твердотопливных котлов построен таким образом, что большую часть времени техника работает в оптимальном режиме. Обеспечить такую работу позволяет соблюдение правил эксплуатации отопительного оборудования, работающего на твердом топливе. В данном случае необходимо придерживаться и следовать следующим пунктам:

  • необходимо соблюдать приемлемые режимы дутья и работы вытяжки;
  • постоянный контроль над интенсивностью горения и полноты сгорания топлива;
  • контролировать величину уноса и провала;
  • оценка состояния нагреваемых в процессе горения топлива поверхностей;
  • регулярная чистка котла.

Перечисленные пункты являются тем необходимым минимумом, которого нужно придерживаться во время эксплуатации котельного оборудования в отопительный сезон. Соблюдение простых и понятных правил позволит получить заявленный в характеристиках КПД автономного котла, улучшить работу твердотопливного котла.

Можно сказать о том, что каждая мелочь, каждый элемент конструкции нагревательного прибора сказывается на величине коэффициента полезного действия. Правильно сконструированный дымоход, система вентиляции обеспечивают оптимальный приток воздуха в топочную камеру, что существенно отражается на качестве горения топливного продукта. Работа вентиляции оценивается величиной коэффициента избытка воздуха. Чрезмерное увеличение объема поступающего воздуха приводит к перерасходу топлива. Тепло интенсивнее уходит через трубу вместе с продуктами горения. При уменьшении коэффициента работа котлов существенно ухудшается, высока вероятность возникновения в топке зон, ограниченных кислородом. При такой ситуации в топке начинает образовываться и скапливаться в больших количествах сажа.

*

Интенсивность и качество горения в твердотопливных котлах требуют постоянного контроля. Загрузка топочной камеры должна выполняться равномерно, не допуская очаговых возгораний.

На заметку: уголь или дрова равномерно распределяются по колосникам или по решетке. Горение должно проходить по всей поверхности слоя. Равномерно распределенное топливо быстро подсыхает и горит по всей поверхности, гарантируя полное выгорание твердых компонентов топливной массы до летучих продуктов горения. Если вы правильно заложили топливо в топку, пламя пи работе котлов будет ярко желтого, соломенного цвета.

Во время горения важно не допускать провалов топливного ресурса, иначе придется столкнуться с существенным  механическими потерями (недожог) топлива. Если не контролировать положения топлива в топке, упавшие в зольный ящик крупные фрагменты угля или дров могут привести к несанкционированному возгоранию остатков продуктов топливной массы.

Сажа и смола, скопившаяся на поверхности теплообменника, уменьшают степень нагрева теплообменника. В результате всех перечисленных нарушений условий эксплуатации уменьшается полезный объем тепловой энергии, необходимой для нормальной работы системы отопления. Как следствие, можно говорить о резком снижении КПД отопительных котлов.

Факторы, от которых зависит КПД котлов

Котлы с высоким значением КПД на сегодняшний день представлены следующей отопительной техникой:

  • агрегаты, работающие на угле и на другом твердом ископаемом топливе;
  • пеллетные котлы;
  • аппараты пиролизного типа.

КПД нагревательных приборов, в топку которых идет антрацит, каменный  уголь и торфяные брикеты, составляет в среднем 70-80%. Значительно  больший коэффициент полезного действия у пеллетных устройств – до 85%. Загружаемые гранулами, нагревательные котлы этого типа отличаются высокой эффективностью, выдаваемые во время горения топлива огромное количество тепловой энергии.

На заметку: одной загрузки вполне достаточно для работы аппарата на оптимальных режимах до 12-14 часов.

*

Абсолютный лидер среди твердотопливного отопительного оборудования – пиролизный котел. В этих приборах используется дрова или отходы древесины. КПД такой техники сегодня составляет 85% и более. Агрегаты так же относятся к высокоэффективным устройствам длительного горения, но при соблюдении необходимого условия —  влажность топлива не должна превышать 20%.

Немаловажным для значения коэффициента полезного действия является тип материала, из которого изготовлен отопительный прибор. Сегодня на рынке представлены модели твердотопливных котлов, выполненных из стали и из чугуна.

Для справки: К первым относятся стальные изделия. Для снижения рыночной стоимости агрегата, компании – производители используют основные элементы конструкции, выполненные из стали. Например, теплообменник изготавливается из высокопрочной жароустойчивой черной стали толщиной 2-5 мм. Таким же образом изготавливаются нагревательные трубчатые элементы, используемые для нагрева основного контура.

Чем толще сталь, используемая в конструкции, тем выше теплообменные характеристики оборудования. Соответственно растет коэффициент полезного действия.

В аппаратах из стали увеличение КПД достигается за счет установки специальных внутренних перегородок в виде труб – ступеней основного потока и рассекателей дыма. Меры вынужденные и частичные, позволяющие незначительно повысить эффективность основного устройства. Среди моделей стальных твердотопливных котлов редко можно встретить приборы, имеющие КПД выше 75%. Сроки эксплуатации таких изделий составляют 10-15 лет.

Зарубежные компании с целью повышения КПД стальных отопительных котлов используют в своих моделях процесс нижнего сжигания, с 2-мя или с 3-мя тяговыми потоками. В конструкции изделий предусмотрена установка трубчатых нагревательных элементов для улучшения теплообмена. Подобная техника имеет КПД в пределах 75-80%, и прослужить может дольше, в 1,5 раза.

В отличие от стальных агрегатов, большей эффективностью обладают чугунные твердотопливные аппараты.

В конструкции чугунных агрегатов используются теплообменники, изготовленные из чугунного сплава особой марки, обладающего высокой теплоотдачей. Такие котлы чаще всего используются для открытых отопительных систем отопления. Изделия дополнительно оснащаются колосниками, благодаря которым осуществляется интенсивный отбор тепловой энергии непосредственно от горящего топлива, размещенного на колосниках.

КПД у таких нагревательных приборов составляет 80%. Следует учитывать огромные по времени сроки эксплуатации чугунных котлов. Срок работоспособности у подобной техники составляет 30-40 лет.

Как повысит эффективность отопительной техники, работающей на твердом топливе

*

Сегодня многие потребители, имея в своем распоряжении твердотопливный котел, стараются найти наиболее удобный и практичный способ как повысить КПД отопительного оборудования. Технологичные параметры нагревательных приборов, заложенные производителем, со временем теряют свои номинальные значения, поэтому для повышения эффективности котельного техники изыскиваются различные способы и средства.

Рассмотрим один из наиболее эффектных вариантов, установка дополнительного теплообменника. В задачу новой оснастки входит снятие тепловой энергии с летучих продуктов горения.

На видео можно увидеть, как сделать самостоятельно экономайзер (теплообменник)

Для этого нам предварительно необходимо узнать какова температура дыма на выходе. Изменить ее можно при помощи мультиметра, который помещается непосредственно в середину дымохода. Данные о том, сколько можно получить дополнительного тепла от улетучивающихся продуктов горения необходимы для расчета площади дополнительного теплообменника. Делаем следующие действия:

  • отправляем в топку дрова определенного количества;
  • засекаем за сколько времени прогорит определенное количество дров.

К примеру: дрова, в количестве 14.2 кг. горят 3,5 часа. Температура дыма на выходе из котла составляет 460 0 С.

За 1 час у нас сгорело: 14,2/3,5 = 4,05 кг. дров.

Для расчета количества дыма  используем общепринятое значение  — 1 кг. дров  = 5,7 кг. дымовых газов. Далее умножаем количество сгоревших за один час дров  на количество дыма, получаемое при сгорании 1 кг. дров. В итоге: 4,05 х 5,7 = 23,08 кг. летучих продуктов горения.  Эта цифра и станет отправной точкой для последующих расчетов количества тепловой энергии, которую можно использовать дополнительно для нагрева второго теплообменника.

Зная значение теплоемкости летучих горячих газов, как 1,1 кДж/кг., делаем дальнейший расчет мощности теплового потока, если мы хотим снизить температуру дыма с 460 0С до 160 градусов.

Q = 23,08 х 1,1 (460-160) = 8124 кДж тепловой энергии.

В итоге получаем точное значение дополнительной мощности, которую обеспечивают летучие продукты горения: q = 8124/3600  = 2,25 кВт, цифра большая, которая может оказать существенное влияние на повышение эффективности отопительного оборудования. Зная о том, сколько энергии уходит впустую, желание оснастить котел дополнительным теплообменником вполне оправдано. За счет притока дополнительной тепловой энергии для работы по нагреву теплоносителя, повышается не только эффективность всей системы отопления, но и сам КПД отопительного агрегата растет.

Выводы

Несмотря на обилие моделей современной отопительной техники, твердотопливные котлы продолжают оставаться одним из эффективных и доступных видом нагревательного оборудования. В сравнении с электрическими котлами, которые имеют КПД до 90%, агрегаты на твердом топливе обладают высоким экономическим эффектом. Увеличение коэффициента полезного действия на новых моделях, позволило этому виду котельного оборудования вплотную приблизиться к электрическим и газовым котлам.

Современные аппараты на твердом топливе способны не только работать длительное время, используя доступное по цене природные топливные ресурсы, но и обладают высокими эксплуатационными характеристиками.

расчет, как рассчитать водогрейный котел, как посчитать зависимость КПД от нагрузки, как наладить отопительный котел


Содержание:


Создать уютную и комфортную атмосферу в загородном доме довольно просто – нужно только правильно оборудовать систему отопления. Главным компонентом эффективной и надежной отопительной системы является котел. В статье далее мы поговорим о том, как посчитать КПД котла, какие факторы на него влияют и как повысить эффективность отопительного оборудования в условиях конкретного дома.


Как подобрать котел


Безусловно, чтобы определить, насколько эффективным будет тот или иной водогрейный котел, необходимо определить его КПД (коэффициент полезного действия). Этот показатель представляет собой отношение использованного на обогрев помещения тепла к общему количеству сгенерированной тепловой энергии.



Формула расчета КПД выглядит так:


ɳ=(Q1÷Qri),


где Q1 – тепло, использованное эффективно;


Qri – общее количество выделенного тепла.

Какова зависимость между КПД котла и нагрузкой


На первый взгляд может показаться, что чем больше топлива сжигается, тем лучше работает котел. Однако это не совсем так. Зависимость КПД котла от нагрузки проявляется как раз наоборот. Чем больше топлива сжигается, тем больше выделяется тепловой энергии. При этом возрастает и уровень теплопотерь, поскольку в дымовую трубу уходят сильно разогретые дымовые газы. Следовательно, топливо расходуется неэффективно.



Похожим образом ситуация развивается и в тех случаях, когда отопительный котел работает на пониженной мощности. Если она не дотягивает до рекомендуемых значений более чем на 15 %, топливо не будет сгорать полностью, а количество дымовых газов возрастет. В результате, КПД котла довольно сильно упадет. Вот почему стоит придерживаться рекомендуемых уровней мощности работы котла – они рассчитаны для эксплуатации оборудования максимально эффективно.

Расчет КПД с учетом различных факторов


Приведенная выше формула не совсем подходит для оценки эффективности работы оборудования, так как рассчитать КПД котла точно с учетом только двух показателей очень сложно. На практике в процессе проектирования применяют другую, более полную формулу, поскольку не все вырабатываемое тепло используется для прогрева воды в отопительном контуре. Определенное количество тепла теряется в процессе работы котла.



Более точный расчет КПД котла производится по такой формуле:


ɳ=100-(q2+q3+q4+q5+q6), в которой


q2 – теплопотери с выходящими горючими газами;


q3 – потери тепла в результате неполного сгорания продуктов горения;


q4 – теплопотери из-за недожога топлива и выпадения золы;


q5 – потери, вызванные внешним охлаждением прибора;


q6 – теплопотери вместе с удаляемым из топки шлаком.

Теплопотери при удалении горючих газов


Наиболее существенные потери тепла происходят в результате эвакуации в дымоход горючих газов (q2). Эффективность котла во многом зависит от температуры горения топлива. Оптимальный температурный напор на холодном конце водонагревателя достигается при нагреве до 70-110 ℃.


Когда температура уходящих горючих газов падает на 12-15 ℃, КПД водогрейного котла возрастает на 1 %. Тем не менее, чтобы снизить температуру уходящих продуктов горения, необходимо увеличить размер прогреваемых поверхностей, а, значит, и всей конструкции в целом. Кроме того, при охлаждении угарных газов возрастает риск низкотемпературной коррозии.



Помимо прочего температура угарных газов зависит еще и от качества и типа топлива, а также нагрева поступающего в топку воздуха. Значения температур поступающего воздуха и выходящих продуктов горения зависят от видов топлива.


Для вычисления показателя теплопотерь с уходящими газами используют такую формулу:


Q2= (T1-T3) × (A2 ÷ (21-O2) + B), где


T1 – температура эвакуируемых горючих газов в точке за пароперегревателем;


T3 – температура поступающего в топку воздуха;


21 – концентрация кислорода в воздухе;


O2 – количество кислорода в уходящих продуктах горения в контрольной точке;


A2 и B – коэффициенты из специальной таблицы, которые зависят от типа топлива.

Химический недожог как источник теплопотерь


Показатель q3 используется при расчете КПД газового котла отопления, например, или в тех случаях, когда топливом служит мазут. Для газовых котлов значение q3 составляет 0,1-0,2 %. При незначительном избытке воздуха при горении этот показатель равен 0,15 %, а при существенном переизбытке воздуха его не принимают в расчет вовсе. Однако при сжигании смеси из газов различной температуры значение q3=0,4-0,5 %.



Если же отопительное оборудование работает на твердом топливе, в расчет принимают показатель q4. В частности, для угля антрацита значение q4=4-6 %, полуантрациту характерно 3-4 % теплопотерь, а вот при сгорании каменного угля образуется всего 1,5-2 % потерь тепла. При жидком шлакоудалении сжигаемого малореакционного угля значение q4 можно считать минимальным. А вот при удалении шлака в твердом виде теплопотери возрастут до максимальной границы.

Потери тепла в связи с внешним охлаждением


Такие потери тепла q5 обычно составляют не более 0,5 %, а по мере возрастания мощности отопительного оборудования они еще больше сокращаются.


Данный показатель связан с расчетом паропроизводительности котельной установки:

  • При условии паропроизводительности D в пределах 42-250 кг/с, значение потерь тепла q5=(60÷D)×0,5÷lgD;
  • Если значение паропроизводительности D превышает 250 кг/с, уровень теплопотери считают равным 0,2 %.

Количество теплопотерь от удаления шлака


Значение теплопотерь q6 имеет значение только при жидком шлакоудалении. А вот в тех случаях, когда из топочной камеры удаляют шлаки твердого топлива, теплопотери q6 учитывают при расчете КПД котлов отопления только в случаях, если они составляют более 2,5Q.

Как посчитать КПД твердотопливного котла


Даже при условии идеально проработанной конструкции и качественного топлива, КПД отопительных котлов не может достигать 100 %. Их работа обязательно сопряжена с определенными потерями тепла, вызванными как типом сжигаемого топлива, так и рядом внешних факторов и условий. Чтобы понять, как на практике выглядит расчет КПД твердотопливного котла, приведем пример.



Например, теплопотери от удаления шлаков из топливной камеры составят:


q6=(Ашл×Зл×Ар)÷Qri,


где Ашл – относительное значение шлака, удаляемого из топки к объему загружаемого топлива. При грамотном использовании котла доля отходов горения в виде золы составляет 5-20 %, то данное значение может быть равно 80-95 %.


Зл – термодинамический потенциал золы при температуре в 600 ℃ в обычных условиях равен 133,8 ккал/кг.


Ар – зольность топлива, которая рассчитывается на общую массу топлива. В различных видах горючего показатель зольности колеблется от 5 % до 45 %.


Qri – минимальный объем тепловой энергии, который генерируется в процессе сгорания топлива. В зависимости от разновидности топлива теплоемкость колеблется в рамках 2500-5400 ккал/кг.


В данном случае с учетом указанных значений теплопотери q6 будут составлять 0,1-2,3 %.


Значение q5 будет зависеть от мощности и проектной производительности отопительного котла. Работа современных установок с малой мощностью, которыми очень часто обогревают частные дома, обычно сопряжена с теплопотерями данного вида в пределах 2,5-3,5 %.


Теплопотери, связанные с механическим недожогом твердого топлива q4, во многом зависят от его типа, а также от конструкционных особенностей котла. Они колеблются в пределах 3-11 %. Это стоит учитывать, если вы ищете способ, как наладить котел на более эффективную работу.



Химический недожог горючего обычно зависит от концентрации воздуха в сгораемой смеси. Такие теплопотери q3, как правило, равны 0,5-1 %.


Наибольший процент теплопотерь q2 связан с уходом тепла вместе с горючими газами. На этот показатель влияет качество и вид топлива, степень разогрева горючих газов, а также условия эксплуатации и конструкция отопительного котла. При оптимальном тепловом расчете в 150 ℃ эвакуируемые угарные газы должны быть разогреты до температуры в 280 ℃. В таком случае данное значение теплопотерь будет равно 9-22 %.


Если все перечисленные значения потерь суммировать, получим значение эффективности ɳ=100-(9+0,5+3+2,5+0,1)=84,9 %.


Это значит, что современный котел может работать лишь на 85-90 % мощности. Все остальное уходит на обеспечение процесса горения.


Обратите внимание, что добиться таких высоких значений не так просто. Для этого нужно грамотно подойти к подбору топлива и обеспечить для оборудования оптимальные условия. Обычно производители указывают, с какой нагрузкой должен работать котел. При этом желательно, чтобы основную часть времени он был настроен на экономный уровень нагрузок.



Для работы котла с максимальным КПД, его нужно использовать с учетом таких правил:

  • обязательна периодическая чистка котла;
  • важно контролировать интенсивность горения и полноту сгорания топлива;
  • нужно рассчитать тягу с учетом давления подаваемого воздуха;
  • необходим расчет доли золы.


На качестве сгорания твердого топлива положительным образом отражается расчет оптимальной тяги с учетом давления воздуха, подаваемого в котел, и скорости эвакуации угарных газов. Тем не менее, при возрастании давления воздуха вместе с продуктами сгорания в дымоход удаляется больше тепла. А вот слишком малое давление и ограничение доступа воздуха в топливную камеру приводит к снижению интенсивности горения и более сильному золообразованию.


Если у вас дома установлен отопительный котел, обратите внимание на наши рекомендации по увеличению его КПД. Вы сможете не только сэкономить на топливе, но и добьетесь комфортного микроклимата в доме.


Как повысить КПД твердотопливного котла. Статьи компании «Печи-центр»

КПД агрегата предназначенного для отопления является относительной величиной. Измеряется она в процентах. Это соотношение затраченного топлива к полезной энергии, которая выдается для обогрева котлом. Современные конструкции, работающие на угле, имеют высокий уровень КПД, до 95%. Но, не всегда число, указанное в инструкции соответствует действительности. Перед тем, как купить твердотопливный котел необходимо убедиться в соответствии показателей коэффициента полезного действия. Его уровень зависит он от интенсивности горения, эффективности носителей тепла, уровень потерь тепла при передвижении, а также количества потерь тепла в помещении. Агрегаты, работающие на углях иди другом виде топлива, имеют показатель от 65 до 75%.

Методы повышения КПД

В увеличении коэффициента играет роль выбранный вид топлива. Рекомендуется просушивать предварительно уголь и дрова. Не растапливать бытовым мусором. Он уменьшает тягу, забивает дымоход продуктами сгорания и сажей. Также это повышает затраты на покупку горючего вещества. Даже если применяется качественный продукт для топки надо не забывать чистить агрегат, дымоход, удалять скопленные частички, забивающие канал. Серьезно рассмотреть подачу воздуха, которого нужно много. Кислород помогает топливу гореть. Необходимо обеспечить постоянный поток воздуха в прибор для отопления, в середине которого сгорают уголь или дрова.

Уменьшить потерю тепла поможет утепление дома. Если этот метод не эффективный надо заменить деревянные окна на пластиковые. Также установить новый котел или поменять вид топлива. В дверях устранить все щели или заменить их. Используя циркуляционный насос, выполняется равномерное распределение тепла по дому. Этот метод приведет к повышению КПД. Можно купить еще одну недорогую модель и установить его рядом со старым в каскад.

Для увеличения продуктивности агрегата надо учитывать специфику змеевика, период сгорания дров. Чем больше величина теплового контакта, тем больше теплого воздуха будет передаваться теплоносителю от сгорания угля. Чем эффективнее сгорает топливо, тем выше температура в помещении. Корпус конструкции должен быть выполнен из нержавейки или стали, которые выдерживают высокую температуру. Толщина металла должна быть не менее 5 мм. Если используется чугун, тогда величина должна составлять 8 мм. Трубу использовать для внутренней системы диаметром 5 см, а толщина стенок 3 – 4 мм.

Рассчитать надо на конструктивном уровне водомерный узел. В направлении движения горячей воды к холодной он должен сужаться и расширяться в обратном пути. Задействуются трубы диаметром меньше – 2,5 см.

В среднем повысить коэффициент продуктивности можно от 3 до 7 %. Для этого следует применить некоторые советы:

  • поднять трубу (дымоход) так, чтобы он был выше конька на крыше;
  • утеплить ее на 2/3 высоты;
  • рекомендуется вместе с агрегатом купить емкостной аккумулятор, способный накопить в камере избыточное тепло;
  • когда прибор отключается, еще некоторое время тепло поступает в систему отопления, что оправдывает стоимость на короткое время;
  • когда появляется возможность отапливать дом природным газом, можно твердотопливный котел изменить, переоборудовать в атмосферную конструкцию;
  • на место, где установлено оборудование, следует обеспечить стабильный приток кислорода, чтобы горение было эффективным;
  • равномерного прогревания можно достичь при монтаже циркуляционного насоса.

Монтаж радиаторов

Чтобы сделать максимальным коэффициент полезного действия надо установить радиаторы так, чтобы максимально нагреть помещение. Потери тепла должны быть минимальными. Подоконник должен перекрывать верхнюю часть батареи 2/3. Расстояние от верхней части секции до подоконника – 1 метр, от пола к радиатору – 1м 20 см. От стены к панели на батарее (задняя часть) – 2 см. Потоки тепла частично задержатся возле подоконника, нагреют стену, уменьшат потери тепла через форточку.

Теплоноситель также надо подобрать правильно. Антифриз имеет низкий уровень энергоемкости. Поэтому лучше трубы наполнять дистиллированной водой. Можно сменить горелку со старого образца на новый, чтобы повысить безопасность и потребление газа. Систематическая прочистка труб повысить КПД. Для этого используется несколько способов: химический, гидравлический либо комбинированный. Необходимо установить зеркальные экраны за батареями. Даже обычная уборка пыли улучшит теплоотдачу.

✔ как повысить коэффициент ✔

Твердотопливные котлы (далее ТТН) обладают достаточным процентом КПД по сравнению с другими отопительными агрегатами (газовыми котлами, к примеру), чтобы быть конкурентоспособными и лидировать на рынке. Последние модели ТТН оснащаются новейшими системами автоматики для оптимизации работы.

Котлы на твердом топливе работают по принципу печного отопления: тепло передается теплоносителю (воде) посредством генерации энергии в процессе горения угля, дров, пеллет в топке. Коэффициент полезного действия или КПД у каждого котла свой и зависит от множества условий: выбора топлива, правил эксплуатации, качества монтажа и т.д. Рассмотрим подробнее, что же такое КПД отопительных приборов, и как увеличить этот коэффициент для твердотопливных котлов.

Что такое КПД – коэффициент полезного действия

Для правильного подбора мощности котла относительно квадратуры помещения, которое следует отапливать, рекомендуем обращать внимание на эффективность агрегата, его КПД, особенно, если речь идет о твердотопливных котельных. 

Коэффициент полезного действия или КПД – это показатель, который рассчитывается исходя из соотношения между затраченной энергией (тепловой – при горении продуктов в топке) и полезным теплом – которое поступает в систему отопления для передачи в помещение. После вычисления простой формулы получаем процент эффективности.

q1 + q2 + q3 + q4 + q5 = 100%

Расшифровываем:

q1 – показатель тепла, которое было передано теплоносителю – воде.

q2 – физический недожег – теплопотери с отходящими газами.

q3 – химический недожиг – теплопотери при неполном сгорании топлива.

q4 – теплопотери при рассеивании тепла.

Процент КПД увеличивается при условии оптимизированной работы котла.

Ключевым моментом, который влияет на показатель эффективности – насколько качественно произведен монтаж твердотопливного котла. Кроме этого, учитывается выбор топлива (уголь, дрова, пеллеты), наличие вентиляции, условия эксплуатации.

Разберем на примере.

Если в паспорте приобретенного котла указан КПД 90%, следует учесть, что это показатель, которого можно добиться, если агрегат будет работать в номинальном режиме, будет сжигаться топливо высокого качества и низкой степенью зольности. При других факторах во время эксплуатации КПД твердотопливного котла может снижаться до 60% или 70%.

Как же приблизиться к идеалу и максимально выжимать тепло при эксплуатации ТТН?

Как повысить КПД твердотопливного котла

Рассмотрим некоторые рекомендации, ка сделать так, чтобы твердотопливный котел работал на максимум, работал экономично, расходуя минимум дров, угля или пеллет.

  1. Загружайте только просушенное топливо в ТТН. Если жечь влажные дрова или уголь, часть энергии потратиться на то, чтобы их просушить.
  2. Не используйте топливо с большим количеством мусора, примесей, пыли, потому что эти включения быстро засорят как теплообменные каналы котла, так и колосники и дымоход.
  3. Твердотопливные котлы требуют обязательной периодической чистки дымохода и внутренних поверхностей котла, потому что любой ТТН засоряется несравненно больше, чем другой газовый котел.
  4. Обеспечьте правильную тягу в канале дымохода: она должна быть не очень сильной, но и не слишком слабой. Если исключить момент правильного проектирования дымохода, то для этого на дымоходе либо на ТТН есть дроссельный клапан, которым регулируется тяга воздуха в дымоходе – его следует установить на правильное значение. Для того, чтобы загружать твердотопливный котел один-два раза в сутки и обеспечить эффективную работу отопления в целом обязательно следует проектировать буферную емкость (аккумулятор тепла).
  5. Приобретайте твердотопливный котел только с дутьевым вентилятором, который сможет точно отрегулировать процесс горения в котле и контролировать температуру дымовых газов.

Выполняем полный комплекс работ по вентиляции, кондиционированию, отоплению и водоснабжению в Киеве и области. Закажите консультацию или звоните по тел. (044) 221-93-35, (067) 939-29-29.

Анализ эффективности твердотопливного котла в зависимости от выбора сжигаемого топлива

E3S Web of Conferences 154 , 02003 (2020)

Анализ эффективности твердотопливного котла в зависимости от выбора сжигаемого топлива

Гжегож Пелка * , Войцех Любонь и Пшемыслав Пахитель

AGH Университет науки и технологий, факультет геологии, геофизики и защиты окружающей среды, кафедра ископаемых видов топлива, проспект Мицкевича. 30, 30-059 Краков, Польша

* Автор для переписки: [email protected]

Аннотация

В муниципальном и жилом секторе в Польше до 50% домашних хозяйств отапливаются твердотопливными котлами. Чаще всего это, к сожалению, малоэффективные котлы, работающие на некачественном угле. Это исследование характеризует рынок котлов на твердом топливе в Польше, а также представляет основные распределения этих устройств из-за различных критериев, которые их характеризуют.Также обсуждаются текущие законодательные изменения в области требований к энергии и выбросам для твердотопливных котлов. Основная цель данной работы — проанализировать реальный КПД используемого твердотопливного котла с надгоранием в зависимости от сжигаемого в нем топлива. Процессу сжигания выбранных видов топлива (выдержанной древесины, угля и гороха) в котле предшествовали испытания этих видов топлива для определения их энергетических параметров, таких как влажность, зольность, доля летучих веществ и теплотворная способность. На следующем этапе сравнивается энергоэффективность, полученная испытанным твердотопливным котлом при сжигании выбранного твердого топлива. Самый высокий КПД был достигнут при сжигании горохового угля, а самый низкий — при сжигании древесины. В любом случае номинальное значение КПД было достигнуто. Предложены решения, позволяющие улучшить качество процесса горения в котлах данного типа.

Это статья в открытом доступе, распространяемая в соответствии с условиями лицензии Creative Commons Attribution License 4.0, что разрешает неограниченное использование, распространение и воспроизведение на любом носителе при условии правильного цитирования оригинальной работы.

Повышение прямого КПД котлов — роль автоматизации

Безопасность и эффективность всегда придают первостепенное значение как производителям котлов, так и потребителям пара. Со временем производительность котла по этим двум параметрам значительно улучшилась. По мере развития технологий всегда есть возможности для повышения безопасности и эффективности.

В этой статье объясняется, как интеллектуальный ПЛК (программируемый логический контроллер) может помочь пользователям пара обеспечить более эффективную и безопасную работу котла.

В случае обычных твердотопливных котлов с ручной топкой разрыв между косвенным и прямым КПД достаточно велик. Обычно гарантированный КПД составляет около 73-77%. Фактически полученный КПД находится в диапазоне 50-55%. Этот огромный разрыв между прямым и косвенным КПД объясняется многочисленными потерями, которые, безусловно, можно уменьшить с помощью автоматизации котла.С помощью автоматизации можно подавать сигналы тревоги / вводить оператору котла, которые помогают ему эффективно управлять котлом. Систему также могут использовать менеджеры коммунальных предприятий для мониторинга производительности. Таким образом, эта система при правильном использовании может привести к значительной экономии для пользователей.

В этой статье делается попытка понять причину разрыва между прямым и косвенным КПД в случае ручных твердотопливных котлов и роль, которую могут играть контрольно-измерительные приборы.

Косвенная и прямая эффективность — Почему существует разрыв?

Как известно, косвенная эффективность определяется путем расчета индивидуальных потерь.Тогда как прямой КПД — это соотношение тепловой энергии, вырабатываемой котлом, и энергии, подаваемой в котел в виде топлива. В этой статье объясняются причины разрыва между прямой и косвенной эффективностью.

Как ручное управление снижает КПД котла?

В обычных котлах с ручным обогревом операции и регулировки котла, такие как подача топлива, установка положения заслонки вентилятора внутреннего диаметра и т. Д., Выполняются персоналом завода. Например, в идеале, установка заслонки внутреннего диаметра вентилятора не должна быть одинаковой для различных нагрузок котла.Невозможно вручную оптимизировать настройки заслонки вместе с нагрузкой, и, следовательно, котлы работают с одинаковым внутренним диаметром заслонки вентилятора для всех нагрузок. Это значительно снижает реально достигаемую эффективность, то есть прямую эффективность.

Другой типичный пример — это ручная подача топлива, которая значительно увеличивает несгоревшие потери и потери в дымовой трубе. Операторы часто перекармливают котел или просто подкармливают его. Из-за этого воздуха, доступного для горения, недостаточно для полного сгорания топлива.Это внезапно увеличивает несгоревшие потери. В то же время, когда оператор держит дверцу открытой в течение более длительного периода времени, чем требуется, окружающий воздух всасывается внутрь печи и выходит через дымоход с более высокой температурой, что приводит к увеличению потерь в дымовой трубе.

Из двух примеров, рассмотренных выше, совершенно очевидно, что ручное управление снижает фактическую полученную эффективность котла, поскольку операторы не осведомлены о параметрах в реальном времени и, следовательно, не могут принять правильные меры соответственно.Другими словами, если операторы будут получать автоматические предупреждения, эти потери могут быть уменьшены. Здесь важную роль играет интеллектуальный ПЛК.

Роль автоматизации

С помощью датчиков и интеллектуального ПЛК операторы котлов могут получать своевременные предупреждения, если они следуют неэффективной практике эксплуатации. Такое расположение может даже побудить операторов изменить определенные параметры при изменении условий работы котла. Мы рассмотрим различные типы предупреждений, которые могут быть предоставлены, и то, как они помогают контролировать потери.

  1. Закройте дверцу подачи

    Когда загрузочная дверца остается открытой, из-за давления в топке всасывается воздух комнатной температуры. Этот воздух также нагревается и выходит через дымоход. Этот воздух переносит много тепла, увеличивая потери в дымовой трубе. С помощью концевого выключателя оператор может быть предупрежден, когда дверь остается открытой, и, следовательно, может значительно снизить потери в штабеле.

  2. Отрегулируйте заслонку вентилятора внутреннего диаметра

    При изменении условий эксплуатации котла необходимо менять положение заслонки внутреннего вентилятора. Это гарантирует, что в печь поступает нужное количество воздуха, и, следовательно, минимизирует потери в дымовой трубе. С помощью ПЛК оператору котла может быть предложено изменить настройки заслонки ID вентилятора.

  3. Очистите трубки

    Если трубы котла не очищаются из-за загрязнения дымовых газов, на внутренней стенке труб образуется слой сажи. Это значительно снижает скорость теплопередачи. В то же время, поскольку тепло от газов не передается воде, температура дымовой трубы продолжает расти.Установив датчик температуры на выходе из дымовой трубы, можно показать всплывающее окно для очистки труб, когда температура в дымовой трубе поднимется выше нормального значения.

  4. Чрезмерное кормление

    Часто операторы котлов не получают оценку количества топлива, которое нужно подать в котел. С другой стороны, операторы часто заправляют котел топливом на пару часов, чтобы избежать частых хлопот с кормлением. Это приводит к перекармливанию. В результате перекачки происходит неполное сгорание топлива, что приводит к увеличению несгоревших потерь.С помощью передатчиков интеллектуальный ПЛК может предупредить оператора о перекармливании.

    Помимо избыточной подачи, котлы часто питаются только с передней стороны, что приводит к неравномерному распределению топлива, что снова увеличивает несгоревшие потери. Интеллектуальный ПЛК может обнаруживать такие условия, регистрируя изменения давления, и может побудить оператора предпринять корректирующие действия.

  5. Регулировка топливного поддона

    Если топливо распределено по станине неравномерно, могут образоваться карманы перекармливания, что приведет к неполному сгоранию топлива.В результате увеличатся несгоревшие потери. Если такое состояние обнаруживается, интеллектуальный ПЛК может генерировать предупреждение и предлагать оператору отрегулировать топливный слой.

  6. Возможность обратной стрельбы

    Контроль и поддержание давления в печи — абсолютная необходимость во избежание возникновения обратного возгорания. Интеллектуальный ПЛК с помощью датчика давления в печи может предупредить оператора, когда давление в печи может привести к обратному возгоранию.

  7. Улучшение качества воды

    Продувка необходима для поддержания работоспособности котла.В то же время продувка приводит к значительным потерям энергии. С помощью интеллектуального ПЛК можно следить за потерями от продувки. Чем выше качество питательной воды, тем меньше потери на продувку. Когда потери от продувки возрастают, ПЛК может побудить оператора котла предпринять соответствующие действия для обеспечения качества питательной воды. Действия по этому предупреждению могут значительно снизить потери от продувки.

Постоянный рост цен на топливо и повышение осведомленности об энергосбережении и безопасности требуют более эффективных и безопасных котлов.Использование ПЛК в котлах — следующий шаг к решению этих проблем с помощью передовых технологий.

Энергоэффективность

— Ассоциация твердого топлива

Маршрут, который вы будете использовать для выбора вашей системы, вероятно, будет зависеть от того, будет ли она вашим основным источником тепла или вторичным источником тепла.

Системы центрального отопления:
Установка и выбор систем отопления, обеспечивающих помещение и горячую воду, подчиняются требованиям Строительных норм.Основными частями являются J (F в Шотландии) Устройства для сжигания и системы хранения топлива и LI (J в Шотландии) Сохранение тепла и энергии. Эта последняя часть охватывает системы, которые обеспечивают отопление помещений и воды, и в нее регулярно вносятся поправки для повышения эффективности систем. Текущие правила вступили в силу в 2016 году. Поэтому вам необходимо знать последние правила, прежде чем выбирать и устанавливать систему центрального отопления на твердом топливе. Вы можете загрузить или заказать копию нашего «Руководства для клиентов по текущим строительным нормам» со страницы литературы.

Наше «Полное руководство по отоплению на твердом топливе» и более подробное «Проектирование твердого топлива в жилых домах» дадут вам основную информацию о том, какие типы твердотопливных систем доступны. Все эти публикации можно скачать с нашего сайта. Если вы являетесь установщиком, вам также следует ознакомиться с документами второго и третьего уровня, опубликованными с измененными Строительными нормами и доступными на сайте www.planningportal.gov.uk

Несколько слов о HETAS

HETAS (Схема испытаний и одобрений отопительного оборудования) является органом по сертификации твердотопливных и древесных топливных приборов в Великобритании.HETAS также была назначена правительством в качестве сертифицирующего органа для компетентности в установке твердотопливных приборов и систем в соответствии со строительными нормами. Используя зарегистрированный установщик HETAS, вам не нужно будет запрашивать согласие на установку для установки. Однако перед выбором системы вам может быть полезно ознакомиться с различными публикациями, упомянутыми выше, а также получить совет от выбранного вами инженера.

A Примечание о рейтингах SAP
SAP — это стандартная процедура оценки для измерения энергоэффективности зданий. Окончательный рейтинг SAP для здания является результатом сложных расчетов потерь тепла через ткань здания, эффективности системы отопления и выбросов углекислого газа из здания. Установщик должен компенсировать более низкий КПД котла, обеспечив большую изоляцию здания, чтобы минимизировать тепловые потери.

КПД газовых и жидких котлов рассчитывается с учетом сезонных колебаний, и каждый котел имеет рейтинг, опубликованный в таблицах SEDBUK (Сезонный КПД бытовых котлов, Великобритания).На данный момент не существует эквивалентной таблицы SEDBUK для твердотопливных систем. Котлы на твердом топливе работают иначе, чем котлы на жидком топливе и газе, поэтому их сезонный КПД следует рассчитывать иначе. Производители твердотопливных приборов работают над публикацией таблицы твердого топлива, но в то же время установщикам трудно провести какие-либо сравнительные расчеты эффективности твердотопливных или дровяных котлов. Строительное научно-исследовательское учреждение опубликовало стандартные показатели для различных типов твердотопливных приборов. HETAS публикует показатели эффективности для твердотопливных устройств, которые он проверил в своем ежегодном списке «Утвержденные твердотопливные устройства и услуги», но этот показатель не будет сравниваться с показателем SEDBUK для других котлов. У производителей бытовой техники будут свои цифры. Некоторые показатели эффективности, указанные производителями в их литературе, могут не быть сезонно скорректированными цифрами, хотя со временем их смогут предоставить другие.

Все устройства, указанные в Руководстве HETAS по утвержденным твердотопливным приборам и услугам, должны иметь минимальную эффективность, требуемую HETAS для этого типа оборудования.Эти минимальные значения эффективности опубликованы на веб-сайте HETAS Ltd (см. Ниже).

А дерево?

Сжигание древесины может улучшить рейтинг SAP для здания, поскольку древесина классифицируется как углеродно-нейтральное топливо. Даже сжигание половины угля и половины дров на многотопливном приборе существенно повлияет на выбросы углерода. Многие твердотопливные приборы являются многотопливными, включая кухонные плиты. Однако, если вы находитесь в зоне контроля дыма, вы можете сжигать дрова только на не подпадающем под действие приборе.Некоторые из них перечислены на нашем веб-сайте и доступны по адресу https://www.gov.uk/smoke-control-area-rules

Теперь доступны смешанные топливные брикеты. Эти брикеты будут выделять меньше углекислого газа, чем стандартный антрацитовый или угольный брикет. Проверьте номинальную мощность приборов на различных видах топлива. Если вы собираетесь использовать в основном древесину, вам необходимо убедиться, что выбранный вами котел сможет обогреть все нужные вам радиаторы.

Также можно рассмотреть котлы на древесных гранулах.Они полностью автоматические, и некоторые из них могут продолжать работать даже при отключении питания. Топливо — специальная гранулированная древесина. Более крупные модели бытовых котлов питаются через бункер и не требуют особого обслуживания.

Солнечный водонагреватель
Если вам понадобится электрический погружной нагреватель для воды летом, вы можете подумать об установке солнечной системы водяного отопления для ваших летних потребностей. Несмотря на то, что системы дороги, могут быть доступны гранты для покрытия стоимости установки.После установки вполне возможно, что летом вы сможете получать большую часть своей горячей воды из этой системы.

Отопление помещений
Если ваш твердотопливный прибор будет использоваться только для обогрева помещений, его эффективность будет для вас менее важна. Тем не менее, стоит учесть следующее:

  • Корзина для бревен или открытый огонь . вставной огонь.Собачьи или испанские решетки наименее эффективны. Кассетный огонь или топка будут наиболее эффективным видом открытого огня. Некоторые кассетные камины с конвекторами могут иметь эффективность до 50% (Jetmaster — см. Контакты в конце).
  • Печи и обогреватели — Эти закрытые приборы гораздо более эффективны и управляемы, чем открытый огонь. Некоторые из них очень тщательно спроектированы, чтобы обеспечить хороший обзор огня без необходимости открывать двери. Если вы выберете модель котла, вы можете пойти на подключение (см. Предыдущий раздел).

Отключение электроэнергии и нехватка топлива
Отключение электроэнергии не является популярным способом экономии энергии, но если у вас есть твердотопливный или дровяной прибор без электрического насоса, у вас всегда будет источник тепла в экстренной ситуации. В некоторых печах даже есть плита. Уголь и бездымное топливо поставляются торговцами углем и доступны в различных других торговых точках. Вы можете держать под рукой «мгновенный» огонь или журнал обогрева на случай, если погаснет свет.

Дополнительная информация и контакты
Исчерпывающие списки приборов и разрешенных бездымных топлив https: // www.gov.uk/smoke-control-area-rules. Также ознакомьтесь с Руководством по одобренным продуктам и услугам HETAS, в котором перечислены исключенные приборы, одобренные HETAS.

  • Строительные нормы и правила можно посмотреть на сайте www. planningportal.gov.uk
  • Energy Savings Trust https://energysavingtrust.org.uk/ Тел .: 0800 444 202 — дает советы по экономии энергии и выпускать разнообразные публикации для отдельных лиц и сообществ.
  • Ваш местный орган власти будет предлагать консультации по вопросам энергетики и может иметь специальные программы по продвижению энергоэффективных приборов и изоляции совместно с поставщиками газа и электроэнергии.
  • Национальный энергетический фонд — Консультации по возобновляемым источникам энергии, поставщикам древесины и печам на древесных гранулах www.greenenergy.org.uk по телефону 01908 66 5555. В NEF также размещен список поставщиков древесины — logpile — посетите www.logpile. co.uk или по телефону 01908 665555.
  • HETAS LTD для получения полного списка инженеров и одобренных видов топлива, устройств и услуг, а также некоторых показателей эффективности устройств на сайте www.hetas.co.uk.
  • Firefront Suppliers
    Metal Developments Ltd.www.woodwarmstoves.co.uk
  • Системы управления и связи
    A.J. Wells & Sons, www.charnwood.com Тел: 01983 537777
    Dunsley Heating www.dunsleyheat.co.uk Тел: 01484 682635.
  • Двери камина
    Дистрибьюторы Thermo-Rite A. & M. Energy fires, тел. : 01452 830662 www.energyfires.co.uk
  • Ограничители горла
    Hanson Red Bank Телефон 01530 270 333
  • Пожары кассетного конвектора открытого огня
    Jetmaster Fires Ltd www.jetmaster.co.uk Тел .: 0870 727 0105
  • Схема утвержденных продавцов угля — Найдите местного утвержденного продавца на нашей веб-странице. Утвержденные продавцы угля или позвоните нам по телефону 01773 835400

Критерии выбора Твердотопливные котлы

Критерии выбора твердотопливных котлов

Методология

Topten.eu представляет самые энергоэффективные твердотопливные котлы Европы. Topten показывает модели, в которых используются древесные гранулы, бревна или и то, и другое.
Обратите внимание, что дровяные печи (твердотопливные печи для местного отопления) не входят в этот список. Их можно найти здесь: Обогреватели локального пространства

Критерии выбора

Пеллетные котлы

Котлы на дровах

Энергетическая этикетка

A + или выше

A + или выше

Пыль [мг / м3]

15

30

Номинальная нагрузка

CO [мг / м3]

30

100

C org номинальная нагрузка [мг / м3]

10

15

NOx [мг / м3]

150

150


Правила

Регламент по энергетической маркировке ЕС 2015/1187

Твердотопливный котел должен иметь маркировку энергоэффективности, указывающую его энергоэффективность по шкале от A +++ (наиболее эффективный) до D (наименее эффективный), применимый с 26 сентября -го 2019 года.На этикетке представлена ​​такая информация, как марка, модель, класс энергоэффективности, прямая и, если необходимо, косвенная номинальная тепловая мощность, а также дополнительная функция выработки электроэнергии в кВт. Это относится к приборам с номинальной мощностью до 70 кВт.

Классы энергоэффективности твердотопливных котлов имеют следующие пороги:

Класс энергоэффективности

Индекс энергоэффективности ( EEI )

A +++

EEI ≥ 150

A ++

125 ≤ EEI <150

А +

98 ≤ EEI <125

А

90 ≤ EEI <98

B

82 ≤ EEI <90

С

75 ≤ EEI <82

D

36 ≤ EEI <75

E

34 ≤ EEI <36

F

30 ≤ EEI <34

г

EEI <30

Требования к экодизайну ЕС 2015/1189

Регламент распространяется на приборы с номинальной мощностью до 500 кВт.Требования указаны для следующих тем, применимых с указанных лет и далее:

  • 2017: требования к информации (описание продукта, техническая документация, этикетка продукта)
  • 2019: база данных продукта (требуется загрузка технической документации на продукт)
  • 2020 Уровень 1: MEPS для энергоэффективности, выбросов твердых частиц, органических газообразных соединений, монооксида углерода и оксидов азота.

Требования, указанные в Экодизайне 1189

Пеллеты (автоматически)

Бревно (ручное)

КПД при номинальной нагрузке (%)

75% (<20 кВт), 77% (> 20 кВт)

Пыль [мг / м 3 ]

40

60

Номинальная нагрузка CO [мг / м 3 ]

500

700

Номинальная нагрузка C org [мг / м 3 ]

20

30

NO x [мг / м 3 ]

200

350

Глоссарий

  • Бренд: указывает марку представленного котла
  • Модель

  • : указывается наименование / номер представленного котла
  • Подобные модели: указывает названия / номера аналогичных котлов (разные цвета, материал, но, по сути, одна и та же модель)
  • Маркировка энергоэффективности

  • : указывает действующую европейскую маркировку энергоэффективности в соответствии с EN 2015/1186.Маркировка варьируется от A +++ до G.
  • Тип топлива: указывает топливо, которое можно использовать в котле. Это могут быть пеллеты, бревна или пеллеты + бревна.
  • Вес (кг): Указывает вес в кг. Например, 181.
  • Высота (см): указывает высоту в см. Например, 104.
  • Ширина (см): указывает ширину в см. Например, 68.
  • Глубина (см): указывает глубину в см. Например, 38.
  • Макс. тепловая мощность (кВт): указывает максимальную тепловую мощность в кВт.
  • Подключенная нагрузка котла [кВт]: указывает электрическую нагрузку, на которую подключен котел. Например, 2.
  • Индекс энергоэффективности (%): указывает КПД в% при номинальной нагрузке, например 107. Чем выше EEI, тем эффективнее котел.
  • Система заправки: указывает способ заправки котла. Значение атрибута может быть одним или несколькими из следующих: Ручной, Винтовой конвейер, Пневматический конвейер.
  • Вспомогательная потребность в энергии при номинальной нагрузке (%): указывает потребность в дополнительной энергии в% для дополнительных процессов (таких как заправка топливом, вентиляция, регулирование воздушного потока и т. Д.)).
  • Номинальная нагрузка по пыли [[мг / Нм3]: указывает количество твердых частиц в отработанном воздухе при номинальной нагрузке котла.
  • Номинальная нагрузка CO [мг / Нм3]: указывает оксид углерода в отработанном воздухе при номинальной нагрузке котла.
  • C org номинальная нагрузка [мг / Нм3]: указывает количество органического углерода в отработанном воздухе при номинальной нагрузке котла.
  • NOx [мг / Нм3]: указывает диоксид азота в отработанном воздухе при номинальной нагрузке котла.

Инфо Плюс

Правила

Прочие документы и презентации

Информация для производителей и розничных продавцов

Производителей и розничных продавцов просим указывать контактную информацию (at) topten.info, чтобы сообщить о других продуктах, соответствующих критериям выбора Topten.

03/2020 Гросс, Втулка

границ | Разработка и производительность многотопливного жилого котла, сжигающего сельскохозяйственные отходы

Введение

Рост населения, истощение и рост цен на ископаемое топливо и климатический кризис во всем мире требуют быстрого развития технологий использования возобновляемых источников энергии с минимальным воздействием на окружающую среду. Топливо из биомассы обладает значительным потенциалом для удовлетворения этих потребностей благодаря своему обилию, низкой стоимости и сокращению выбросов парниковых газов.К 2050 году до 33–50% мирового потребления может быть обеспечено за счет биомассы (McKendry, 2002).

ЕС поставил цель увеличить долю возобновляемых источников энергии в общем потреблении энергии до 27% к 2030 году (ЕС, 2014). Древесное топливо преимущественно использовалось как в крупных, так и в малых системах для производства тепла или электроэнергии. Однако растущая конкуренция за такие виды топлива в секторе отопления, лесопилении и бумажной промышленности, а также рост производства древесных гранул привели к росту цен на древесину и нехватке сырья (Uslo et al., 2010). Таким образом, для достижения цели роста использования биомассы потребуется более широкий ассортимент сырья (Carvalho et al., 2013; Cardozo et al., 2014; Zeng et al., 2018), что создаст дополнительную потребность в топливе. технологии переработки и контроля выбросов.

Для южноевропейских стран, где популярно отопление жилых домов с использованием топлива из биомассы в качестве более дешевой альтернативы, предпочтительным сырьем являются сельскохозяйственные и агропромышленные отходы. Они легко доступны в больших количествах и обладают высоким энергетическим потенциалом, уменьшая путем сжигания объем отходов и увеличивая экономическую отдачу для сельских общин.В Греции доступно около 4 миллионов тонн в год, что эквивалентно примерно 50% валового потребления энергии (Vamvuka and Tsoutsos, 2002; Vamvuka, 2009).

Наиболее распространенными типами бытовых топочных устройств являются дровяные печи, дровяные котлы, печи на древесных гранулах и устройства для сжигания древесной щепы. Помимо дровяных печей и обычных котлов с бесконечными винтами, используются котлы смешанного горения с надстройками автоматизации, решениями для хранения и разнообразными механизмами подачи (Vamvuka, 2009; Sutar et al., 2015; Ан и Джанг, 2018). В прошлых исследованиях изучались выбросы дымовых газов, эффективность и проблемы, связанные с золой, при сжигании сельскохозяйственных остатков. Крупномасштабные агрегаты или небольшие пеллетные устройства для домашнего или жилого центрального отопления, некоторые из которых используют верхнюю подачу, вращающиеся или подвижные решетки (Vamvuka, 2009; Carvalho et al., 2013; Rabacal et al., 2013; Garcia-Maraver et al., 2014). ; Pizzi et al., 2018; Zeng et al., 2018; Nizetic et al., 2019). Однако по-прежнему недостаточно информации о характеристиках необработанного сырья с точки зрения эффективности и выбросов загрязняющих веществ в соответствии с пороговыми значениями в зависимости от различных конструкций небольших систем и условий эксплуатации.В основном использовалась древесная щепа (Kortelainen et al., 2015; Caposciutti and Antonelli, 2018), тогда как разработка котлов в странах Средиземноморья идет медленно.

Было доказано, что маломасштабные системы биомассы вносят значительный вклад в качество местного воздуха за счет выбросов таких загрязнителей, как CO, SO 2 , NO x , полиароматические углеводороды и твердые частицы, которые могут серьезно повлиять на здоровье человека и климат. Эти выбросы зависят от свойств топлива, применяемой технологии и условий процесса, и их мониторинг и контроль очень важны для соблюдения экологических ограничений и экономической эффективности требований рынка.Было обнаружено, что выбросы CO варьируются от 600 до 680 частей на миллион v для персиковых косточек (Rabacal et al., 2013), 50-400 частей на миллион v для скорлупы бразильских орехов и 100-400 частей на миллион v для шелухи подсолнечника ( Cardozo et al., 2014). Было показано, что выбросы NO x находятся в диапазоне 300-600 мг / м 3 для косточек персика (Rabacal et al., 2013), 180–270 мг / м 3 для скорлупы бразильских орехов и 50-720 мг / м 3 для лузги подсолнечника (Cardozo et al., 2014). Для последнего выбросы SO 2 варьировались от 78 до 150 мг / м 3 .Сообщается, что КПД котла (Rabacal et al., 2013; Fournel et al., 2015) составляет от 63 до 83%, в зависимости от типа топлива.

Поскольку сельскохозяйственные остатки доступны только в течение ограниченного периода времени в течение года, их смеси увеличивают возможности поставок для действующих предприятий. Однако, когда смеси используются в качестве исходного сырья, совместимость топлив в отношении характеристик сгорания должна быть должным образом оценена для эффективной конструкции и работы блоков сжигания.Переменный состав этих материалов предполагает тщательное знание их поведения в тепловых системах, чтобы избежать комбинаций топлива с нежелательными свойствами. Насколько известно авторам, смеси таких отходов, которые можно найти по низкой цене или бесплатно, не исследовались в бытовых приборах. Для определения выбросов твердых частиц и образования шлака использовались только гранулы древесного топлива или энергетических культур (Carroll and Finnan, 2015; Sippula et al., 2017; Zeng et al., 2018).

На основании вышеизложенного, цель настоящего исследования состояла в том, чтобы сравнить характеристики горения выбранных не гранулированных материалов сельскохозяйственных остатков, которые широко распространены в странах Южной Европы, и их смесей, чтобы изучить любые аддитивные или синергетические эффекты между компонентами топлива и получить выгоду. знания об использовании таких смесей в небольших котлах.Цель состояла в том, чтобы оценить производительность прототипа установки сгорания с низкими инвестициями, позволяющую предварительно сушить топливо и воздух для горения выхлопными газами для производства тепловой энергии в зданиях, фермах, малых предприятиях и теплицах с точки зрения важности параметры, такие как сгорание и КПД котла, температура дымовых газов и выбросы в окружающую среду.

Экспериментальная часть

Топливо и характеристики

Сельскохозяйственные остатки для данного исследования были отобраны на основе их обилия и доступности в Греции и странах Средиземноморья в целом.Это были ядра оливок (OK), предоставленные AVEA Chania Oil Cooperatives (Южная Греция), ядра персика (PK), предоставленные Союзом сельскохозяйственных кооперативов Giannitsa (Северная Греция), скорлупа миндаля (AS), предоставленные частной компанией ( Agrinio, C. Греция) и скорлупа грецкого ореха (WS), предоставленная компанией Hohlios (Северная Греция).

После сушки на воздухе, гомогенизации и рифления материалы измельчали ​​до размера частиц <6 мм, используя щековую дробилку и вибрационное сухое просеивание. Типичные образцы были измельчены до размера частиц -425 мкм с помощью режущей мельницы и охарактеризованы с помощью экспресс-анализа, окончательного анализа и теплотворной способности в соответствии с европейскими стандартами CEN / TC335.Содержание летучих измеряли термогравиметрическим анализом с использованием системы TGA-6 / DTG в диапазоне 25–900 ° C, в потоке азота 45 мл / мин и при линейной скорости нагрева 10 ° C / мин. Химический анализ золы проводили на рентгенофлуоресцентном спектрофотометре (XRF) типа Bruker AXS S2 Ranger (анод Pd, 50 Вт, 50 кВ, 2 мА). Тенденция осаждения золы была предсказана с помощью эмпирических индексов. Эти показатели, несмотря на их недостатки из-за сложных условий, которые возникают в котлах и связанном с ними теплопередающем оборудовании, широко используются и, вероятно, остаются наиболее надежной основой для принятия решений, если они используются в сочетании с испытаниями пилотной установки.

Отношение оснований к кислотам (уравнение 1) является полезным показателем, поскольку обычно высокий процент основных оксидов снижает температуру плавления, в то время как кислотные оксиды повышают ее. Это принимает форму (Vamvuka et al., 2017):

Rb / a =% (Fe2O3 + CaO + MgO + K2O + Na2O)% (SiO2 + TiO2 + Al2O3) (1)

, где на этикетке каждого соединения указывается его массовая концентрация в золе. Когда R b / a <0,5 склонность к осаждению низкая, когда 0,5 b / a <1 тенденция к осаждению средняя и когда R b / a > 1 склонность к осаждению высока.Для значений R b / a > 2 этот индекс нельзя безопасно использовать без дополнительной информации.

Влияние щелочей на склонность золы биомассы к шлакованию / загрязнению является критическим из-за их тенденции к снижению температуры плавления золы. Один простой индекс, индекс щелочности (уравнение 2), выражает количество оксидов щелочных металлов в топливе на единицу энергии топлива в ГДж (Vamvuka et al., 2017):

AI = кг (K2O + Na2O) ГДж (2)

Когда значения AI находятся в диапазоне 0.17–0,34 кг / ГДж загрязнение или шлакообразование вероятно, тогда как при этих значениях> 0,34 практически наверняка произойдет обрастание или образование шлаков.

Для испытаний на сжигание были приготовлены смеси вышеуказанных материалов с соотношением компонентов до 50% по весу с наиболее распространенными в Греции сельскохозяйственными отходами — ядрами оливок.

Описание прототипа системы сгорания

Блок сжигания схематически показан на рисунке 1. Основными частями являются два бункера, эксикатор, система непрерывной подачи сырья и бойлер с поперечным потоком.Номинальная мощность 65 кВт т .

Рисунок 1 . Принципиальная схема многотопливного котла (сплошные стрелки показывают направление потока воздуха, пунктирные стрелки показывают направление потока биомассы).

Топливо хранится в главном бункере (A), боковые поверхности которого перфорированы для физического осушения топлива. В зависимости от наличия биомассы и особых потребностей в энергии открывается регулирующий клапан, и в систему подается соответствующее топливо. Затем биомасса переносится из бункера в эксикатор через наклонную стойку с направляющими, скорость которой регулируется в соответствии с потребностями котла.Горячий воздух поступает из выхлопных газов через систему обратной связи (H, J). В сушилке установлены две внутренние конвейерные ленты (B), состоящие из перфорированных медленно вращающихся роликов со стальной сеткой, позволяющих горячему воздуху проходить через него в восходящем направлении потока. Осушитель (B) имеет несколько отсеков, чтобы позволить воздуху перемещаться и в конечном итоге потерять часть своей температуры, создавая тем самым разницу температур. Специальная стальная сетка обладает высокой износостойкостью и довольно эффективно выдерживает экстремальные перепады температур.Скорость роликов тесно связана с влажностью биомассы и может изменяться в зависимости от потребностей автоматического управления. Затем сухая биомасса переносится (C) во временный бункер (D) и смешивается с теплым воздухом, поступающим из системы обратной связи (E), прежде чем направить его в горелку и зону сгорания котла. Используя горизонтальный теплый шнек диаметром 1 и 1/2 дюйма, обработанная биомасса подается в горелку (G). Скорость подачи регулируется двумя электронными диммерами. Первый диммер соответствует времени работы системы питания, а второй диммер соответствует времени задержки (винт выключен).Таким образом, подача сырья осуществляется полупериодическим способом. Первичный воздух для горения вводится через трубу в передней части топки и регулируется с помощью воздуходувки. Соотношение первичного и вторичного воздуха регулируется с помощью регулятора, установленного в дымоходе (K), с механическим регулятором, который позволяет изменять тягу в дымоходе. Котел (G) является гидравлическим и в основном производит горячую воду в замкнутой циркуляционной системе (F). Эта система имеет меры безопасности, чтобы поддерживать постоянное давление воды и транспортировать горячую воду к высокоэффективным фанкойлам для обогрева помещений.Датчики температуры Pt используются для измерения температуры воды в прямом и обратном потоке, а также в потоке внутри котла. Измеритель теплотворной способности измеряет расход воды и полезную энергию, получаемую водой. Выхлопные газы котла перед тем, как попасть в дымоход, проходят через теплообменник. Теплообменник (I) использует выхлопные газы для нагрева воздуха, который затем используется для сушки влажной биомассы.

Новинкой этого прототипа является конструкция эксикатора, питаемого выхлопными газами, выдерживающего экстремальные перепады температуры и работающего в соответствии с потребностями котла, теплообменник также питается выхлопными газами, а также прилагаются датчики температуры и измеритель теплотворной способности.Поскольку все основные части устройства являются стандартными, стоимость изготовления такой установки остается низкой. Аналоговые датчики и уже установленные детали будут заменены цифровыми датчиками и механическими деталями с цифровыми входами и выходами, в соответствии с результатами экспериментов по отклику агрегата. Ограничением системы является невозможность отрегулировать оптимальный коэффициент избытка воздуха, поэтому существует потребность в надежном управлении подаваемым воздухом для горения. Следует принять определение оптимальных параметров пользовательской системы автоматического управления, чтобы установка могла работать автономно.

Методика эксперимента и измерения данных

Эксперименты были структурированы таким образом, чтобы можно было построить аналитический профиль каждого материала, а также исследовать поведение типа топлива на различных стадиях процесса. Были проведены две серии экспериментов, чтобы изучить поведение и реакцию каждого остатка на технологическую цепочку устройства. Во время первой серии испытаний для каждого биотоплива проводилась калибровка скорости подачи в зависимости от диммерных переключателей.Скорость подачи определялась последовательностями интервалов задержки включения-выключения первого и второго диммера соответственно. Расход дымовых газов для каждой подачи сырья определялся путем измерения скорости вентилятора на выходе газа, установленного в положении (K), с помощью анемометра. Следовательно, каждое биотопливо было протестировано в установке для сжигания, чтобы оптимизировать тепловой КПД путем настройки его специальных параметров с учетом качества выбросов. Важными независимыми переменными были скорость подачи сырья, скорость вентилятора, регулирующего поток воздуха в котле, и внутренняя температура котла.В настоящем исследовании представлены результаты для одного набора этих параметров с целью сравнения характеристик сгорания между испытанными сельскохозяйственными остатками, а также их смесями при постоянных рабочих условиях. Параметрическое исследование для оптимизации процесса будет представлено в следующем отчете.

Для запуска котла было подожжено топливо, были включены питатель твердого вещества и воздуховоды и выставлены желаемые значения (вкл. / Выкл. 10/30 с / с). Перед снятием первых показаний печи давали поработать 30 мин.Циркуляционная система горячей воды была настроена на работу после того, как температура достигла ≥55 ° C. Когда температура воды превышала 70 ° C, подача сырья временно прекращалась.

Состав дымовых газов непрерывно контролировался во время испытаний с помощью многокомпонентного газоанализатора, модель Madur GA-40 plus от Maihak, оборудованного двухрядным фильтром и осушителем. Отбор проб производился с помощью нагревательной линии с зондом в соответствии с греческими стандартами ELOT 896. В анализаторе используются электрохимические датчики для измерения концентрации газа.Содержание CO 2 , CO, O 2 , SO 2 , NO x в потоке выхлопных газов, индекс сажи, тепловые потери дымовых газов, температура дымовых газов и коэффициент избытка воздуха ( λ) непрерывно регистрировались анализатором. Аналоговый выходной сигнал анализатора передавался в компьютер, где сигналы обрабатывались и вычислялись средние значения за период дискретизации 0,5 мин.

После проведения измерений в установившемся режиме работы и после того, как печь проработала около 3 часов, питатель топлива и воздуховод были отключены, смотровое окно было открыто, а вытяжной вентилятор был установлен на высокую мощность для охлаждения агрегата.Зольный остаток был осушен, взвешен и проанализирован на предмет потерь при сгорании из-за несгоревшего углерода. Эксперименты были повторены дважды, чтобы определить их воспроизводимость, которая оказалась хорошей.

Тепловой КПД системы был определен как доля полезной энергии, полученной водой котла, к энергии, произведенной топливом:

ηt = QoutQin = qwcpwΔTwΔtmfQf (%) (3)

где, q w : массовый расход воды (кг / ч), c pw : теплоемкость воды (МДж / кг · K), ΔT w : разница температур прямого и обратного потока воды (° K), Δt: общее время горения при температуре воды 70 ° C, m f : масса сожженного топлива / смеси (кг), Q f : теплотворная способность топлива / смеси (МДж / кг).

Эффективность сгорания определялась следующим образом:

ηc = 100-SL-IL-La (%) (4)

где,

SL = (Tf-Tamb) (A [CO2] + B) (5)

IL = a [CO] [CO] + [CO2] (6)

La = 100 мес. (7)

где: T f : температура дымовых газов (° C), T amb : температура окружающего воздуха (° C), [CO] и [CO 2 ]: концентрации CO и CO 2 в дымовых газах (%), A, B, a: параметры горения, характерные для каждого вида топлива (данные анализатором), m o : общая масса сожженного органического вещества топлива (кг), m a : масса органического вещества в золе (кг).

Для каждого экспериментального испытания проверялось, достаточно ли имеющегося тепла дымового газа для предварительного нагрева входящего воздуха для сжигания топлива до 70 ° C, а также для сушки биомассы в эксикаторе системы:

или

mflcpflΔTf≥mambcpambΔTamb + Qd (9)

где: m fl , m amb : масса дымовых газов и воздуха на кг сожженной биомассы (кг), c pfl , c pamb : удельная теплоемкость дымового газа и воздуха (кДж / кг ° K), ΔT f , ΔT amb : разница температур дымовых газов на выходе и входе в дымоход, а также предварительно нагретого и окружающего воздуха, соответственно (° K), Q d : теплота сушки биомассы ( Мойерс и Болдуин, 1997).Согласно последующим результатам, указанное выше неравенство сохранялось всегда.

Результаты и обсуждение

Анализ сырого топлива

В Таблице 1 указаны приблизительный и окончательный анализы изученных сельскохозяйственных остатков. Как можно видеть, все образцы были богаты летучими веществами и имели низкую зольность. В скорлупе миндаля самый высокий процент летучих веществ, а в скорлупе грецких орехов — самый низкий процент золы. Концентрация кислорода была значительной для всех образцов, а теплотворная способность колебалась в пределах 17.5 и 20,4 МДж / кг, что сопоставимо с верхним пределом для низкосортных углей. Содержание серы во всех остатках было практически нулевым, что свидетельствует о том, что выбросы SO 2 не вызывают беспокойства для этого биотоплива. С другой стороны, содержание азота в скорлупе миндаля было значительным, что могло быть проблемой во время термической обработки с точки зрения выбросов NO x .

Таблица 1 . Предварительный и окончательный анализы и теплотворная способность образцов (% от сухого веса).

Химический анализ золы, выраженный обычным способом для топлива в виде оксидов, сравнивается в Таблице 2 вместе с индексами шлакованности / засорения и тенденцией осаждения. Общей чертой этих золошлаковых материалов является то, что они были богаты Ca и K и в меньшей степени P и Mg. Отношение основания к кислоте было намного больше 2 из-за низкого содержания кремнезема и глинозема в этой золе, так что не может быть составлено каких-либо конкретных рекомендаций по поведению при шлаковании. Потенциал образования шлака / засорения, вызванного щелочью, можно более точно предсказать с помощью щелочного индекса.Таким образом, согласно значениям AI, для оливковых ядер и скорлупы миндаля неизбежна склонность к обрастанию из-за большого количества щелочи по отношению к единице топливной энергии, которую они содержат (для миндальной скорлупы склонность намного ниже), в то время как для ядер персиков и скорлупы грецких орехов не ожидается загрязнения котлов. Когда ядра оливок были смешаны с другими остатками при соотношении компонентов смеси до 50%, таблица 2 показывает, что значения AI были значительно снижены. Однако следует отметить, что для небольших систем, таких как та, которая использовалась в этой работе, работающих при температуре ниже 1000 ° C и в течение относительно короткого периода времени, явления шлакования или загрязнения из-за золы не наблюдались.

Таблица 2 . Химический анализ золы сырья и склонности к шлакованию / засорению.

Характеристики сжигания биотоплива из сельскохозяйственных остатков

Температура котловой воды

Изменение температуры воды на выходе из котла во время полной работы топочного агрегата показано на рис. 2. Ясно, что ядра персика и скорлупа грецких орехов начали гореть раньше, чем два других остатка, передавая свою тепловую энергию воде примерно На 6 мин раньше оливковых ядер для повышения температуры с 25 до 70 ° C.Однако поведение скорлупы грецкого ореха было совершенно другим. Температура воды во время фазы запуска поднялась до 78 ° C (второй диммер выключен), так что для трех полных циклов (включение / выключение) время горения было увеличено примерно на 20 минут по сравнению с оливковыми ядрами. Для скорлупы грецкого ореха и миндаля три цикла в исследованных условиях длились около 1 часа.

Рисунок 2 . Изменение температуры котловой воды на выходе сырого топлива при полной работе агрегата.

Температура дымовых газов и выбросы

Температура дымовых газов (Таблица 3) представляет собой зависимость от топлива.Таким образом, она была выше для миндальных скорлуп, 267 ° C, для полной работы котла (в установившемся режиме), и ниже для ядер персика, 245 ° C, что означает большие и меньшие тепловые потери из печи, соответственно. Все значения температуры дымовых газов были достаточно высокими для предварительной сушки сырья (уравнение 9).

Таблица 3 . Характеристики горения топлива (средние значения) в установившемся режиме.

Концентрация

CO в дымовых газах при стационарном режиме работы печи (диммер включен) для четырех исследуемых остатков сравнивается на Рисунке 3.Повышенные уровни CO в биотопливе из ядер оливок, скорее всего, были связаны с его большим количеством летучих веществ, которые увеличивают концентрацию углеводородов в реакторе, препятствуя дальнейшему окислению CO до CO 2 , а также, в меньшей степени, более высокой зольностью это топливо, которое ослабляло проникновение кислорода к частицам полукокса. Тем не менее, все значения CO были ниже законодательных пределов для малых систем (ELOT, 2011).

Рисунок 3 . Концентрация CO в дымовых газах для сырого топлива в установившемся режиме.

Средние концентрации загрязняющих веществ (± стандартная ошибка) в установившемся режиме и в течение всей работы установки представлены и сравнены на рисунках 4A, B, соответственно. Выбросы SO 2 от всех видов биотоплива, являющиеся чрезвычайно низкими (0–13 частей на миллион против ), не были включены в графики. На рис. 4A показано, что наибольшие выбросы CO были получены при сжигании ядер оливок, а наименьшие — при сжигании ядер персиков. Однако даже если во время полной работы котла (включая интервалы без подачи топлива, т.е.е., второй диммер выключен) Значения CO были выше (Рисунок 4B), они не превышали допустимых пределов (ELOT, 2011). Кроме того, выбросы NO x от всех изученных материалов были низкими и в соответствии с руководящими принципами стран ЕС (EC, 2001; ELOT, 2011) для небольших установок (200–350 мг / Нм 3 ). Более низкие уровни NO x в скорлупе миндаля, несмотря на их более высокий топливный N среди протестированных видов биотоплива, могут быть результатом временной восстанавливающей среды, создаваемой большим количеством летучих веществ в этом остатке (81.5%), что способствовало разложению NO x .

Рисунок 4 . Средние концентрации загрязняющих веществ в газах от сырого топлива (A) в установившемся режиме и (B) в течение всей работы установки.

Нынешние значения выбросов газов сопоставимы с теми, о которых сообщается в литературе для аналогичных видов топлива, в то время как значения NO x были значительно ниже. Для косточек персика выбросы CO варьировались от 600 до 680 частей на миллион от до (Rabacal et al., 2013), для скорлупы бразильских орехов от 50 до 400 частей на миллион v (Cardozo et al., 2014), для ядер пальмовых ядер от 2000 до 14000 частей на миллион v (Pawlak-Kruczek et al., 2020), для жмыха в гранулах от 1900 до 6500 частей на миллион против (Kraszkiewicz et al., 2015), а для гранул для обрезки оливок — 1800 частей на миллион против (Garcia-Maraver et al., 2014). С другой стороны, выбросы NO x были обнаружены для косточек персика 300–600 мг / м 3 (Rabacal et al., 2013), для скорлупы бразильских орехов 180–270 мг / м 3 (Cardozo et al. ., 2014), для пальмовых ядер от 90 до 200 частей на миллион v (Pawlak-Kruczek et al., 2020), для гранул жмыха 230-870 мг / м 3 (Kraszkiewicz et al., 2015) и для оливкового гранулы для обрезки 680 мг / м 3 (Garcia-Maraver et al., 2014).

Горение и тепловой КПД

Характеристики сгорания четырех остатков представлены в таблице 3. Эффективность сгорания считается удовлетворительной для небольших систем (77% в соответствии с европейскими стандартами EN 303-5) и колеблется от 84 до 86%.Эти значения контролировались температурами дымовых газов, которые отражали чувствительные тепловые потери и концентрацию CO в дымовых газах, которые представляли основные потери тепла из-за неполного сгорания. Таким образом, ядра персика с наименьшими потерями SL и IL горели с наибольшей эффективностью. Интересно отметить, что большее количество воздуха в случае оливковых ядер (коэффициент избытка воздуха λ = 1,9), увеличивая поток дыма, казалось, каким-то образом снижает температуру камина и, следовательно, увеличивает уровень CO и газообразные тепловые потери (IL).Кроме того, тепловой КПД системы, показанный в Таблице 3, зависел от эффективности сгорания топлива, и он был выше для ядер персика из-за улучшенного сгорания в печи и улучшенной рекуперации тепла в трубках системы за счет повышения температуры. разница между прямым и обратным потоком воды в котел (ΔT w = 26,2 ° C). Колебания, наблюдаемые в таблице, связаны с различным количеством сжигаемого биотоплива в зависимости от времени, когда котел работал с определенными интервалами включения / выключения диммеров, регулирующих подачу.Оптимизация расхода топлива и коэффициента избытка воздуха в сторону более низкого значения может привести к более высокой температуре камина (высокий поток подаваемого воздуха охлаждает печь), более низким выбросам CO из-за лучшего сгорания, более низкого содержания кислорода и более высоких концентраций CO 2 в дымах и, следовательно, снижение потерь тепла или топлива и повышение эффективности сгорания. Это, в свою очередь, улучшит рекуперацию тепла в трубках и повысит тепловой КПД. Кроме того, некоторые модификации печи для увеличения времени пребывания дымовых газов снизят их температуру на выходе и, следовательно, чувствительны к потерям тепла.

Тем не менее, КПД котла соответствует литературным данным. Значения 91%, 83–86% и 75–83% были зарегистрированы для древесных гранул (Kraiem et al., 2016), древесины сосны и персика (Rabacal et al., 2013), соответственно. Более того, для многотопливного котла, сжигающего древесные материалы, было обнаружено (Fournel et al., 2015), что термический КПД зависит от зольности каждого сырья, т. Е. При содержании золы 1% КПД составляет 74%, а для золы содержание 7% упало до 63%. В другом блоке, сжигающем лесные остатки и энергетические культуры, эффективность варьировалась от 69 до 75% (Forbes et al., 2014).

Характеристики сгорания смесей сельскохозяйственных остатков

Температура котловой воды

На рисунках 5A – C показано изменение температуры воды на выходе из котла как функция времени во время полной работы печи для смесей остатков ядер оливок с ядрами персика, скорлупой миндаля и грецкого ореха. Из этих рисунков можно заметить, что как фаза запуска, так и фаза, когда система работала на полную мощность, были задержаны при подаче смесей топлива, смещая кривые в сторону более высоких значений времени примерно на 4–6 мин.Кажется, что подача смесей и, как следствие, выгорание не были такими однородными, как ожидалось теоретически.

Рисунок 5 . Изменение температуры воды на выходе из котла при полной работе агрегата для смесей (A), OK / PK, (B), OK / AS и (C), OK / WS.

Температура дымовых газов и выбросы

Таблица 4 показывает, что температуры дымовых газов, которые влияют на чувствительные тепловые потери дымовых газов, для всех смесей в установившемся режиме варьируются между значениями компонентов топлива.Это показывает, что характеристики горения смесей зависели от вклада каждого остатка в смеси.

Таблица 4 . Характеристики горения топливных смесей (средние значения) в установившемся режиме.

Средние выбросы CO и NO x (± стандартная ошибка) в установившемся режиме для всех смесей сравниваются с выбросами сырого топлива на рисунках 6A – C. Выбросы SO 2 не представлены на графиках, так как они были чрезвычайно низкими (4–20 ppm против ).Значения CO в диапазоне от 1,121 до 1212 частей на миллион v находились в пределах значений, соответствующих компонентным видам топлива, и находились в допустимых пределах для малых установок (ELOT, 2011). Более того, уровни NO x (87–129 ppm v , или 174–258 мг / м 3 ) следовали той же тенденции и поддерживались ниже пороговых значений стран ЕС (EC, 2001; ELOT, 2011). . Наилучшие показатели по выбросам были достигнуты у смеси ОК / ПК 50:50.

Рисунок 6 .Средние выбросы CO и NO x газов в установившемся режиме из смесей (A) OK / PK, (B) OK / AS и (C) OK / WS.

Горение и тепловой КПД

Эффективность горения смесей ядер оливок с ядрами персика, миндаля и скорлупы грецких орехов колебалась от 84,2 до 85,6%, как показано на Рисунке 7. Эти значения находились между значениями, соответствующими материалам компонентов, но не пропорциональными процентному содержанию каждого остатка в смесь.Как показано в Таблице 4, эффективность сгорания зависела от типа сырья и массового расхода, а также от коэффициента избытка воздуха, который определял температуру камина и дымовых газов и, следовательно, потери тепла. Наибольшая эффективность была достигнута в случае смеси ОК / ПК 50:50, что, в свою очередь, отразилось на тепловом КПД котла за счет улучшенной рекуперации тепла из потока воды.

Рисунок 7 . Эффективность сгорания топливных смесей.

Выводы

Исследуемые сельскохозяйственные остатки характеризовались высоким содержанием летучих веществ и низким содержанием золы.Их теплотворная способность составляла от 17,5 до 20,4 МДж / кг. Выбросы CO и NO x от всех видов топлива в течение всего периода эксплуатации агрегата в изученных условиях были ниже установленных законом пределов, в то время как выбросы SO 2 были незначительными. Эффективность горения была удовлетворительной, от 84 до 86%. Ядра персика, за которыми следует скорлупа грецких орехов, сожженные с максимальной эффективностью из-за более низких чувствительных тепловых потерь и потерь от неполного сгорания топлива, выделяют более низкие концентрации токсичных газов и повышают эффективность котла за счет улучшения рекуперации тепла в трубах системы.

Совместное сжигание сельскохозяйственных остатков можно в значительной степени предсказать по сжиганию компонентов топлива, что может принести не только экологические, но и экономические выгоды. Путем смешивания ядер оливок с ядрами персика, миндаля или скорлупы грецких орехов в процентном соотношении до 50% была улучшена общая эффективность системы с точки зрения выбросов и степени сгорания. Эффективность борьбы с вредителями была достигнута при смешивании ядер оливок и ядер персика в соотношении 50:50.

Эффективность сгорания зависит от типа сырья, массового расхода и коэффициента избытка воздуха.Необходим надежный контроль подачи воздуха для горения и определение оптимальных параметров.

Заявление о доступности данных

Все наборы данных, созданные для этого исследования, включены в статью / дополнительный материал.

Авторские взносы

DV: руководитель, оценка результатов и написание статей. DL: эксперименты. ES: эксперименты. АВ: эксперименты. СС: оценка результатов. ГБ: техническая поддержка и оценка результатов. Все авторы: внесли свой вклад в статью и одобрили представленную версию.

Конфликт интересов

ГБ использовала компания Energy Mechanical of Crete S.A.

Остальные авторы заявляют, что исследование проводилось при отсутствии каких-либо коммерческих или финансовых отношений, которые могли бы быть истолкованы как потенциальный конфликт интересов.

Благодарности

Авторы любезно благодарят AVEA Chania Oil Cooperatives, Союз сельскохозяйственных кооперативов Янницы и частные компании Agrinio и Hohlios за предоставленное топливо, а также лаборатории химии и технологии углеводородов и неорганической и органической геохимии Технического университета Крита. , для анализов CHNS и XRF.

Список литературы

Ан, Дж., И Янг, Дж. Х. (2018). Характеристики сгорания 16-ти ступенчатого котла на древесных гранулах с колосниковой решеткой. Обновить. Энергия 129, 678–685. DOI: 10.1016 / j.renene.2017.06.015

CrossRef Полный текст | Google Scholar

Caposciutti, G., and Antonelli, M. (2018). Экспериментальное исследование влияния вытеснения воздуха и избытка воздуха на выбросы CO, CO 2 и NO x небольшого котла, работающего на биомассе с неподвижным слоем. Обновить.Энергия 116, 795–804. DOI: 10.1016 / j.renene.2017.10.001

CrossRef Полный текст | Google Scholar

Кардозо, Э., Эрлих, К., Алехо, Л., и Франссон, Т. Х. (2014). Сжигание сельскохозяйственных остатков: экспериментальное исследование для небольших приложений. Топливо 115, 778–787. DOI: 10.1016 / j.fuel.2013.07.054

CrossRef Полный текст | Google Scholar

Кэрролл Дж. И Финнан Дж. (2015). Использование добавок и топливных смесей для снижения выбросов от сжигания сельскохозяйственного топлива в небольших котлах. Биосист. Англ. 129, 127–133. DOI: 10.1016 / j.biosystemseng.2014.10.001

CrossRef Полный текст | Google Scholar

Карвалью Л., Вопиенка Э., Пойнтнер К., Лундгрен Дж., Кумар В., Хаслингер В. и др. (2013). Производительность пеллетного котла на сельскохозяйственном топливе. Прил. Energy 104, 286–296. DOI: 10.1016 / j.apenergy.2012.10.058

CrossRef Полный текст | Google Scholar

EC (2001). Директива 2001/80 / ЕС Европейского парламента и Совета от 23 октября 2001 г. об ограничении выбросов определенных загрязнителей в воздух от крупных установок для сжигания топлива .

Google Scholar

ELOT (2011). EN 303.05 / 1999. Предельные значения выбросов CO и NO x для новых тепловых установок, использующих твердое биотопливо . FEK 2654 / B / 9-11-2011.

Google Scholar

Forbes, E., Easson, D., Lyons, G., and McRoberts, W. (2014). Физико-химические характеристики восьми различных видов топлива из биомассы и сравнение горения и выбросов приводят к получению малогабаритного многотопливного котла. Energy Conv. Managem. 87, 1162–1169.DOI: 10.1016 / j.enconman.2014.06.063

CrossRef Полный текст | Google Scholar

Fournel, S., Palacios, J.H., Morissette, R., Villeneuve, J., Godbout, S., Heitza, M., et al. (2015). Влияние свойств биомассы на технические и экологические показатели многотопливного котла при внутрихозяйственном сжигании энергетических культур. Прил. Энергия 141, 247–259. DOI: 10.1016 / j.apenergy.2014.12.022

CrossRef Полный текст | Google Scholar

Гарсия-Маравер, А., Заморано, М., Фернандес, У., Рабакал, М., и Коста, М. (2014). Взаимосвязь между качеством топлива и выбросами газообразных и твердых частиц в бытовом котле на пеллетах. Топливо 119, 141–152. DOI: 10.1016 / j.fuel.2013.11.037

CrossRef Полный текст | Google Scholar

Kortelainen, M., Jokiniemi, J., Nuutinen, I., Torvela, T., Lamberg, H., Karhunen, T., et al. (2015). Поведение золы и образование выбросов в маломасштабном реакторе сжигания с возвратно-поступательной решеткой, работающем с древесной щепой, тростниковой канареечной травой и ячменной соломой. Топливо 143, 80–88. DOI: 10.1016 / j.fuel.2014.11.006

CrossRef Полный текст | Google Scholar

Крайем, Н., Ладжили, М., Лимузи, Л., Саид, Р., и Джегуирим, М. (2016). Рекуперация энергии из тунисских агропродовольственных отходов: оценка характеристик сгорания и характеристик выбросов зеленых гранул, приготовленных из остатков томатов и виноградных выжимок. Энергия 107, 409–418. DOI: 10.1016 / j.energy.2016.04.037

CrossRef Полный текст | Google Scholar

Крашкевич, А., Пшивара, А., Качел-Якубовска, М., и Лоренцович, Э. (2015). Сжигание гранул растительной биомассы на решетке котла малой мощности. Agricul. Agricul. Sci. Proc. 7, 131–138. DOI: 10.1016 / j.aaspro.2015.12.007

CrossRef Полный текст | Google Scholar

Мойерс, К. Г., и Болдуин, Г. У. (1997). «Психрометрия, испарительное охлаждение и сушка твердых частиц», в справочнике инженеров-химиков Perry, 7-е изд. , ред. Р. Х. Перри и Д. У. Грин (Нью-Йорк, Нью-Йорк: Mc Graw Hill).

Google Scholar

Низетич, С., Пападопулос, А., Радика, Г., Занки, В., и Ариси, М. (2019). Использование топливных гранул для отопления жилых помещений: полевое исследование эффективности и удовлетворенности пользователей. Energy Build. 184, 193–204. DOI: 10.1016 / j.enbuild.2018.12.007

CrossRef Полный текст | Google Scholar

Pawlak-Kruczek, H., Arora, A., Moscicki, K., Krochmalny, K., Sharma, S., and Niedzwiecki, L. (2020). Переход домашнего котла с угля на биомассу — Выбросы от сжигания сырых и обожженных оболочек ядра пальмы (PKS). Топливо 263, 116–124. DOI: 10.1016 / j.fuel.2019.116718

CrossRef Полный текст | Google Scholar

Пицци А., Фоппа Педретти Э., Дука Д., Россини Г., Менгарелли К., Илари А. и др. (2018). Выбросы отопительных приборов, работающих на агропеллетах, произведенных из остатков обрезки виноградной лозы, и экологические аспекты. Обновить. Energy 121, 513–520. DOI: 10.1016 / j.renene.2018.01.064

CrossRef Полный текст | Google Scholar

Рабакал, М., Фернандес У. и Коста М. (2013). Характеристики горения и выбросов бытового котла, работающего на пеллетах из сосны, древесных отходах и персиковых косточках. Обновить. Энергия 51, 220–226. DOI: 10.1016 / j.renene.2012.09.020

CrossRef Полный текст | Google Scholar

Сиппула, О., Ламберг, Х., Лескинен, Дж., Тиссари, Дж., И Йокиниеми, Дж. (2017). Выбросы и поведение золы в котле на пеллетах мощностью 500 кВт, работающем на различных смесях древесной биомассы и торфа. Топливо 202, 144–153.DOI: 10.1016 / j.fuel.2017.04.009

CrossRef Полный текст | Google Scholar

Сутар, К. Б., Кохли, С., Рави, М. Р., и Рэй, А. (2015). Кухонные плиты на биомассе: обзор технических аспектов. Обновить. Устойчивая энергетика Ред. 41, 1128–1166. DOI: 10.1016 / j.rser.2014.09.003

CrossRef Полный текст | Google Scholar

Вамвука Д. (2009). Биомасса, биоэнергетика и окружающая среда. Salonica: Tziolas Publications.

Google Scholar

Вамвука, Д., Трикувертис, М., Пентари, Д., Алевизос, Г., и Стратакис, А. (2017). Характеристика и оценка летучей и зольной пыли от сжигания остатков виноградников и перерабатывающей промышленности. J. Energy Instit. 90, 574–587. DOI: 10.1016 / j.joei.2016.05.004

CrossRef Полный текст | Google Scholar

Вамвука Д. и Цуцос Т. (2002). Энергетическая эксплуатация сельскохозяйственных остатков на Крите. Energy Expl. Эксплуатировать. 20, 113–121. DOI: 10.1260 / 014459802760170439

CrossRef Полный текст | Google Scholar

Цзэн, Т., Поллекс, А., Веллер, Н., Ленц, В., и Неллес, М. (2018). Гранулы из смешанной биомассы в качестве топлива для маломасштабных устройств сжигания: влияние смешения на образование шлака в зольном остатке и варианты предварительной оценки. Топливо 212, 108–116. DOI: 10.1016 / j.fuel.2017.10.036

CrossRef Полный текст | Google Scholar

CE092

% PDF-1.4
%
2 0 obj
> / OCGs [51 0 R] >> / Pages 3 0 R / Type / Catalog / ViewerPreferences 48 0 R >>
эндобдж
49 0 объект
> / Шрифт >>> / Поля 55 0 R >>
эндобдж
50 0 объект
> поток
application / pdf

  • Администратор
  • CE092
  • 2015-10-26T20: 38: 23 + 08: 00pdfFactory Pro www.pdffactory.com2015-10-27T17: 04: 02 + 01: 002015-10-27T17: 04: 02 + 01: 00pdfFactory Pro 3.50 (Windows 7 китайский (упрощенный)) uuid: 02f3d7af-f2de-4152-bf60-0ee8dd70a116uuid: 21d2a558 -c7d4-4109-8d33-c945ce059889

    конечный поток
    эндобдж
    3 0 obj
    >
    эндобдж
    48 0 объект
    >
    эндобдж
    5 0 obj
    > / Font> / ProcSet [/ PDF / Text / ImageC] / XObject >>> / Type / Page >>
    эндобдж
    16 0 объект
    > / Font> / ProcSet [/ PDF / Text] / XObject >>> / Type / Page >>
    эндобдж
    20 0 объект
    > / Font> / ProcSet [/ PDF / Text] / XObject >>> / Type / Page >>
    эндобдж
    22 0 объект
    > / Font> / ProcSet [/ PDF / Text] / XObject >>> / Type / Page >>
    эндобдж
    24 0 объект
    > / Font> / ProcSet [/ PDF / Text] / XObject >>> / Type / Page >>
    эндобдж
    26 0 объект
    > / Font> / ProcSet [/ PDF / Text] / XObject >>> / Type / Page >>
    эндобдж
    28 0 объект
    > / Font> / ProcSet [/ PDF / Text] / XObject >>> / Type / Page >>
    эндобдж
    142 0 объект
    > поток
    HWrG} W> xC & o3ӳ @ k۳a1` ~ RUy * 3 {$
    i-

    颚 -Wt ^ ۽ٷ {Y ^ fgQ ֛ Y6KeZ5? jew? Ӭwg7 ~ ih7Owseџ «kk͵YUuYn 韫 | / B @ Mzc} ܶ? rf6VsψСbѿqhNkskL`ϒBi6gv% A *! \ f {Ǯƭ / lU2C

    Интернет-курсов PDH.PDH для профессиональных инженеров. ПДХ Инжиниринг.

    «Мне нравится широта ваших курсов по HVAC; не только экология или экономия энергии

    , курс. »

    Russell Bailey, P.E.

    Нью-Йорк

    «Он укрепил мои текущие знания и научил меня еще нескольким новым вещам

    , чтобы познакомить меня с новыми источниками

    информации.»

    Стивен Дедак, П.Е.

    Нью-Джерси

    «Материал был очень информативным и организованным. Я многому научился, и они были

    .

    очень быстро отвечает на вопросы.

    Это было на высшем уровне. Будет использовать

    снова. Спасибо. «

    Blair Hayward, P.E.

    Альберта, Канада

    «Простой в использовании сайт.Хорошо организовано. Я действительно буду снова пользоваться вашими услугами.

    проеду по вашей компании

    имя другим на работе «

    Roy Pfleiderer, P.E.

    Нью-Йорк

    «Справочные материалы были превосходными, а курс был очень информативным, особенно потому, что я думал, что я уже знаком.

    с деталями Канзас

    Городская авария Хаятт.»

    Майкл Морган, P.E.

    Техас

    «Мне очень нравится ваша бизнес-модель. Мне нравится просматривать текст перед покупкой. Я нашел класс

    .

    информативно и полезно

    на моей работе »

    Вильям Сенкевич, П.Е.

    Флорида

    «У вас большой выбор курсов, а статьи очень информативны.Вы

    — лучшее, что я нашел ».

    Russell Smith, P.E.

    Пенсильвания

    «Я считаю, что такой подход позволяет работающему инженеру легко зарабатывать PDH, давая время на изучение

    материал «

    Jesus Sierra, P.E.

    Калифорния

    «Спасибо, что разрешили мне просмотреть неправильные ответы.На самом деле

    человек узнает больше

    от отказов »

    John Scondras, P.E.

    Пенсильвания

    «Курс составлен хорошо, и использование тематических исследований является эффективным.

    способ обучения »

    Джек Лундберг, P.E.

    Висконсин

    «Я очень впечатлен тем, как вы представляете курсы; i.е., позволяя

    студент, оставивший отзыв на курс

    материал до оплаты и

    получает викторину «

    Arvin Swanger, P.E.

    Вирджиния

    «Спасибо за то, что вы предложили все эти замечательные курсы. Я определенно выучил и

    получил огромное удовольствие «.

    Mehdi Rahimi, P.E.

    Нью-Йорк

    «Я очень доволен предлагаемыми курсами, качеством материалов и простотой поиска.

    на связи

    курс.»

    Уильям Валериоти, P.E.

    Техас

    «Этот материал в значительной степени оправдал мои ожидания. По курсу было легко следовать. Фотографии в основном обеспечивали хорошее наглядное представление о

    обсуждаемые темы »

    Майкл Райан, P.E.

    Пенсильвания

    «Именно то, что я искал. Потребовался 1 балл по этике, и я нашел его здесь.»

    Джеральд Нотт, П.Е.

    Нью-Джерси

    «Это был мой первый онлайн-опыт получения необходимых мне кредитов PDH. Это было

    информативно, выгодно и экономично.

    Я очень рекомендую

    всем инженерам »

    Джеймс Шурелл, П.Е.

    Огайо

    «Я понимаю, что вопросы относятся к« реальному миру »и имеют отношение к моей практике, и

    не на основании какой-то неясной секции

    законов, которые не применяются

    до «нормальная» практика.»

    Марк Каноник, П.Е.

    Нью-Йорк

    «Отличный опыт! Я многому научился, чтобы перенести его на свой медицинский прибор

    , организация. «

    »

    Иван Харлан, П.Е.

    Теннесси

    «Материалы курса имели хорошее содержание, не слишком математическое, с хорошим акцентом на практическое применение технологий».

    Юджин Бойл, П.E.

    Калифорния

    «Это был очень приятный опыт. Тема была интересной и хорошо изложенной,

    а онлайн-формат был очень

    доступный и удобный для

    использовать. Большое спасибо ».

    Патрисия Адамс, P.E.

    Канзас

    «Отличный способ добиться соответствия требованиям PE Continuing Education в рамках ограничений по времени лицензиата.»

    Joseph Frissora, P.E.

    Нью-Джерси

    «Должен признаться, я действительно многому научился. Помогает иметь распечатанный тест во время

    обзор текстового материала. Я

    также оценил просмотр

    фактических случаев «

    Жаклин Брукс, П.Е.

    Флорида

    «Документ» Общие ошибки ADA при проектировании объектов «очень полезен.

    испытание потребовало исследования в

    документ но ответы были

    в наличии. «

    Гарольд Катлер, П.Е.

    Массачусетс

    «Я эффективно использовал свое время. Спасибо за то, что у вас есть широкий выбор.

    в транспортной инженерии, которая мне нужна

    для выполнения требований

    Сертификат ВОМ.»

    Джозеф Гилрой, P.E.

    Иллинойс

    «Очень удобный и доступный способ заработать CEU для моих требований PG в Делавэре».

    Ричард Роудс, P.E.

    Мэриленд

    «Я многому научился с защитным заземлением. Пока все курсы, которые я прошел, были отличными.

    Надеюсь увидеть больше 40%

    курс со скидкой.»

    Кристина Николас, П.Е.

    Нью-Йорк

    «Только что сдал экзамен по радиологическим стандартам и с нетерпением жду возможности сдать еще

    курс. Процесс прост, и

    намного эффективнее, чем

    в пути «.

    Деннис Мейер, P.E.

    Айдахо

    «Услуги, предоставляемые CEDengineering, очень полезны для профессионалов

    Инженеры получат блоки PDH

    в любое время.Очень удобно ».

    Пол Абелла, P.E.

    Аризона

    «Пока все отлично! Поскольку я постоянно работаю матерью двоих детей, у меня мало

    время искать, где на

    получить мои кредиты от. «

    Кристен Фаррелл, P.E.

    Висконсин

    «Это было очень познавательно и познавательно.Легко для понимания с иллюстрациями

    и графики; определенно делает это

    проще поглотить все

    теории »

    Виктор Окампо, P.Eng.

    Альберта, Канада

    «Хороший обзор принципов работы с полупроводниками. Мне понравилось пройти курс по

    .

    мой собственный темп во время моего утро

    метро

    на работу.»

    Клиффорд Гринблатт, П.Е.

    Мэриленд

    «Просто найти интересные курсы, скачать документы и взять

    викторина. Я бы очень рекомендовал

    вам на любой PE, требующий

    CE единиц. «

    Марк Хардкасл, П.Е.

    Миссури

    «Очень хороший выбор тем из многих областей техники.»

    Randall Dreiling, P.E.

    Миссури

    «Я заново узнал то, что забыл. Я также рад помочь финансово

    по ваш промо-адрес электронной почты который

    сниженная цена

    на 40% «

    Конрадо Казем, П.E.

    Теннесси

    «Отличный курс по разумной цене. Воспользуюсь вашими услугами в будущем».

    Charles Fleischer, P.E.

    Нью-Йорк

    «Это был хороший тест и фактически подтвердил, что я прочитал профессиональную этику

    коды и Нью-Мексико

    регламент. «

    Брун Гильберт, П.E.

    Калифорния

    «Мне очень понравились занятия. Они стоили потраченного времени и усилий».

    Дэвид Рейнольдс, P.E.

    Канзас

    «Очень доволен качеством тестовых документов. Буду использовать CEDengineerng

    при необходимости дополнительных

    аттестация. «

    Томас Каппеллин, П.E.

    Иллинойс

    «У меня истек срок действия курса, но вы все же выполнили свое обязательство и дали

    мне то, за что я заплатил — много

    оценено! «

    Джефф Ханслик, P.E.

    Оклахома

    «CEDengineering предлагает удобные, экономичные и актуальные курсы.

    для инженера »

    Майк Зайдл, П.E.

    Небраска

    «Курс был по разумной цене, а материалы были краткими и

    хорошо организовано. «

    Glen Schwartz, P.E.

    Нью-Джерси

    «Вопросы подходили для уроков, а материал урока —

    .

    хороший справочный материал

    для деревянного дизайна »

    Брайан Адамс, П.E.

    Миннесота

    «Отлично, я смог получить полезные рекомендации по простому телефонному звонку».

    Роберт Велнер, P.E.

    Нью-Йорк

    «У меня был большой опыт работы в прибрежном строительстве — проектирование

    Здание курс и

    очень рекомендую

    Денис Солано, P.E.

    Флорида

    «Очень понятный, хорошо организованный веб-сайт. Материалы курса этики Нью-Джерси были очень хорошими

    хорошо подготовлен. «

    Юджин Брэкбилл, P.E.

    Коннектикут

    «Очень хороший опыт. Мне нравится возможность загрузить учебные материалы на номер

    .

    обзор везде и

    всякий раз, когда.»

    Тим Чиддикс, P.E.

    Колорадо

    «Отлично! Поддерживаю широкий выбор тем на выбор».

    Уильям Бараттино, P.E.

    Вирджиния

    «Процесс прямой, без всякой ерунды. Хороший опыт».

    Тайрон Бааш, П.E.

    Иллинойс

    «Вопросы на экзамене были зондирующими и продемонстрировали понимание

    материала. Полная

    и комплексное ».

    Майкл Тобин, P.E.

    Аризона

    «Это мой второй курс, и мне понравилось то, что мне предложили этот курс

    поможет по телефону

    работ.»

    Рики Хефлин, P.E.

    Оклахома

    «Очень быстро и легко ориентироваться. Я определенно буду использовать этот сайт снова».

    Анджела Уотсон, P.E.

    Монтана

    «Легко выполнить. Никакой путаницы при прохождении теста или записи сертификата».

    Кеннет Пейдж, П.E.

    Мэриленд

    «Это был отличный источник информации о солнечном нагреве воды. Информативный

    и отличный освежитель ».

    Luan Mane, P.E.

    Conneticut

    «Мне нравится подход к регистрации и возможность читать материалы в автономном режиме, а затем

    вернуться, чтобы пройти викторину «

    Алекс Млсна, П.E.

    Индиана

    «Я оценил объем информации, предоставленной для класса. Я знаю

    это вся информация, которую я могу

    использование в реальных жизненных ситуациях »

    Натали Дерингер, P.E.

    Южная Дакота

    «Обзорные материалы и образец теста были достаточно подробными, чтобы позволить мне

    успешно завершено

    курс.»

    Ира Бродский, П.Е.

    Нью-Джерси

    «Веб-сайтом легко пользоваться, вы можете скачать материал для изучения, а потом возвращаться

    и пройдите викторину. Очень

    удобный а на моем

    собственный график. «

    Майкл Глэдд, P.E.

    Грузия

    «Спасибо за хорошие курсы на протяжении многих лет.»

    Dennis Fundzak, P.E.

    Огайо

    «Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать PDH

    Сертификат

    . Спасибо за изготовление

    процесс простой. »

    Fred Schaejbe, P.E.

    Висконсин

    «Опыт положительный.Быстро нашел курс, который соответствовал моим потребностям, и прошел

    один час PDH в

    один час. «

    Стив Торкильдсон, P.E.

    Южная Каролина

    «Мне понравилась возможность скачать документы для проверки содержания

    и пригодность, до

    имея для оплаты

    материал

    Ричард Вимеленберг, P.E.

    Мэриленд

    «Это хорошее напоминание об ЭЭ для инженеров, не занимающихся электричеством».

    Дуглас Стаффорд, П.Е.

    Техас

    «Всегда есть возможности для улучшения, но я ничего не могу придумать в вашем

    процесс, требующий

    улучшение.»

    Thomas Stalcup, P.E.

    Арканзас

    «Мне очень нравится удобство участия в викторине онлайн и получение сразу

    Свидетельство

    . «

    Марлен Делани, П.Е.

    Иллинойс

    «Учебные модули CEDengineering — это очень удобный способ доступа к информации по телефону

    .

    много разные технические зоны за пределами

    своя специализация без

    надо ехать.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *