Подключение к сети электрокотла: Схема подключения электрокотла к электросети – RozetkaOnline.COM

Содержание

Схема подключения электрокотла к электросети – RozetkaOnline.COM

Электрокотел, установленный в системе отопления, зачастую является самым энергоёмким устройством во всем доме, более того, его потребляемая мощность нередко выше, чем у всего остального электрооборудования помещений вместе взятого.

И это не удивительно, ведь даже негласное правило выбора котла для дома гласит, что 1кВт (киловатт) мощности, требуется для обогрева 10 квадратных метров дома. Следуя ему, для отопления относительно небольшого (по современным меркам) дома в 100кв.м., потребуется электрокотел мощностью 10кВт.

Конечно, это правило общее, в реальных же условиях, при выборе мощности котла, учитывается множество факторов, но в целом, ориентировочные, средние требования к котлу правило отражает верно.

Поэтому, для такого “прожорливого” потребителя электроэнергии как электрокотел, от стабильной работы которого зимой зависит очень многое, важно сделать правильную электропроводку, подобрать надежную защитную автоматику и верно выполнить подключение.  

Чтобы лучше понимать принцип подключения котла, необходимо знать из чего он обычно состоит и как работает. Речь пойдет о самых распространённых, ТЭНовых котлах, сердцем которых являются Трубчатые ЭлектроНагреватели (ТЭН).

Проходящий через ТЭН электрический ток разогревает его, этим процессом управляет электронный блок, следящий за важными показателями работы котла, с помощью различных датчиков. Также электрокотел может включать циркуляционный насос, пульт управления и т.п.

В зависимости от потребляемой мощности, в быту обычно используются электрокотлы рассчитанные на питающее напряжение 220 В – однофазные или 380 В – трехфазные.

Разница между ними простая, котлы на 220В редко бывают мощнее 8 Квт, чаще всего в отопительных системах используются приборы не более чем на 2-5кВТ, это связано с ограничениями по выделенной мощности в однофазных питающих линиях домов.

Соответственно электрокотлы на 380В бывают более мощными и могут эффективно отапливать большие по площади дома.
Схемы подключения, правила выбора кабеля и защитной автоматики для котлов на 220В и 380В различаются, поэтому мы рассмотрим их раздельно, начнем с однофазных.

 Схема подключения электрокотла к электросети 220 В (однофазного)

 

Как видите, питающую линию котла на 220 В защищает дифференциальный автоматический выключатель, совмещающий в себе функции автоматического выключателя (АВ) и Устройства защитного отключения (УЗО). Так же, в обязательном порядке к корпусу устройства подключается заземление.

ТЭН или ТЭНы (если их несколько) в таком котле рассчитаны на напряжение 220В, соответственно к одному из концов трубчатого электрического нагревателя подключается фаза, а к другому ноль.

Для подключения котла требуется проложить трехжильный кабель (Фаза, Рабочий ноль, Защитный ноль – заземление).

Если же вам не удалось найти подходящий дифференциальный автоматический выключать или просто он слишком дорог в выбранной вами линейке защитной автоматики, его всегда можно заменить связкой Автоматический выключатель (АВ) + Устройство защитного отключения (УЗО), в таком случае схема подключения однофазного котла к электросети выглядит так:

 

Теперь осталось выбрать кабель нужной марки и сечения и номиналы защитной автоматики, для правильной электропроводки к электрокотлу.

В выборе необходимо отталкиваться от мощности будущего котла, а лучше всего рассчитывать с запасом, ведь в будущем, реши вы поменять котел, выбрать старшую модель (более мощную) вы уже не сможете, без серьезной переделки проводки.

Не буду загружать вас лишними формулами и расчетами, а просто выложу таблицу выбора кабеля и защитной автоматики в зависимости от мощности однофазного электрокотла 220 В. При этом в таблице будут учтены оба варианта подключения: через дифференциальный выключатель и через связку Автоматический выключатель + УЗО.

Для прокладки будут указаны характеристики медного кабеля марки ВВГнгLS, минимально допустимого ПУЭ (правилами устройства электроустановок) для использования в жилых зданиях, при этом расчеты сделаны для трассы от счетчика до электрокотла длинной 50 метров, если у вас это расстояние больше, возможно потребуется корректировка значений.

Таблица выбора защитной автоматики и сечения кабеля по мощности электрокотла 220 В

Устройство защитного отключения (узо) всегда выбирается на ступень выше стоящего с ним в паре автоматического выключателя, если же вам не удается найти УЗО необходимого номинала, можете взять защиту следующей ступени, главное не брать ниже положенного.
Особых сложностей и разночтений при подключении элекрокотла на 220В обычно не возникает, переходим к трехфазному варианту.

Схема подключения электрокотла к электросети 380 В (трехфазного)

Общая электрическая схема подключения электрокотла 380 В, выглядит следующим образом:

Как видите, линия защищена трехфазным автоматическим выключателем дифференциального тока, к корпусу котла обязательно подключено заземление.

Как обычно, по традиции, выкладываю схему подключения трехфазного электрокотла со связкой автоматический выключатель (АВ) плюс устройство защитного отключения (УЗО) в цепи, которая нередко бывает дешевле и доступнее Диф. автомата.

Выбор номиналов защитной автоматики и сечения кабеля для трезфазных электрокотлов различной мощности удобно делать по следующей таблице:

В трехфазных электрокотлах обычно установлено сразу три ТЭНа, бывает и больше. При этом практически во всех бытовых котлах каждый из трубчатых электронагревателей рассчитан на напряжение 220 В и подключён следующим образом:

Это так называемое подключение «звезда», для этого случая и подводится к котлу нулевой проводник.

Сами ТЭН подключаются к сети следующим образом: перемычкой соединены по одному из концов каждого из трубчатых электронагревателей, к оставшимся трем свободным поочередно подключаются фазы: L1, L2 и L3.

Если же в вашем котле стоят ТЭН, рассчитанные на напряжение 380 В, схема их соединения совершенно другая и выглядит она так:

Такое подключение ТЭН электрокотла называется «треугольник» и при одинаковом напряжении 380 В, как в предыдущем способе «Звезда», мощность котла значительно увеличивается. Нулевой проводник при этом не требуется, подключаются лишь фазные провода, электрическая схема подключения при этом соответственно выглядит вот так:

Не отступайте от схем подключения допустимых для вашего электрокотла, если там стоят ТЭН на 220В при трехфазном подключении, не переделывайте схему на «треугольник». Как вы понимаете, теоретически их можно переподключить и получить на ТЭН напряжение 380 В, соответственно и повышение их мощности, но при этом они у вас скорее всего просто сгорят.

 

Как определить правильную схему подключения ТЭН звездой или треугольником и, соответственно, на какое напряжение они рассчитаны?

Если утеряна инструкция по подключению вашего электрокотла или просто нет возможности к ней обратиться, определить правильную схему подключения в бытовых условиях можно так:

1.  В первую очередь осмотрите клеммы ТЭН, скорее всего производителем контакты уже подготовлены под определенную схему. Так, например, для подключения «звездой» и ТЭНах на 220В, три клеммы будут объединены перемычкой.

2.  Само наличие нулевой клеммы – «N», свидетельствует о том, что ТЭН на 220 В и подключать их требуется по схеме «Звезда». При этом её отсутствие, вовсе не означает, что ТЭН на 380 В.

3. Самый же надежный вариант узнать наряжение ТЭН – это посмотреть маркировку, указанную либо на фланце, к которому закреплены трубчатые электронагреватели

Либо на самом ТЭН в обязательном порядке выдавливаются его параметры:

Если же у вас не получается наверняка узнать напряжение, на которое расчитан ваш электрический котел и схему подключения его ТЭН, а подключить «очень надо», советую использовать схему «Звезда». При этом варианте, если Тэн окажутся расчитаны на 220 В, они будут работать в штатном режиме, а если на 380 В, то просто будут выдавать меньшую мощность, но главное не сгорят.

Вообще, случаи бывают разные, и все их охватить в формате одной статьи очень тяжело, поэтому обязательно пишите в комментариях свои вопросы, дополнения, истории из личного опыта и практики, это будет полезно многим!

Схема подключения электрокотла к системе отопления и сети на 220 и 380 В.

Современные электрокотлы очень популярны, поскольку весьма просты в установке и настройке. Они не требуют строительства дымоотводной системы и вытяжной вентиляции, наличие отдельной комнаты для размещения котла.

Типовые модификации электрокотлов уже содержат в себе все необходимые компоненты и функциональные узлы: сетевой насос, расширительная емкость, терморегулятор, группа безопасности.

Правильный монтаж влияет на сложность подключения. Источник фото: termo-volga.ru

Поэтому выполнить подключение электрокотла очень просто, поскольку потребуется обвязать минимальное количество внутридомовых инженерных сетей и не придется делать выбор расширительного бачка.

СодержаниеПоказать

Виды котлов по типу нагревателя

На сегодняшний день имеется много модификаций агрегатов, которые различаются схемой подключения электрического котла, и классифицируется по:

  • конфигурации;
  • характеристикам тепловых режимов;
  • конструкционным решениям;
  • типу нагрева;
  • заводам-изготовителям;
  • стоимости.

Все электрокотлы, предусмотренные для водяного теплоснабжения, по методу нагрева теплоносителя, разделяются на 3 главные категории:

  1. ТЭНовые, которые используют трубчатые электрогреющие элементы.
  2. Электродные либо ионные/электролизные, работающие с использованием способности воды нагреваться при прохождении через электрод переменного тока.
  3. Индукционные, использующие свойства ферромагнетиков греться под воздействием индукционного тока.

Выбор котла

Выбор котлоагрегата, для теплоснабжения, производится по тепловой мощности, параметров электросети и принципу нагревательного элемента. От последнего параметра зависит цена отопительного комплекта. Такие электрические агрегаты обладают повышенной функциональностью — все модели укомплектовываются блочной автоматикой с регулятором температуры.

Современные модификации электрокотлов реализуются с различными периферийными приборами — погодозависимыми датчиками, комнатными термостатами и модулями GSM для регулировки температуры внутри помещения на расстоянии с мобильного телефонного аппарата через интернет-сети.

Уровень сборки блочных агрегатов очень высокий, что позволяет монтировать такое отопления своими руками. Исключение составляют только монтаж и наладка линий электропитания к агрегату, которые должны выполняться аттестованными специалистами.


Перед тем как подключить электрический котел, рассчитывают тепловую мощность по простой формуле. Зная общую отапливаемую площадь дома, умножают ее на 0.1 кВт и на коэффициент запаса 1.2, в результате получится тепловая мощность аппарата.

Например, для дома общей площадью 150 м2 потребуется мощность котла: 150х1.2х0.1= 18 кВт.

Как подключить электрокотел к системе отопления

Существует несколько стандартных схем обвязки, одну из которых надо выбрать перед тем, как подключить электрокотел в систему отопления:

  • установка агрегата с обвязкой электронасоса и расширительной емкости;
  • установка электрокотла в схеме параллельной работы с твердотопливным либо газовым котлоагрегатом;
  • обвязка с аккумуляторной емкостью горячей воды или внешним электрическим водонагревателем;
  • присоединение двухконтурной модификации электрокотла к отопительным сетям и ГВС;
  • подключение к бойлеру косвенного нагрева.

Обычно, современные электрокотлы оснащаются всем необходимым вспомогательным оборудованием. Группа безопасности предохраняет агрегат от высокого давления и выполняет сброс воздух из водяного контура закрытого типа с применением мембранного расширительного бака.

Схема подключения двухконтурного электрического котла

На прямом участке подающего трубопровода устанавливается группа безопасности, а после нее — шаровой кран отсекающий подачу теплоносителя. Циркуляционный насос и фильтр-грязевик устанавливаются на обратном трубопроводе.

Если будет необходимо выполнить подключение котла к открытой системе отопления с естественной циркуляцией, то отопительные трубы потребуется разместить с уклоном 3 мм на 1 пм.

Схемы электрокотлов для подготовки ГВС используют в двух вариантах:

  • двухконтурная конструкция котла, имеющего два встроенных подогревателя для контура отопления и ГВС;
  • одноконтурный котел с внешним водонагревателем косвенного нагрева.

В первом варианте подключение электрокотла к системе отопления выполняется по стандартной схеме. Сложностей тут практически никаких, главное грамотно установить запорные вентиля.

Схема одноконтурного. Источник фото: twlwthrt.appspot.com

Подключение с водонагревателем косвенного нагрева производится, с применением трехходовых клапанов отсекающего типа. По сигналу термостата, интегрированного в аккумуляторную емкость, клапан переводит движение греющей воды на разогрев контура ГВС или системы отопления.

Загрузка ГВС в приоритете: пока вода в емкости не разогреется до определенной температуры, отопительная сеть тепловой энергии не получит.

Как подключить котел к электросети

Предварительно перед выполнением подключения котельного оборудования к электрической сети необходимо произвести глубокую проверку ее технического состояния.

При обнаружении проблемных участков потребуется выполнить ремонтные работы, если нет возможности повысить мощность питания действующей линии, проводят реконструкцию внутридомовых электрических сетей с привлечением аттестованных специалистов.

Схемы подключения электрокотла к сети

Для подсоединения применяют медную электропроводку, сечение проводов рассчитывается в согласовании с данными, предоставленными заводом-изготовителем в инструкции к оборудованию котла.

Подключение с внешним кабелем выполняется с применением специализированных выводов, находящихся внизу котла. Обычно в этом месте также распложается заземляющая клемма с медным болтом.

При исполнении врезки электрокотла неотъемлемым является выполнение системы заземления. При этом необходимо обеспечить, чтобы контакт между корпусом устройства и медным болтом был прочным.

В схему обязательно подключается управляющее устройство по регулировке температурного графика. С целью защиты электрооборудования от скачков напряжения требуется установить УЗО.

Схема подключения однофазного котла на 220

Питающую электролинию котлоагрегата на 220 В предохраняет дифференциальный автомат выполненный одним модулем, блока защит из УЗО с автоматическим выключателем.

В обязательном порядке к корпусу котлоагрегата подсоединяется заземление. ТЭН в таком электрокотле рассчитан исключительно на 220В, следовательно, к одному из концов его подсоединяется фаза, а к иному — ноль.

Для подсоединения агрегата к электросети 220 необходимо уложить трехжильный кабель и подобрать для него требуемого сечение и номиналы автоматической защиты, для обеспечения надежного электроснабжения котла. При выборе исходят из тепловой мощности электрокотла.


Будет правильно, если кабель, УЗО и автоматы будут выбраны с резервом, чтобы в будущем, когда потребуется заменить котел, на более мощную модель был запас по электронагрузке.

Схема подключения трехфазного электрического котла к электросети 380

Электрокотлы, которые наиболее часто используются для отопления домов, обладают не очень большой мощность – до 15.0 кВт, поскольку больше не разрешает энергонадзор. Подобные установки имеют возможность комплектоваться ТЭНами выпущенными на 220 В.

К сети 380 В они подсоединяются «звездой» с общим «0». К примеру, три ТЭНа по 6 Квт, создают общую нагрузку 18 кВт. При этом подсоединении допускается работа любого ТЭНа вне зависимости от смежного, то есть допускается выбор мощности 6, 12 и 18 кВт. Если греющие элементы выпущены на 380 В, то они соединяются между фазами по «треугольнику».


Запрещено отступать от электросхем, рассчитанных заводом-изготовителем для конкретной модели котлоагрегата. В случае, если установлены ТЭНы на 220В при 3-х фазном подсоединении и переделывать схему на «треугольник» иначе они просто перегорят.

УЗО сопоставляет силу тока протекающего через него по фазам. Эти данные в правильно функционирующей системе будут примерно одинаковы. Но когда возникнет повреждение либо к токоведущей поверхности коснется человек, то возникнет токовая утечка из некоторой фазы и возникнет токовый дифференциал между проводами. При таком нарушении в сети реле за весьма малое время выключит сеть.

Автоматический выключатель действует при нарастании заданной силы тока в цепи. К примеру, при коротком межфазном замыкании. В таком варианте УЗО не сработает, поскольку силы токов по фазам станут одинаковыми. Но предельная токовая защита, выключит цепь и предупредит возгорание электроприборов и проводов.

Подведя итог, можно отметить, что установка современных электрических котлов для теплоснабжения индивидуальных домов не является сложной, поскольку они оборудованы полным набором вспомогательного котельного оборудования.

Собственнику понадобится тщательно выполнить все рекомендации завода–изготовителя и пригласить специалиста-электрика, если потребуется реконструкция домовой электросети.

Как подключить электрический ТЭН котел 380 и 220 Вольт

Теория

Что такое ТЭН в электрическом котле? С точки зрения электротехники это активное сопротивление, которое выделяет тепло при прохождении по нему электрического тока.

По внешнему виду одиночный ТЭН выглядит, как согнутая или завитая трубка. Спирали могут быть самой разной формы, но принцип подключения одинаков, у одиночного ТЭНа два контакта для подключения.

При подключении одиночного ТЭНа к напряжению питания нам нужно просто подсоединить его клеммы к электропитанию. Если ТЭН рассчитан на 220 Вольт, то подключаем его к фазе и рабочему нулю. Если ТЭН на 380 Вольт, то подключает ТЭН к двум фазам.

Но это одиночный ТЭН, который мы можем увидеть в электрочайнике, но не увидим в электрическом котле. ТЭН котла отопления это три одиночных ТЭНа, закрепленные на единой платформе (фланце) с выведенными на ней контактами.

Самый распространённый ТЭН котла состоит из трёх одиночных тэнов закрепленных на общем фланце. На фланце выводится  для подключения 6 (шесть) контактов ТЭНа электрического ТЭН котла. Есть котлов с большим количеством одиночных тэнов, например, так:

Схемы подключения ТЭН котла

Вариант 1. Схема подключения к однофазной сети

Обычно, три одиночных Тэна в такой конструкции, размещены так, что контакты от разных тэнов располагаются друг напротив друга.

Чтобы подключить ТЭН на 220 Вольт, нужно соединить три контакта от разных одиночных спиралей перемычкой и подключить их к рабочему нулю.

Три оставшиеся контакта нужно, также соединить и подключить к рабочей фазе. Это обеспечит одновременное включение всех тэнов в нагрев при подаче питания.

Однако так напрямую подключение не делают, и на каждый второй контакт тэна подключают на фазу после своего автомата или, что делается чаще, подключают от своей линии управления (автоматики).

Вариант 2. Трехфазное подключение

Если мы посмотрим на продающиеся тэны для котлов, то увидим, что почти все маркируются, как Тэны 220/380 Вольт.

Если у вас такой вариант тэна, и вы имеете возможность подключиться к трехфазному питанию 220 Вольт или 380 Вольт, то нужно использовать схемы подключения называемые «звезда» и «треугольник».

По схеме «звезда» 220 Вольт три фазы, нужно пермячкой соединить три контакта одиночных тэнов и подключить их рабочему нулю. На вторые свободные контакты подать по фазному проводу. Каждый одиночный тэн будет работать от 220 Вольт, независимо друг от друга.

По схеме «треугольник» 380 Вольт, нужно перемычками соединять контакты 1-6, 2-3, 4-5, у одиночных тэнов 1-2,3-4,5-6 и подавать на них фазные провода. Каждый одиночный тэн будет работать от 380 Вольт, независимо друг от друга.

Вывод

Как видим электрические ТЭН котлы просты в подключении и само подключение ТЭНа не вызывает проблем. Более сложный вопрос подключения автоматики и датчика температур. Об этом в следующих статьях.

©Obotoplenii.ru

Еще статьи

 

 

Подключение электрического котла к системе отопления

Электрокотлы отличаются по типу нагревательного элемента: ТЭНовые, электродные или индукционные модели. Из-за меньшей стоимости и простоты обслуживания больше популярен первый вариант. Особенностью обустройства электроотопления является возможность подключения своими руками агрегата к трубной системе и электросети без оформления разрешительных документов.

Основные правила

Согласно требованиям ПУЭ отопительные электроприборы мощностью до 10 кВт разрешено подключать самостоятельно без согласования с Энергонадзором. К службам придется обратиться, если решено установить в целях экономии счетчик, контролирующий расход электроэнергии по зонам суток.

Каждый производитель в инструкции отображает требования к соблюдению свободного пространства от стенок отопительного агрегата. В зависимости от модели они отличаются, но среднее значение следующее:

  • от верха – 70 см;
  • от боков – 50 см;
  • от передней панели – 70 см;
  • между задней панелью и стеной здания оставляют минимальный зазор 3 см.

Соблюдение требований обеспечивает пожаробезопасность. Упрощается доступ к агрегату для обслуживания.

Электрические котлы ЭВАН Warmos

Подготовка к монтажу

Традиционно подготовительные мероприятия начинаются с определения места. По сравнению с газовыми и твердотопливными аналогами, вариантов расположения электрокотла больше. Его разрешено устанавливать в жилой зоне, например, кухня или коридор. Однако осуществляя выбор места нужно учесть, что к аппарату нужно прокладывать трубопровод, электропроводку. Усложнение схемы приведет к лишним затратам.

В сырых помещениях монтаж запрещен. Ванную комнату, санузел, открытый балкон сразу нужно исключить. Стена, на которую будет подвешен агрегат, должна быть сухая. Если частный дом построен из дерева, никаких ограничений монтажа нет. Участок деревянной стены, прилегающий к задней панели котла, закрывают листом негорючего материала.

Обычно электрический котел поставляется производителем с циркуляционным насосом, фильтром и расширительным баком. Такой агрегат сразу подключают к трубопроводу. Реже встречаются «голые» модели. Насос, бачек и фильтр потребитель покупает отдельно. Дополнительно для подключения нужно подготовить группу безопасности, соединительные муфты, шаровые краны, трубы.

Выбор схемы

Отопление бывает с принудительной и естественной циркуляцией. В первом случае теплоноситель по системе транспортирует циркуляционный насос. Здесь разрешается установка котла на любом уровне относительно трубопровода.

Во втором случае естественная циркуляция происходит за счет уклона подающей и обратной трубы. Такое отопление часто встречается в частных домах. Здесь уже схема подключения требует расположение входящего патрубка котла ниже обратной трубы.

Схема с нижней разводкой и боковым подключением к радиаторам применяется только при принудительной циркуляции.

Схема с верхней подающей и нижней обратной трубой способна работать с насосом и при естественной циркуляции, если выдержаны уклоны. Во втором случае расширительный бак ставят в верхней точке вместо группы безопасности.

Пошаговая инструкция монтажа

После подготовительных мероприятий приступают к основным работам. Чтобы выполнить монтаж, проделывают следующие действия:

  1. На подготовленном участке стены наносят разметку под монтажную пластину котла. Элемент крепят дюбелями, предварительно просверлив отверстия. На монтажную пластину фиксируют электрокотел.
  2. Дальнейшие особенности установки зависят от выбранной схемы отопления. Элементы трубопровода подключают к патрубкам котла разъемными муфтами «американками». Подающая труба всегда идет вверх, а обратная располагается ниже по уровню.
  3. В нижней точке системы предусматривают два крана для заполнения и слива воды.

Когда система будет закольцована, ее заполняют водой. Через воздухосборники стравливают воздух.

Подключение к электросети

Электрокотлы бывают двухфазные (220 вольт), а также трехфазные (380 вольт). В первом варианте требуется подключить два провода: ноль и фазу. Во втором варианте фазных провода три и один ноль. В обеих вариантах подводят дополнительный провод на заземление. На линии между электросчетчиком и отопительным аппаратом устанавливают автомат.

Подключение электрокотла – электрическая и гидравлическая схемы

Электрокотлы устанавливаются сейчас довольно часто. Но в большинстве домов выполняют только роль резерва. Как правило, основными являются газовые и твердотопливные котлы, эксплуатация которых в разы дешевле. Но иногда, при соответствующем оборудовании, и электрокотел используется как основной…

Как удешевляется тепловая энергия от электрокотла? Как правильно подключить, какую схему использовать?

Одно важнейшее преимущество этого теплогенератора известно – лучшая комфортность и беспроблемность при эксплуатации, а далее…

Какая мощность потребуется

Сколько мощности потребуется на отопление дома?

  • Известно, что для неплохо утепленного дома потребуется 10 кВт на 100 м кв.
  • Для домов, построенных по энергосберегающим технологиям, такая мощность будет уже излишней.
  • Но если коробка характеризуется как «совсем холодная», то и 20 кВт будет маловато….

Для среднестатистического дома подбор можно осуществить именно так – 1 кВт на 10 м кв. Если на практике оказывается маловато, то экономически целесообразно не наращивать мощность, а утепляться, — менять сначала окна-двери, затем наращивать слой утеплителя на чердаке….

Подходит ли электрокотел для постоянного отопления

С точки зрения удобства и надежности, стоимости ремонта – электрокотел самый лучший теплогенератор. Проблема в стоимости электроэнергии. Ею отапливать по дневному тарифу невыгодно.

Вторая проблема – в выделенной на объект мощности. Хватит ли ее для полноценного отопления дома?

Хорошо, если выделено 15 кВт трехфазного электропитания 380В. Тогда можно установить котел мощностью 12 кВт, еще 3 кВт пойдут на бытовые нужды.

Но если питание 220В и допустимая мощность котла всего 4 кВт, то он может рассматриваться только лишь как аварийный вариант, чтобы поддержать тепло на случай выхода из строя основного. Или для отопления в межсезонье, по дешевому тарифу, но такие схемы будут рассмотрены далее…

Подключаем электричество – чтобы не загорелось

Чтобы электрокотел работал без проблем, в первую очередь его нужно правильно подключить к электропитанию. У различных моделей свои особенности. Но все заводские агрегаты комплектуются электрической принципиальной схемой подключения и инструкцией. Эти документы исполняются в точности.

Общим во всех вариантах остается следующее.

  • Применение кабелей определенного типа с медными жилами соответствующего сечения.
  • Подключение только цельными отрезками кабелей, счалки не допускаются.
  • Недопустимость использования для постоянного включения/выключения выключателей автоматических (ВА) и других защит, — если котел не снабжен выключателем, то такой прибор устанавливается в цепи дополнительно.
  • Применение электрических защит — реле утечки тока на землю (Устройство Защитного Отключения) и максимальной токовой защиты (Выключателя Автоматического). Эти два устройства могут быть объединены в одном корпусе, и называться Дифференциальный Автомат.

Какое сечение жил и тип защит понадобятся

Скорее всего изготовитель даст исчерпывающие рекомендации по подбору электропроводников для подключений, и по выбору типа дифференциального автомата.

Тем не менее, можно воспользоваться следующей таблицей, в которой приведены характеристики кабелей и электрических защит в зависимости от мощности электрокотла. Здесь приведены данные для трехфазного электропитания 380 В.

Для котла в 12 кВт, при трехфазном питании, понадобится кабель ВВГнлLS, который включает в себя 5 медных проводников, каждый из которых имеет сечение 4 мм кв. А также АВ с током отключения 25А, УЗО с дифференциальным током 30 мА.

Схема подключения

Общие принципиальные схемы приведены на рисунках. Для электропитания трехфазного 380В, и двухфазного 220В.

Но принцип один – фазы защищаются и при необходимости отключаются дифференциальным автоматом (защитным отключением и максимальной токовой защитой).

Схема подключение ТЭНов котла

Котлы, которые чаще всего применяются в быту, имеют небольшую мощность – до 15 кВт, так как больше не позволяет подключать энергонадзор. Такие агрегаты могут комплектоваться тенами рассчитанными на электропитание 220 В. При этом к трехфазной сети 380В они подключаются по схеме «звездой» с общим нолем.

На схеме приведены 3 ТЭНа расчитанные на работу в сети 220В, которые подключаются к трем фазам 380В. Например, 3 нагревателя по 4 Квт каждый, дают суммарную электрическую мощность 12 кВт. При таком подключении возможна работа каждого ТЭНа независимо от соседнего. Т.е. возможен выбор режима мощности 4, 8 и 12 кВт.

Подключение ТЭНов и автоматики конкретного электрокотла отображается в схеме электрической, прилагаемой к нему, что и должно исполняться.

Если тены рассчитаны на напряжение 380В, то они включаются между фазами по «треугольнику».

Как работают защиты электрокотла

Устройство защитного отключения (реле утечки) сравнивает силу тока проходящего через него по фазам. Эти значения в нормально-работающей схеме будут приблизительно равны. Но если появится повреждение (разрушена оболочка жил кабеля, разрушен потребитель, например, прогорание тена и вода в корпусе…), или к токоведущей части прикоснулся человек, то появится утечка тока из какой-то фазы. А между проводниками образуется разность (дифференциал) силы тока. При этом реле за очень короткий промежуток времени отключит сеть. Время срабатывания на отключения небольшое, через организм человека не успевает возникнуть опасная для здоровья сила тока.

Выключатель автоматический (максимальная токовая) срабатывает при достижении заданной силы тока в цепи. Например, при коротком замыкании между фазами. В этом случае защитное реле не срабатывает, так как силы токов по фазам будут равны. Но максимальная токовая защита, отключит сеть и предотвратит воспламенение электрических приборов и проводников.

Как сделать монтаж

Для непосредственного монтажа электрических защит, прокладки выбранного кабеля и его подключения к электрокотлу, рекомендуется пригласить квалифицированного электрика. И не выполнять эти ответственные работы самостоятельно.

Как правило, специалист не допустит нарушений нормативов и создания опасной обстановки.

Например, в деревянном доме элекропроводка прокладывается в негорючей оболочке. В этой роли может выступать металлическая гофрированная трубка.

Или, например, не допускается делать штробы в несущих конструкциях дома для прокладки электрических проводников.

Зажим жил проводников в контактных группах выполняется по правилам.

Эти и другие нюансы специалисты выполняют быстро и качественно.

Гидравлическая схема

Типичная схема подключения элеткрокотла приведена на рисунке. Здесь под «электрокотел» подразумевается простейший водонагреватель, который нуждается во всем дополнительном оборудовании.

Важные элементы на схеме.

  • Фильтр грубой очистки – устанавливается на обратке перед насосом, сборником вниз и по ходу струи.
  • Циркуляционный насос – в домах до 200 м кв. как правило достаточно насоса 25 – 40. Рекомендуется устанавливать на обратке перед котлом.
  • Расширительный бак, объемом 1/10 от объема жидкости в системе не допускает опасного роста давления при нагреве (расширении) теплоносителя.
  • Группа безопасности – обязательный элемент, состоит из воздухоотводчика, предохранительного клапана давления, и манометра. Устанавливается на подаче, в высшей точке отопительного трубопровода, на выходе из котла.

Но дорогие модели комплектуются таким оборудованием в одном корпусе.

Дешевое электричество для отопления

К сведению: стоимость тепловой энергии при отоплении газом, в грубом приближении оценивается как 0,8 руб/кВт. При отоплении дровами – 1,3 руб/кВт.

Днем электричество стоит 5,4 рубля за кВт, а ночью 1,6 руб/кВт (приближенные тарифы по Московскому региону).

Т.е. ночная электроэнергия сопоставима по цене с другими видами топлива. А за счет удобства применения, выходит победителем по соотношению цена/качество для большинства пользователей.

Если установить счетчкик с ночным тарифом, что решается с энергонадзором, то этим можно будет воспользоваться.

Но как ночную электроэнергию использовать днем?

Обычная схема применения электрокотла

Максимальная мощность электрокотла ночью бывает излишней, иначе будет жарко, например, для дома площадью в 100 м кв. с котлом 12 кВт, еще и в межсезонье.

Оптимально лишнюю ночную энергию накопить ночью и использовать днем. Для этого ее нужно преобразовать в тепловую (нагреть воду) и запасти ее в теплоаккумуляторе.

Используются буферные емкости вместимостью от 1 тоны жидкости.
Как используется буферная емкость….

Тогда схема включение электрокотла следующая.

Здесь электрокотел включается параллельно твердотопливному. С ночным тарифом электрический агрегат выступает основным, обеспечивая пользователям существование без беспокойств об отоплении. В большие холода, когда электромощности и накапливаемой энергии не хватает, к отопительному процессу подключается твердотопливный.

Как экономить при отоплении электрокотлом

  • Не перегревать помещение.
    Не редко, когда автоматика настраивается неправильно и в помещении становится жарковато. Выбрасывается +20% денег на неудобства. Для автоматического управления котлом лучше использовать воздушные датчики — комнатные термостаты. А не руководствоваться температурой теплоносителя.
  • Отключение не используемых помещений.
    Не редко, когда отдельные комнаты, например, мастерская могут быть прохладными большее количество времени. С автоматизированным электрокотлом целесообразно применять термостатические регуляторы на каждом радиаторе. Тогда рачительные хозяева смогут отрегулировать температуры в комнатах. В отдельных случаях можно сэкономить и 25% энергии.
  • Оптимальное распределение температур.
    Теплый пол экономичнее до 15% от радиаторного отопления. К тому же это комфортно и удобно. Распределение температур в помещениях будет и выгодными и полезным.
  • Сделать вентиляцию.
    С вентиляцией убегает до 50% тепла из помещения. Важно устранить сквозняки и обеспечить вентиляцию по современным представлениям. Как делается вентиляция в доме
  • Целесообразно утеплить.
    Электроэнергия дорогая, с ее использованием намного больше экономической выгоды от утепления, чем при использовании того же газа. Если для газа может быть достаточным и 10 см толщины утеплителя на чердаке, то для электричества целесообразнее 22 см. Нужно доутеплиться максимально, из расчета окупаемости за 12 лет. В неутепленных домах перерасход энергии достигает 200 – 300%.

Подключение электрокотла к системе отопления: инструкция

Содержание:

1. Особенности покупки и установки электрокотлов

2. Особенности подключения электрокотла к сети

3. Завершение монтажа отопительной системы

4. Подключение электрокотла к ТТ котлу

Из всех современных способов обустройства отопительной системы в жилом доме, наиболее эффективным, экологичным и безопасным специалисты считают обогрев с использованием электрического оборудования. Правильное подключение электрокотла к системе отопления является важным этапом монтажных работ. 

Электрические нагревательные приборы имеют высокий КПД, что позволяет обеспечивать в любом помещении оптимальный температурный режим. Большинство моделей котлов, представленных на отечественном рынке, производители оснащают контрольными и регулировочными приборами. Благодаря этим устройствам, отопительное оборудование функционирует в оптимальном рабочем режиме, что позволяет значительно снизить потребление энергоносителей. 


Электрокотлы для систем обогрева зданий не имеют деталей, механически воздействующих друг на друга. По этой причине риск поломки приборов значительно снижается. Схема подключения электрического котла отопления отличается от способов установки нагревательных устройств, работающих на других видах топлива. 

Особенности покупки и установки электрокотлов

При монтаже электрического отопительного оборудования следует учитывать ряд нюансов:

  1. Чтобы выполнить правильное подключение электрокотла к электричеству и отопительной системе, необходимо прибегнуть к услугам сотрудников организаций, занимающихся таким видом работ на профессиональной основе.
  2. Сам прибор следует покупать в специализированных торговых предприятиях, где к нему прилагаются соответствующие документы. Оборудование должно иметь заводскую упаковку, которую желательно вскрывать в присутствии специалиста из сервисной службы. Вместе с ним котел осматривают, чтобы убедиться в отсутствии на поверхности механических повреждений и прочих дефектов.
  3. Перед установкой электрокотла с патрубков нужно снять заглушки и удостовериться, что в них и коммуникациях отсутствует грязь. При такой схеме подключения электрокотла используют уплотнительные материалы и прокладки.
  4. Выбирая место для монтажа теплового электрокотла, желательно отдать предпочтение нежилому помещению. Оптимальным вариантом является кухня (см фото). Прибор следует расположить так, чтобы им было удобно не только пользоваться, но и осуществлять его техническое обслуживание. В соответствии с нормами, промежуток между боковыми сторонами котла и стенами должен составлять 5 сантиметров. Свободное пространство перед прибором не может быть менее 70 сантиметров, над ним – не меньше 80 сантиметров, а под котлом – минимум 50 сантиметров.
  5. Устанавливать отопительное оборудование необходимо на стене, сделанной из негорючего материала. Для монтажа устройства используют специальный крепежный элемент — монтажную планку. Обычно она входит в базовую комплектацию электрического котла. На стене планку закрепляют при помощи 4 дюбелей.

Особенности подключения электрокотла к сети

  1. Выполняя подключение электрокотла к электросети, следует делать медную проводку. В заводской инструкции по установке прибора, которая прилагается к нему, содержится информация о рекомендуемом сечении провода (прочитайте также: «Подключение котла к системе отопления — делаем правильно»).
  2. Электрические соединения оборудования внешнего типа необходимо производить путем использования специальных выводов для кабелей, они должны находиться в левом нижнем углу. Здесь же следует располагать латуниевую клемму заземления с болтом, имеющим размер М6.
  3. При проведении работ по врезке котла в отопительную систему и обустройстве заземления нужно обратить внимание на обеспечение надежного контакта между металлическим корпусом прибора и болтом из латуни. Прежде, чем закрепить болт на раме, место соединения тщательно зачищают.
  4. Когда электрическое оборудование используют для отопления здания большой площади, то при его покупке следует делать выбор в пользу устройства, в конструкции которого предусмотрена возможность каскадного подключения. Чтобы приборы нормально функционировали в каскаде, клеммы управляющего устройства необходимо соединять с управляемым агрегатом. Если руководство отопительной системой выполняется при помощи регулятора комнатного варианта, тогда контакты управления следует присоединить к клеммам аппарата управления.
  5. Подключение электрокотла к сети предполагает, что прибор нужно осмотреть визуально и убедиться в его правильном расположении. Кроме этого, необходимо проверить, находится ли давление теплоносителя в системе в норме и в том, что все коммуникации присоединены.

Завершение монтажа отопительной системы

 
На этапе, когда завершено подключение электрокотла к системе отопления и электросети, выполняют следующие действия:

  • проверяют исправность арматуры трубопровода, находящегося перед прибором. Для этого ее переключают из положения «закрыто» в «открыто» и обратно;
  • трубопроводную арматуру теплового генератора, работающего на электроэнергии, переводят в положение «закрыто». В этом же режиме должна быть установлена арматура систем водоснабжения и отопления;
  • на трубопроводах, подающих холодную воду к нагревательному котлу, необходимо открыть запорную арматуру. При использовании электрической отопительной системы не следует применять незамерзающие жидкие теплоносители, поскольку они негативным образом влияют на функционирование оборудования. В их составе имеются компоненты, которые со временем приводят к износу резиновых элементов. Для отопительной системы следует применять воду, имеющую минимальный показатель жесткости;
  • перед входом в прибор на обратном трубопроводе необходимо поставить грязевик или фильтр или обе эти детали;
  • после наполнения отопительной системы теплоносителем, нужно проверить ее герметичность.

После завершения монтажа электрокотла и радиаторов отопления, требуется проверить работоспособность датчиков, контролирующих и регулирующих состояние элементов отопительной конструкции. 

Особенности системы отопления, детальное видео: 


Подключение электрокотла к ТТ котлу

При необходимости обеспечить теплоснабжение загородного дома, специалисты считают, что наиболее надежным и выгодным способом является подключение электрокотла к твердотопливному котлу. Прибор, работающий, например, на дровах будет резервным энергонезависимым источником тепла. 
 


Чаще всего конструкцию электрический + твердотопливный котел монтируют в домах, площадь которых составляет от 100 до 200 «квадратов», когда в населенном пункте отсутствует магистральный газопровод. Главное, чтобы к зданию была подведена необходимая электрическая мощность. 

Такая комбинация нагревательного оборудования выгодна тем, что цена на электрический и ТТ неавтоматизированный котел класса эконом в несколько раз ниже, чем стоимость устройства, работающего на жидком топливе. В случае поломки электрического генератора тепла до приезда ремонтной бригады дом можно отапливать, к примеру, дровами. Читайте также: «Подключение твердотопливного котла к закрытой системе отопления».

место для установки электрического котла, подключение электрокотла к сети

Для небольшого загородного дома отличным вариантом будет отопительная система с применением электрического котла. Такое отопления является безопасным и не несет вреда для здоровья человека. Как подключить электрокотел вы узнаете в нашей статье.

 

Содержание:

 

Место для установки электрического котла

Устанавливать котел желательно в нежилой комнате. Хороши вариантом будет устройство оборудования на кухне или в подсобном помещении. Следует взять во внимание удобство для техобслуживания котла. Проход к оборудованию не должен быть загроможден. 

Следует соблюдать все нормы по устройству электрического котла. От стены до оборудования должно быть свободное место более 5 см. над котлом должно соблюдаться свободное пространство в 80 см, под оборудованием свыше 50 см, а перед – более 70 см.

Устройство электрокотла можно производить только на стене, которая выполнена из негорючего материала. В комплектацию оборудования входит специальная монтажная планка, которая необходимо при установке котла на стену. Сама планка крепится к стене при помощи дюбелей. 

Если в электрическом котле установлен расширительный мембранный бак, то система отопления рассчитывается на объем до 500 литров.

Какие компоненты входят в систему установки электрокотла

При правильном подключении котла отопительная система будет работать эффективно и безопасно. Компоненты, которые входят в систему установки:

 

  1. Радиаторы.
  2. Расширительный бак.
  3. Вентили запорные и сливные.
  4. Температурные датчики.
  5. Насос для циркуляции и фильтр.
  6. Аппарат.

Функции и недостатки

Также хорошим вариантом является универсальный твердотопливный котел со встроенным электрическим тэном. Такое оборудование выгодно устанавливать, так как многие модели имеют варочную поверхность. Таким образом, можно не устанавливать плиту для приготовления пищи, а также не потребуется дополнительная отделка. 

Если вы включается отопления только по выходным или еще реже, то электрический котел отличный для вас вариант. Так как они хорошо переносят долгое отключение от сети. А также если случаются частые перебои электричества. 

Единственным недостатком подключения электрокотла является подведение мощных кабелей, которые должны иметь большое сечение. 

 

Необходимо знать для безопасности

Электрический котел можно подключать к розетке, если его потребление не превышает 3,5 кВт. Котлы с большей мощностью необходимо подключать к специальному щитку, который выделен кабелем. Для таких щитков питание свыше 220 В. 

Производители ограничивают максимальный ток 16А в целях безопасности. Поэтому применяется отдельный кабель. Котлы, которые имеют мощность свыше 7 кВт, могут питаться только от сети от 380В.

 

Подключение электрокотла к сети

Подключать электрический котел можно только с использованием медной проводки. А ее сечение должно быть такого же размера, как указывается в технических документах оборудования. При помощи специальных выводов для кабелей должны быть устроены электрические соединения оборудования внешнего типа. Такие выводы необходимо расположить в левом нижнем углу. В этом же месте надо установить клемму заземления из латуни с болтом М6. 

При врезке электрического котла в отопительную систему и при установке заземления необходимо чтобы между латунным болтом и металлическим корпусом был создан хороший контакт. Прежде чем соединять раму и болт в месте соединения рекомендуется хорошо зачистить. 

Если вы будете отапливать большой дом при помощи электрической системы отопления то перед выбором оборудования необходимо обратить внимание на приборы, которые поддерживают установку каскада. Для эффективной работы оборудования в каскаде необходимо клеммы соединить с управляемым оборудованием. 

Также вы можете управлять каскадом при помощи регулятора. В таком случае нужно клеммы управляющего оборудования соединить с контактами управления. 

Необходимо изучить техническую документацию электрического котла. После этого следует внимательно осмотреть оборудование зрительно и проверить правильность его установки. А также проверить все подключения и давление воды в отопительной системе, которое должно соответствовать норме.

При установке электрического котла в отопительной системе необходимо применять регулятор комнатного типа.

После соблюдения всех правил схема подключения электрокотла должна соответствовать следующим действиям:

  • В первую очередь проверяется работоспособность трубопроводной арматуры. Для этого необходимо переключить ее из положения «открыто» в «закрыто», и наоборот. 
  • Трубопроводная араматура системы отопления, водоснабжения и элетрического теплового генератора должна быть переведена в положение «закрыто». 
  • Трубопроводы, которые подводят холодную воду к оборудованию, необходимо открыть запорную арматуру. Для электрической системы отопления не следует применять в качестве теплоносителя незамерзающую жидкость. Связано это со свойствами, которые влияют на работу отопительной системы негативно. 
  • Незамерзающая жидкость обладает свойствами, которые приводят к износу и старению резиновых элементов оборудования.
  • На входе оборудования на обратке необходимо установить фильтр для предотвращения попадания мусора. 
  • Затем можно наполнить систему отопления водой. После этого можно проверять ее герметичность.

После установки электрического котла и радиаторов отопления необходимо произвести проверку работоспособности датчиков системы: сигнальные, датчик давления воды, датчик регулирования температуры, управляющий и датчик аварийного типа для температуры.

В период проведения ремонтных работ или при неблагоприятных условиях следует подключать электрокотел при помощи резиновых шлангов. Для системы отопления рекомендуется использовать воду с низким значением мощности. В таком случае вы продлите срок эксплуатации тэнов.

 

Читайте также:

Подключение электрокотла 380. Электрические схемы котла. Подключение электрокотла

Уважаемые посетители !!!

В этой теме будет рассмотрено:

  • электрические схемы котлов;
  • возможных причин поломки котла и способы их устранения,

так же рассмотрим варианты подключения электрокотлов на:

  • сеть двухпроводная однофазная;
  • четырехпроводная трехфазная сеть с нулевым проводом.

Для двух способов подключения нужно знать, что при подключении любого электрооборудования, а речь идет об электрокотлах, которые приравнены к этой категории, подключение выполняется с заземлением.

В этой теме электрокотлы надо заземлить.

Почему это нужно учитывать? — Тогда при пробое фазовой изоляции жилы на металлических частях корпуса и случайном контакте человека с корпусом электрокотла потенциал тока в теле человека снижается.

Далее подключение электрокотлов к двухпроводной однофазной сети, а также к четырехпроводной трехфазной сети с нулевым проводом, выполняется с обязательным подключением через \\ УЗО \\.

Замена ТЭН

Замена нагревательных элементов и других элементов, а также диагностика для установления причины неисправности проводится в пассивном режиме с отключением электрооборудования от внешнего источника переменного напряжения.

Самостоятельно этот вопрос не решается, если вы не электрик и такие работы выполняются соответственно, если вы владеете нормативными документами \\ группа допуска электробезопасности \\.

Так зачем нужны эти детали? — Вы спрашиваете, можно ли в любом случае неисправности вызвать самого электрика.

Ну так скажем так — знания по электрике и электротехнике не будут для вас лишними.

Подключение электрокотла

Рассмотрим подключение электрокотла ЭВАН С1-30 к четырехпроводной трехфазной сети с нулевым проводом.

Пятый провод PE в цепи рисунка 1 является заземляющим и подключается к корпусу электрокотла ЭВАН С1-30. Читаем принципиальную схему:

В электрокотле устанавливаются так называемые шины, сетевой кабель с вилкой подключается к шинам N, A, B, C \\. Из покрышек три фазы \ A, B, C \ имеют вилку. Одна ветвь фаз \ A, B, C \ подключается к первым контактам ТЭНов двух блоков.

Вторая ветвь от тех же четырех шин через стартер подключается ко вторым выводам ТЭНов двух блоков.

Здесь необходимо учитывать, что для каждого отдельного блока с ТЭНами каждый отдельный ТЭН подключается фазными проводниками следующим образом:

  • первый нагреватель \ C-A \;
  • ТЭН второй \ А-Б \;
  • Третий ТЭН \ В-С \.

Фаза \ A \ и нейтральный провод \ N \ от сборных шин подключаются к ПКП.В своей комбинации ПКП подключается к напряжению \ 220 В \, подключаются проводники от ПКП:

  • с насосом;
  • с датчиком термостата;

Панель управления состоит из электронных компонентов, не указанных на схеме.

Для электроники диагностика описана в этом блоге.

После ремонта замена той или иной части электрики:

  • блок с подогревателями;
  • термовыключатель с самовозвратом

и других деталей, входящих в электрическую цепь, необходимо перед подключением электрокотла к внешнему источнику переменного напряжения проверить электрическую цепь котла на сопротивление.Диагностика сопротивления в электрической цепи этой цепи проводится либо прибором \ омметром \, либо прибором \ мультиметром \ с соответствующей функцией.

Если в результате измерения сопротивления прибор показывает нулевое значение, то в этом примере выполненные вами соединения должны быть пересмотрены. Индикатор нулевого сопротивления указывает на короткое замыкание \ короткое замыкание \ в электрической цепи.

Рассмотрим следующую электрическую схему для двух типов котлов \ EPO-7,5 \ и \ EPO-9,45 \.Представленная электрическая схема \ рис.2 \ идентична, разница только в мощности электрокотлов. Прослеживаем принципиальную схему:

Электрокотлы данных типов подключаются к двухпроводной однофазной сети. Провод заземления \ PE \ подключается к блоку ТЭНов и к корпусу электрокотла. Фазный провод от фазовой шины в этой схеме имеет ответвление, один провод с фазным потенциалом подводится к ПКП и от ПКП подключается к первым выводам ТЭНов,

второй провод с фазным потенциалом через стартер входит в электрическое устройство электронагревательных элементов, а также от стартера провод с фазным потенциалом последовательно через переключатель подключается к плате управления.Плата управления имеет соединения:

  1. с датчиком температуры воздуха;
  2. с нагревателями реле температуры;
  3. с датчиком температуры

Нейтральный провод имеет последовательное соединение:

  1. со стартером;
  2. с платой управления;
  3. со вторыми контактами ТЭНов.

Схема подключения электрокотла \ рис.3 \ предназначена для двухпроводной однофазной сети. Мощность электрокотлов по этой схеме 5-6 кВт.

Фазный провод от шины последовательно через стартер, — подключен к первому контакту ТЭНа. Нулевой провод от шины подключается ко второму контакту ТЭНа. По фазе и нулевой шине питание поступает на ПКП. Пульт дистанционного управления

имеет соединений:

  1. с насосом;
  2. с датчиком температуры воздуха;
  3. с датчиком термостата;
  4. с термовыключателем \ с самовозвратом \.

Защитный провод PE подключается к корпусу электрокотла.

Электрокотлы отличия в электрических схемах незначительны.

Текущий расчет

УЗО подбирается с учетом силы тока. Подставьте значения согласно формуле мощности,

мы знаем по формуле два значения — это мощность электрокотла и напряжение. Отсюда мы можем найти значение силы тока.

Результат тока вам известен, осталось только подобрать устройство аварийного отключения исходя из расчетного значения силы тока.

Электрокотлы для отопления дома — разумная альтернатива твердотопливным и газовым агрегатам. Такие обогреватели обладают высоким КПД, бесшумной работой, не требуют отдельного помещения и дополнительных разрешений на установку.

В зависимости от номинальной мощности электрокотлы делятся на два типа: однофазные (мощность 1–10 кВт) и трехфазные (мощность от 12 кВт и выше).Сегодня мы познакомимся с более мощными устройствами, требующими подключения к напряжению 380 вольт.

Виды электрокотлов

В зависимости от способа передачи тепловой энергии теплоносителю электрические котлы делятся на три типа:

  1. Теневые.
  2. Индукция
  3. Электрод.

Все эти нагревательные элементы выпускаются в двух исполнениях: 220 и 380 вольт.

Котлы тепловые

Такие электрокотлы для отопления дома являются самыми популярными.Принцип их работы следующий:

  • Трубчатый элемент нагревает воду, циркулирующую в замкнутой системе.
  • Циркуляция обеспечивает быстрый и равномерный нагрев всей системы.
  • Количество необходимых ТЭНов зависит от мощности аппарата и может варьироваться от 1 до 6 ТЭНов.

Такие котлы оснащены надежной системой автоматики, позволяющей контролировать температуру теплоносителя и регулировать ее.Достоинства отопительных агрегатов:

  • Простота и надежность конструкции.
  • Простота установки.
  • Дешевый дизайн.
  • Возможность использования в качестве теплоносителя практически любых жидкостей.
  • Эти котлы на 380 вольт имеют современный дизайн и хорошо впишутся в любой интерьер.

Индукционные котлы

Принцип электромагнитной индукции давно успешно применяется для отопления жилых помещений. Такой котел имеет следующее устройство:

  • В цилиндрический корпус вставляется металлический сердечник (обычно используется отрезок трубы), на который наматывается катушка.
  • При подаче напряжения на катушку и обмотку возникают вихревые потоки, в результате которых труба, по которой циркулирует теплоноситель, нагревается и передает тепло воде.
  • Циркуляция воды должна быть постоянной, чтобы змеевик и сердечник не перегревались.

Данная система электрического отопления имеет следующие преимущества:

  • Высокий КПД, достигающий 98%.
  • Этот котел на 380 В не подвержен образованию накипи.
  • Повышенная безопасность — без нагревательных элементов.
  • Небольшие размеры и небольшой вес обеспечивают простой и быстрый монтаж индукционных котлов.

Совет! Индукционные электрические котлы могут обойтись без циркуляционного насоса. Но это не касается большой системы отопления двухэтажного дома.

Электродные системы

В своей работе электродный котел 380 вольт использует специально подготовленную воду. Приготовление охлаждающей жидкости заключается в растворении в ней определенного количества соли для придания нужной плотности. Общий принцип работы электродного нагревателя следующий:

  • Два электрода вставляются в трубу подходящего диаметра.
  • Из-за разницы потенциалов и частой смены полярности ионы начинают хаотическое движение. Так охлаждающая жидкость быстро нагревается.
  • За счет быстрого нагрева теплоносителя создаются мощные конвекционные токи, позволяющие быстро нагреть большой объем без использования циркуляционного насоса.

Электродный котел имеет очевидные преимущества, в том числе:

  • Маленькие форматы.
  • Быстрый доступ к номинальной мощности.
  • Компактный и простой дизайн.
  • Отсутствие аварийной ситуации, даже если вода течет из системы отопления.

Совет! Электродные котлы требуют особого подхода к заземляющему оборудованию. Он подключает к цепи заземления не только сам котел, но и систему отопления дома, особенно металлические радиаторы.

Производители электрических котлов

На отечественном рынке достаточно большой выбор популярных марок, выпускающих электрокотлы на отопление 380 вольт.Среди всего многообразия производителей наиболее полный модельный ряд электронагревательного оборудования представлен такими отечественными и зарубежными компаниями:

  1. Bosch.
  2. Данко.
  3. Ferroli.
  4. Kospel.
  5. TermIT.
  6. Protherm.

Все эти компании представляют электрические котлы разного принципа действия, широкого диапазона мощностей и всех типов подключения: однофазные и 380 вольт.

Правила установки и эксплуатации электрокотлов

В процессе подключения электрокотла необходимо соблюдать определенные правила, которые мы сейчас разберем более подробно.

Электрическое подключение

Подключая электрокотел, необходимо правильно рассчитать сечение силового кабеля. От этого показателя зависит безопасность всей системы отопления.

Стоит отметить, что электрокотлы на 380 вольт достаточно мощные, поэтому кабель должен быть соответствующим. Для расчета сечения провода используется формула, согласно которой кабель сечением 1 мм2 должен иметь ток не более 8 А.

По этой формуле, чтобы подключить нагревательный блок мощностью 10 кВт к напряжению 380 вольт, необходимо произвести такие расчеты: 10000/380/8.Результат показывает, что каждая жила кабеля должна иметь сечение не менее 3,3 мм.

Совет! При выборе сечения кабеля необходимо округлять только дробные значения в большую сторону!

Подключение к системе отопления

Все электрокотлы в систему отопления подключаются по аналогичной схеме:

  • Для соединения с помощью пластиковых трубок или перемычек из диэлектрического материала.
  • Циркуляционный насос необходимо установить на обратном трубопроводе.
  • На патрубке подачи горячего теплоносителя (не дальше 50 см от котла) необходимо установить группу безопасности.
  • Если в системе отопления используется малый контур, то после него следует устанавливать запорные краны.
  • Расширительный бак открытого типа устанавливается в самой высокой точке трубопроводной системы без использования запорных устройств. Расширительный бак закрытого типа устанавливается рядом с котлом, к клапанам.

При эксплуатации электрокотла 380в необходимо следить за состоянием электропроводки и не допускать утечки теплоносителя.

Совет! Особое внимание при эксплуатации отопительного оборудования следует уделять исправности заземлителя. В случае повреждений немедленно выключите котел и приступите к восстановлению заземления.

В заключение хочется отметить, что электрокотлы на 380 вольт отлично себя показывают при длительной эксплуатации. Из-за большей мощности они редко работают на пределе своих возможностей, что положительно сказывается на сроке их службы.Установка такого котла — отличное решение проблемы отопления большого дома.

Общие правила установки газовых котлов

В зависимости от модели котла используются разные технологии монтажа, но общие правила сохраняются для любого газового оборудования.

Котельная в частном доме

Первое правило .

Отопительные установки относятся к оборудованию повышенной опасности, поэтому их рекомендуется устанавливать в гостиничном номере (котельной).В случае бытовых котлов малой мощности их можно устанавливать в любых подсобных помещениях, но при установке одного или нескольких котлов суммарной мощностью более 60 кВт требуется отдельное помещение.

Правило два . В большинстве случаев разработка плана установки отопительного оборудования возлагается на конструкторский отдел газоснабжения, который контролирует работу котлов и разрешает подачу газа в него. Поэтому монтаж осуществляется только после получения схемы установки и документально оформленных условий газоснабжения.

Конечно, собственник установленного газового котла может высказать свои пожелания по размещению своего оборудования, но ответственное решение, задание условий для помещения и составление плана подключения оборудования возлагается на газовую службу. Делается это исходя из того, что существует ряд ограничений по установке котлов: минимальный объем помещения и высота потолков, вентиляции, освещения, взаимное расположение всех элементов системы отопления.

Правило третье . Правильная установка газового котла проводится согласно инструкции-описанию его паспорта, при этом особое внимание уделяется расположению аппарата относительно стен и системе отвода отработанных газов.

Удаление газов недопустимо проводить на верандах, под навесами, арками или открывающимися окнами во избежание отравления.

Напольные котлы монтируются только на огнеупорную поверхность пола (плитка, бетон, металл), размер которой намного превышает габариты котла, а настенные блоки должны иметь удаленный зазор и иметь теплозащитный экран на стене.

Четвертое правило . Расположение всего газового оборудования в помещении должно обеспечивать минимальное расстояние между ними в 0,5 м при сохранении легкого доступа к горелкам для их обслуживания и снятия для ремонта.

Каждый газовый агрегат должен иметь отдельный от общей магистрали газопровод с запорным вентилем, который выполнен только из металлической трубы и его скрытая установка не допускается. В местах прохождения трубопровода через стены труба укладывается стальными вкладышами.

Пятое правило . Соединение котла с коммуникациями осуществляется посредством резьбовых соединений, а его подключение к электросети должно иметь систему защиты от перепадов напряжения и короткого замыкания.

Принципы установки газовых котлов

Типовая схема подключения газового котла По специфике и последовательности работ разделена на пять критических разделов.

Котельная установка

Котел должен быть установлен точно в указанном производителем положении: расстояние до стены, уровень его установки от пола (для навесного).Крепление настенных котлов следует производить на анкерных болтах длиной не менее 100 мм с запасом прочности к прочным поверхностям стены, чтобы выдерживать нагрузку от веса котла.

Если стена недостаточно прочная, используются анкеры двойной длины до тех пор, пока стена не будет просверлена с установкой вместо анкеров-шпилек и широких опорных плит снаружи стены.

Правильно установленный котел должен учитывать точное сохранение горизонтального и вертикального уровня, поскольку отклонения могут вызвать скопление воздуха в водяном контуре, что снизит тепловой КПД.

Организация выхлопной системы

Правильная установка дымохода обеспечивает отвод продуктов сгорания, а также, в случае использования коаксиального дымохода, воздушный поток для качественного сжигания газа. Недостаточная тяга в системе теплообменника вызывает неполное сгорание газа, что может привести к накоплению взрывоопасной смеси.

Сброс давления в дымоходе или удаление выхлопных газов возле открывающихся окон и дверей может вызвать отравление тела.Поэтому системе дымоудаления уделяется особое внимание, а герметичность периодически проверяется в процессе эксплуатации.

Не допускается установка дымохода с уменьшенным сечением или с укороченным каналом. Для котлов с открытой камерой сгорания необходимо обеспечить постоянную подачу свежего воздуха в зону горелки, для чего необходимо обеспечение достаточной вентиляции помещения (естественной или принудительной).

Подключение к водопроводу

На этом этапе котел подключается к системе отопления и горячего водоснабжения, которая организована только резьбовыми соединениями (рекомендуются «американские»), чтобы сохранить возможность легкого отключения или демонтажа устройства.

Не допускается уменьшение сечения подводящих трубопроводов во избежание снижения КПД и перегрева котла.

Типовая схема подключения газового котла к системе отопления имеет несколько основных элементов.

Во-первых, это расширительный бак для теплоносителя, который может быть открытым или закрытым.

Резервуар открытого типа имеет сообщение с атмосферной средой для своевременного удаления воздуха из системы отопления и должен быть установлен в самой высокой точке отопительной установки.

Бак закрытого типа не имеет связи с атмосферой и снабжен компенсационной мембраной для жидкости, расширяющейся при нагревании. Такой бак можно установить в любом удобном месте вместе с клапаном, сбрасывающим избыточное давление жидкости и скопившимся воздухом, расположенным в самой высокой точке системы.

Установка вентилей на расширительный бачок открытого типа не допускается, так как нагрев теплоносителя вызывает его расширение и повышение давления в системе, что может разрушить теплообменник котла .

Следующий элемент — фильтры грубой и тонкой очистки воды, и их установка рекомендуется как на отопительном контуре, так и на контуре горячего водоснабжения, так как в процессе циркуляции воды по трубам накапливается мусор в виде песка и рыхлых отложений накипи. . На входных патрубках котла устанавливаются фильтры, что снижает засорение и увеличивает эффективность нагревателей.

Фильтр системы отопления в разобранном виде

Чего не скажешь о циркуляционных насосах, которые не всегда есть в конструкции котлов.Они позволяют добиться повышения эффективности отопления и горячего водоснабжения.

Установка насосов осуществляется в зазор между фильтрами и нагревателями, при этом установка насоса для подачи воды актуальна только при низком давлении в трубопроводе, так как в противном случае автоматический бойлер колонки для подачи газа работать не будет. .

И последний штрих — коммуникационно-распределительный блок с клапанами. Система развязки трубопроводов с коллектором на несколько котлов и контурными трубами отопления позволяет оптимально регулировать циркуляцию теплоносителя в разных частях дома.

Распределительный блок должен иметь подключение к водопроводу для подачи в систему отопления, а также иметь слив на улицу или в канализацию для слива теплоносителя в случае аварии.

Подключение котла к сети

Включает в себя обеспечение качественной электропроводки с обязательной установкой УЗО (выключателя дифференциального тока), который обеспечит отключение электричества в случае короткого замыкания или перегрузки по току.

В связи с чувствительностью электронных компонентов многих газовых котлов к скачкам напряжения рекомендуется установка стабилизаторов напряжения или, в крайнем случае, устройств отключения при скачках напряжения.

В случаях, когда происходят периодические отключения электроэнергии, настоятельно рекомендуется подключить систему бесперебойного электроснабжения (чтобы избежать замерзания системы отопления) параллельно с электросетью, которая может включать батареи с преобразователем или генератором.

Подача и подключение газа к котлам

Данный этап осуществляется только при наличии разрешительной документации газовой службы и во время выполнения всех описанных выше работ.Трубы подвода газа должны выполняться только наружной разводкой из стальной трубы, при этом герметичность всех соединений должна быть безупречной. У каждого газового прибора должен быть свой кран, который располагается на уровне «глаз», т.е. 1,2-1,5 м от уровня пола.

Присоединение к газопроводу

На газовой линии должен быть фильтр, задерживающий механический мусор и частичный конденсат. Новые коммуникации перед подключением котлов газовой автоматики следует тщательно продуть, ведь даже небольшой мусор, попавший в газ, может вывести автоматику из строя или забить ее калиброванные каналы небольшого сечения.

Преимущества электрического отопления — преимущества использования электрического котла


Электрокотлы гарантируют экономичное и комфортное отопление. Они не требуют обслуживания и периодических проверок. Электрокотел — отличная альтернатива газовым котлам. Узнайте, почему стоит выбрать электрический бойлер!

Сотрудничество с твердотопливным котлом или камином

Использование твердотопливного котла или камина с водяной рубашкой — самое дешевое отопление.Однако ежедневная ручная добавка топлива неудобна. Кроме того, твердотопливный котел требует подключения дымохода. Он также создает грязь и загрязнения. Зимой нельзя оставлять дом без присмотра без отопления. Подключение электрокотла к установке избавляет от этих неудобств. Это также помогает снизить эксплуатационные расходы.

Нет газа

В случае затрудненного доступа к газовой сети лучшее решение — электрокотел. Электрокотлы очень безопасны в использовании.Они не выделяют токсичных газов и загрязняющих веществ.

Низкие инвестиционные затраты

В настоящее время электромонтаж есть в каждом доме. Затраты на установку электрического котла очень низкие. Они намного дешевле, чем установка газового или масляного котла. Электрокотлам даже не нужен доступ к дымоходу. Стоимость отопления электрокотлом в хорошо утепленном доме очень низкая.

Чистый воздух

Электрический обогреватель экологически чистый.Это лучший способ избежать выброса вредных газов. Низкое пылеобразование характерно для отопления традиционными твердотопливными котлами. Электроэнергия вырабатывается на электростанциях, где происходит очистка дымовых газов.

Безопасность эксплуатации

Риск отравления угарным газом отсутствует. Электрокотлы более безопасны, чем газовые, масляные и твердотопливные котлы. Использование электрического бойлера не создает опасности засорения или взрыва.

Комфортное обслуживание

Электрокотлы удобны в эксплуатации.В основном они работают автоматически. Котлы с погодозависимым контролем серии EKD.M3 и EKCO.MN3 могут быть дополнительно оснащены интернет-модулем C.MI. Позволяет дистанционно регулировать работу котла через Интернет.

Низкие затраты на обслуживание

Электрокотлы не нуждаются в периодических осмотрах. Таким образом исключаются затраты на осмотр газовых, дымоходных и вентиляционных установок.

Эстетичность и простота сборки

Электрокотлы

выглядят очень эстетично, а интерфейс интуитивно понятен.Их можно повесить на стену в любой комнате.

Какой электрокотел самый лучший?

Мы перечислили лишь несколько преимуществ электрического отопления. На самом деле есть много других преимуществ использования электрокотлов. Если вы ищете наиболее эффективный электрический котел для своего дома, посетите раздел товаров на нашем сайте.

электрическое — Установлен электрический водонагреватель без резервуара — Отсутствие интернета при работе

Во-первых, убедитесь, что три ваших кабеля питания правильно спарены.Внутри блока 3 нагревателя. Есть несколько способов пересечения кабелей, что приведет к тому, что питание от одного нагревателя будет проходить по одному кабелю и возвращаться по другому кабелю. Обогреватель будет работать нормально, но из двух несбалансированных кабелей будет подаваться огромное количество ЭДС. Просто перепроверьте это.


Или обогреватель может испускать высокочастотный электромагнитный сигнал, при этом кабель (кабели) становятся антеннами, что усугубляет ситуацию. Теперь электрические резистивные нагревательные элементы, только , не генерируют электромагнитные помехи.Это произойдет только с

  • a) управляющая электроника, которая обязательно будет только на одном кабеле / ​​цепи; или
  • b) силовые прерыватели («диммеры»), которые могут быть на одной или всех схемах, но нет никакой полезной причины иметь их более чем на одной схеме.

Кроме того, мне не нравится то, как устанавливаются Ecosmarts — они ожидают, что вы протолкните три кабеля №8 через одно отверстие диаметром 1 дюйм, о чем много просить, и требуются только правильные кабельные зажимы, чтобы не нарушать Код.

Я бы установил металлическую коробку глубиной 6 дюймов или больше прямо под EcoSmart и короткий штуцер для кабелепровода EMT, соединяющий его с отверстием для проводки EcoSmart. Поместите 3 кабеля в большую коробку с соответствующими зажимами; оставив место для до 3 «ограничителя перенапряжения» для установки на 3 заглушки.

Затем я бы посоветовался с EcoSmart и спросил их: а) какая цепь питает управляющую электронику и б) переключают ли они просто все 3 нагревателя , или используют ли они силовые прерыватели, и если они это делают, на какой цепи (ах) .

В цепях, в которых не используются прерыватели или электроника, они могут быть подключены прямо через 6-дюймовую коробку, вверх по штуцеру кабелепровода и к клеммам.

Для цепей, в которых используются прерыватели или электроника, вы вставляете пигтейл от терминала EcoSmart в эту коробку. Затем вы устанавливаете «ограничитель перенапряжения» в одну из заглушек (или нет, если это тип, который может находиться внутри распределительной коробки, например, Meanwell SPD-20-277P). Затем присоедините эти провода к линии электропередачи от панели.Он подключает Ecosmart и глушитель параллельно (обычный способ подключения) — он не подключается последовательно, как выключатель.

На этом этапе ограничители перенапряжения должны гасить электромагнитные помехи до того, как они покинут металлическую клетку Фарадея распределительной коробки Ecosmart +.

Я полагаю, что Ecosmart мог бы встроить это в продукт, но это повысило бы цену, и поэтому вы могли не выбрать этот продукт.

Энергии | Бесплатный полнотекстовый | Гибкость электрического котла и теплоаккумулятора для взаимодействия нескольких энергетических систем

1.Введение

Централизованное теплоснабжение (ЦО) обеспечивало горячей водой 63% частных домов в Дании в 2015 году [1]. Концепция системы централизованного теплоснабжения / охлаждения 4-го поколения, поддерживаемая возобновляемыми источниками энергии, представлена ​​в [2]. Чтобы к 2030 году стать углеродно-нейтральным в секторе отопления, возобновляемые источники энергии должны удовлетворить все потребности в отоплении. Таким образом, существует возможность интеграции тепловых и электрических сетей для поддержки вспомогательных услуг сети с помощью гибких электрических нагрузок, таких как электрические котлы (EB) и тепловые насосы (HP), поддерживающие тепловую систему [2,3].Электроэнергетическая и тепловая сети соединены вместе как электроэнергия-тепло (P2H), чтобы использовать возобновляемую электроэнергию для централизованного теплоснабжения. Интегрированный накопитель тепла разделяет спрос и генерацию, чтобы повысить гибкость и лучшую адаптацию к потребностям в энергии. Концепция P2H в мультиэнергетической системе требует незначительного расширения сети и хранилища [4]. Цель данной статьи — подтвердить гибкость работы теплового блока, состоящего из электрического котла (EB) и накопительного бака, смоделированного с помощью стратифицированного слои, как часть системы P2H.Это в первую очередь реализуется посредством анализа данных по измеренному потреблению тепловой энергии в жилом районе и оценки спроса на тепловую энергию с использованием подбора кривой с последующим составлением оптимального графика EB на основе спотовой цены. Модель многослойного стратифицированного резервуара для хранения тепла подходит для интеграции в электрическую сеть и гибкой работы, чтобы компенсировать ошибку в оценке тепловой нагрузки. Этот метод также может быть применен к системе с тепловым насосом. Тем не менее, применение ЭБ в настоящее время имеет большое значение для обеспечения гибкости энергии, а также для частотных услуг системы [5].Например, ЭБ мощностью 50 кВт используется в качестве гибкой нагрузки на острове Ливо в Дании для увеличения собственного потребления от ветряных и фотоэлектрических установок, установленных на острове [6]. Преимущества централизованного накопления тепла с точки зрения эксплуатационной гибкости ТЭЦ (комбинированное производство тепла и электроэнергии) для централизованного теплоснабжения хорошо изучено в [7]. Гибкость сети централизованного теплоснабжения для рынка резерва автоматического восстановления частоты изучается в [8]. Уравновешивающие рынки предоставляют возможность для привлечения большего количества ЭБ в ЦТ и увеличения его вклада в гибкость [9].Важнейшим аспектом здесь является то, как можно эффективно реализовать развертывание системы. Ref. [7] обращается к гибкой работе тепловых насосов с использованием стратегии прогнозирующего управления, пренебрегая потреблением горячей воды из-за его сильно рандомизированного и трудно предсказуемого характера. Прогностическое управление тепловым насосом путем оценки только температуры наружного воздуха было изучено в [10]. Таким образом, существует необходимость в исследовании простых и эффективных методов определения влияющих параметров для прогнозирования тепловой нагрузки для управления гибкой работой тепловых блоков в технологии P2H.Перспектива электрификации тепла на рынке с преобладанием ветра с использованием резистивного нагрева и накопления является наиболее углеродоемким методом [11] с более низкими инвестиционными затратами по сравнению с HP [9,12]. Кроме того, большим HP требуется много времени от холодного пуска до достижения оптимальной эффективности. Таким образом, они не очень активны на балансирующих рынках между часами из-за коротких интервалов старт-стоп. Скорее, они в основном используются в качестве базовой нагрузки [9]. Следовательно, гибкость легкого запуска-останова в балансировочных услугах является основным стимулом для введения большего количества EB в систему.Электроэнергетические установки в централизованном теплоснабжении имеют потенциал для отрицательной вторичной регулирующей мощности за счет увеличения потребления и поддержания баланса сети [13]. В [14] реализованы преимущества управления спросом и возможность реагирования на спрос для повышения эффективности энергосистемы с помощью интегрированных устройств ветроэнергетики и электрического обогрева с учетом постоянной тепловой нагрузки в течение дня. Более высокий потенциал ТН в системах ЦТ в будущем реализован в [15]. Интеграция ЭП с накопителями в низковольтную бытовую сеть в качестве гибкой потребительской нагрузки была представлена ​​в [16].Следовательно, существует потенциал хорошей гармонии и гибкости между секторами электрической и тепловой энергии, поддерживающими друг друга в мультиэнергетических системах. Исследование потребностей в отоплении помещений и горячей воде для бытовых нужд представлено в [17] на основе подбора кривой и функций распределения. В [18] индекс коэффициента пиковой нагрузки зданий используется для определения разнообразия тепловых нагрузок с целью создания теплового профиля для жилых зданий. В справочнике [19] рассчитывается вероятность потребления горячей воды для бытового потребления в момент времени (t), который зависит от вероятности в течение дня, дня недели, сезона и праздника, как функции времени (t).Ступенчатые функции с большей вероятностью для выходных дней по сравнению с рабочими днями используются для индикации более высокого потребления горячей воды для бытового потребления в выходные дни. Тепловая потребность в отоплении помещения в типичный зимний день исследуется в [20]. Однако схема использования комбинированного эффекта отопления помещений (SH) и горячего водоснабжения (ГВС) все еще остается нереализованной. Надлежащее знание структуры спроса на отопление помещений и бытового использования, представленное в этой статье, является ключевым фактором для разработки хорошего и применимого инструмента оценки спроса на тепловую энергию.В основном тексте и уравнениях он выделен курсивом. Для согласованности в документе, пожалуйста, внимательно проверьте и измените их на курсив. Возможность оценки потребности в тепле для отопления помещений всего за несколько часов заранее с использованием нейронной сети на основе потребления тепла в зданиях в Польше сопоставлена ​​с погодными условиями более чем на 10%. годовой период в [21]. В [21] метод прогнозирования основан на нейронной сети временных рядов с учетом температуры и потребления тепла в конкретный час, день и предыдущую историю.Данные за один месяц из сети ЦО в Риге были проанализированы для прогнозирования в [22] со сравнением методов с использованием искусственной нейронной сети, модели полиномиальной регрессии и их комбинации. С помощью этих методов прогнозы выполняются путем обновления статистики фактической нагрузки и температуры предыдущего измерения. ЦО из Чехии был проанализирован в [23] в модели прогноза, основанной на временных рядах температуры наружного воздуха и зависимых от времени социальных компонентов, которые могут различаться для разных дней недели и времени года.Для реализации прогноза социальной составляющей используется метод Бокса – Дженкинса. В [24] рассматриваются вопросы выбора соответствующих входных переменных от датчиков систем управления энергопотреблением. Температура окружающей среды и относительная влажность наряду с солнечной радиацией являются преобладающими факторами для прогнозной модели [24,25]. В [26] прогнозирование, основанное на методе аналогичного дня, хорошо представлено для выходной мощности на сутки вперед для маломасштабной солнечной фотоэлектрической системы. Тем не менее, ни одна из литературы не обсуждалась относительно централизованного теплоснабжения как летом, так и зимой, а также прогноза тепловой нагрузки, основанного на совокупном влиянии фактора времени и переменных окружающей среды (таких как температура наружного воздуха, влажность и скорость ветра) вместе.Эти аспекты важны для изучения в комплексной структуре, чтобы четко понять эффективный потенциал тепловых устройств, таких как электрические блоки. Таким образом, такие гибкие блоки могут обеспечивать энергетическую гибкость, необходимую для поддержки интеграции возобновляемых источников энергии в будущие энергетические системы. В этом документе предложенная методология для получения гибкости с EB в P2H резюмирована на блок-схеме, как показано на Рис. 1. Существенным вкладом в этот документ является определение модели тепловой нагрузки, оценка тепловой нагрузки с использованием инструмента построения кривой и использование стратифицированного резервуара для хранения для проверки гибкости работы EB.Фактические тепловые данные от оператора ЦО анализируются, чтобы раскрыть конкретную модель потребления жилых районов, связанных с использованием, на основе различных временных факторов, таких как почасовые, будние, выходные и сезонные. Эта информация полезна при обучении инструмента построения кривой для оценки тепловой нагрузки. Со ссылкой на [21,22,23], оценка потребности в тепловой энергии основана на прошлом и ее текущем состоянии на зиму. Простой, но эффективный метод построения кривой для оценки потребности в тепле в жилом районе на основе зависимых параметров, таких как временной фактор (на основе профиля потребления) и переменные среды (кажущаяся температура), был исследован и также сравнен с фактическими данными. как следствие существующей литературы.Анализ выполняется для оценки тепловой нагрузки как зимой, так и летом. Подгонка кривой проста и решает проблему, возникающую при обновлении данных измерений (из-за отказа измерительного оборудования), как при оценке временных рядов. Расчетный спрос используется для определения оптимального графика работы ЭБ в P2H, для планирования мощностей для одновременного хранения и удовлетворения спроса на тепловую энергию на основе спотовой цены на электроэнергию. Использование многослойного накопительного бака в сочетании с EB имитирует реальные условия эксплуатации, при которых температура подаваемой горячей воды более реалистична по сравнению со средней моделью накопительного бака, где температура горячей воды постепенно снижается.Результат подтверждается фактическим потреблением тепла, чтобы проиллюстрировать, как накопитель тепла справляется с ошибкой прогнозирования, и вносит свой вклад в качестве примера гибкой нагрузки в концепции P2H. Документ структурирован следующим образом. Анализ потребления тепловой нагрузки, основанный на фактических измерениях на одном конкретном жилом участке в Дании, снабженном пятью фидерами, анализируется для раскрытия конкретной схемы использования и описывается в Разделе 2. Выбор параметров для эффективной оценки тепловой нагрузки с использованием различных инструментов, таких как нейронные сеточная подгонка и аналогичный дневной метод обсуждаются в Разделе 3.Обзор подхода к моделированию стратифицированного резервуара для хранения горячей воды и EB представлен в разделе 4 вместе с проверкой модели. В Разделе 5 представлена ​​методология оптимизации графика работы ЭБ вместе со стратегией управления ВКЛ / ВЫКЛ ЭБ. Результаты расчетного спроса обсуждаются в Разделе 6, а затем его применение в гибком графике EB для реагирования на спрос. Наконец, статья завершается результатами исследовательской работы в Разделе 7.

2.Анализ тепловых данных

Тепловые данные, измеренные на терминале пяти тепловых распределительных фидеров (F1-F5), снабжающих ряд жилых домов, в одном конкретном жилом районе Ольборга, Дания, используются для анализа. Проанализированы имеющиеся измеренные данные о почасовом потреблении тепловой энергии с 21 декабря 2015 года по 4 декабря 2016 года. На рисунке 2 показано общее годовое потребление тепловой энергии (QDHW) для жилых домов в фидерах (F1-F5), снабжающих жилые дома. Годовое потребление колеблется от 723 ед.7 МВтч как самое низкое потребление для F1 до 1278,5 МВтч как самое высокое потребление в F4. Это различие связано с разным количеством жителей в районе и их уровнем комфорта. Общее годовое потребление составило 5195,7 МВтч. На рис. 3а, б показан график почасового потребления QDHW для фидеров (F1-F5) и их общего потребления соответственно в течение года. Рисунок 3a, b ясно показывает, что есть сезонные колебания. Рисунок 3b показывает, что есть внезапный переход в потреблении тепла в определенный период времени, например, ближе к концу января, середине марта и началу мая.Однако между серединой мая и концом сентября наблюдается значительная разница в потреблении тепла, которая составляет менее 35% от пикового зимнего потребления. Таким образом, чтобы упростить дальнейший анализ, тренд потребления тепла условно разделен на два сезона, зимний и летний, независимо от осени и весны. Следовательно, с октября по апрель считается зимним сезоном, а с мая по сентябрь — летним сезоном. Переходный период в начале мая и октябре в данном анализе не рассматривается.Похоже, что в мае потребность в тепле немного больше, чем в сентябре, из-за перехода с зимы на лето и составляет около 30 ± 5% от пикового зимнего потребления. Интересно увидеть анализ данных с сезонной точки зрения: потребление зимой и летом. В остальной части статьи анализ проводится с учетом совокупного воздействия всех питателей. В результате максимальная потребность в тепле, вероятно, будет меньше суммы пиковой нагрузки отдельного питателя. Это также снижает периодические колебания спроса на отдельные кормушки.

Среднее потребление QDHW в час для всех фидеров с учетом годового потребления составляет 618,5 кВтч. Зимой это 881,8 кВтч, что на 205,8% больше, чем потребление летом 288,4 кВтч.

На рис. 4a, c показан график среднечасового режима потребления тепла в разные дни недели зимой и летом соответственно. Хорошо видно, что существует уникальная картина среднего теплового потребления с пиками. В выходные (суббота и воскресенье) картина отличается от будней (понедельник – пятница).Для упрощения графиков, показанных на рис. 4a, c, графики со средним потреблением тепловой энергии в течение недели, будних и выходных дней были построены на рис. 4b, d для зимы и лета соответственно. Отмечается, что существуют определенные закономерности почасового использования среднего QDHW. Есть две вершины и две впадины. Ясно, что величина отклонения в потреблении тепла от минимального потребления выше для выходных, чем для будних дней, что указывает на более высокое потребление горячей воды для бытового потребления, как указано в [19].На рисунке 5 показана структура потребления в будние, будние и выходные дни за период с декабря 2016 года по август 2017 года для зимы и лета соответственно. В отличие от рисунка 4b, d общее потребление в выходные дни ниже, чем в будние дни. Таким образом, количество потребляемой тепловой энергии по выходным и будним дням не очень актуально. Однако почасовая структура потребления в будние и выходные дни сопоставима с аналогичными пиками и спадами в определенные часы, показанными на рис. 4b, d. Следовательно, знание этих моделей потребления тепла в будние и выходные дни очень полезно для обучения инструмента оценки, чтобы компенсировать ошибку из-за факторов, не зависящих от температуры, таких как поведение пользователя.Самый низкий уровень потребления наблюдается в период 03: 00–04: 59 ч, который постепенно увеличивается до 07: 00–07: 59 ч в обычные будние дни, когда люди готовятся к своей работе (рис. 4b, d). В выходные дни этот пик смещается примерно с 10: 00–12: 59. Сдвиг пика может быть вызван тем, что в выходные люди предпочитают поздно вставать. После утреннего пика потребление тепла снижается до 2: 00–3: 59 ч, когда люди находятся на работе в будние дни. В течение недели вечерний пик приходится на 18: 00–20: 59, который постепенно снижается до 4:59 ранним утром.Однако летом наблюдается сдвиг вечернего пика по сравнению с зимним. Этот анализ показывает релевантность времени, дня и сезона для определения характера использования теплового потребления и его значимость для прогнозирования, как показано в [21] для тепловой нагрузки, аналогично прогнозированию электрической нагрузки [27].

3. Оценка тепловой нагрузки

Трудно оценить тепловую нагрузку для жилого района, поскольку она в значительной степени зависит не только от переменных окружающей среды (погоды), но также от поведения пользователя и геометрии здания.В действительности, анализ занятости и комфорта пользователей затруднен и приводит к проблемам, связанным с проблемами конфиденциальности отдельных лиц. Это приводит к значительным усилиям по поиску компромисса между ошибками в оцениваемых переменных и зависимых параметрах. Анализ тепловых данных в жилых районах дает замечательную информацию о структуре спроса на тепловую энергию без ущерба для частной жизни людей. Эта информация полезна при выборе эффективных переменных для оценки спроса на тепловую энергию с точки зрения поведения пользователя, которое определяет структуру спроса.Время суток и дни недели (будние или выходные) — это два основных параметра, связанных со структурой потребления тепла в зависимости от уровня комфорта пользователя.

Расчетные параметры используются для определения гибкости работы тепловой системы на основе спроса, предложения, мощности и цен на энергию. В этой статье для оценки потребления тепла в жилом районе используются тепловые данные, показанные на Рисунке 5.

3.1. Зависимые переменные для оценки тепловой нагрузки

На тепловую нагрузку сильно влияют переменные окружающей среды, такие как температура воздуха.На рисунке 6а показано почасовое значение тепловой нагрузки и соответствующая средняя внешняя температура окружающей среды. Это показывает, что снижение температуры увеличивает потребность в тепле. Помимо температуры воздуха, холодный воздух с высокой относительной влажностью увеличивает отвод тепла от тела по сравнению с сухим воздухом той же температуры. Чтобы учесть комбинированный эффект относительной влажности, ветра и температуры воздуха, ответственный за потерю тепла телом, учитывается кажущаяся температура.Кажущаяся температура рассчитывается с использованием (1) и (2) [28]. На рисунке 6b показано почасовое значение тепловой нагрузки и соответствующая кажущаяся температура. Коэффициент корреляции тепловой нагрузки по отношению к внешней температуре окружающей среды и кажущейся температуре составляет -0,88 и -0,89 соответственно.

AT = Ta + 0,33e − 0,7v − 4,00

(1)

е = Rh2006.105exp17.27Ta237.7 + Ta

(2)

где AT = кажущаяся температура [° C]. Ta = Температура внешней среды по сухому термометру [° C].e = давление водяного пара [гПа]. v = скорость ветра [м / с]. RH = относительная влажность [%]. На рисунке 7a показан график зависимости видимой температуры от тепловой нагрузки в период с декабря 2016 года по август 2017 года. На рисунке 7b показано распределение тепловой нагрузки по отношению к видимой температуре только летом и зимой. Из рисунка 7b видно, что потребность в тепле зимой обратно пропорциональна кажущейся температуре. Тогда как летом пропорциональная связь между собой очень мала.Это может быть связано с тем, что, помимо внешней температуры, потребление тепла в основном используется для бытовых целей, таких как купание, стирка, обогрев туалета / ванной комнаты и потери при передаче. Таким образом, логично заключить, что сезонный эффект необходимо рассматривать как входную переменную в модели для оценки.

Параметры для оценки тепловых нагрузок в жилых районах основаны на таких факторах, как поведение пользователя (часы, рабочие и выходные дни) и условия окружающей среды (видимая температура и время года).

3.2. Метод оценки тепловой нагрузки

Рассмотрены различные подходы к оценке тепловой нагрузки, основанные на методе подбора кривой, такой как подгонка нейронной сети и аналогичный дневной метод, поскольку они широко используются. Встроенные инструменты и функции MATLAB используются для разработки модели оценки с помощью инструмента нейронной сети. Анализируются различные сценарии, основанные на сезонных колебаниях (летом и зимой).

Для инструмента подбора нейронной сети 50% сезонного набора данных используются для обучения, 25% для проверки и 25% для тестирования для разработки модели.Наборы данных делятся случайным образом для обучения, тестирования и проверки модели. После разработки модели для оценки используется 50% оставшегося набора сезонных данных.

Для аналогичного дневного подхода ежечасные данные за день упорядочены по сезону (лето и зима), будням и выходным, как показано на рисунке 8. 50% каждого набора данных (будние и выходные для лета и зимы) используются в качестве исторических данных. данные для построения евклидова расстояния (ED) для измерения сходства. В методе аналогичного дня предполагается, что тепловая нагрузка связана с кажущейся температурой (AT) для аналогичного дня (будние дни и выходные летом или зимой), что приведет к аналогичной тепловой нагрузке.Значение ED, основанное на записанных нормированных значениях AT (AT˜) в конкретный час (h) дня (d), рассчитывается для каждого исторического аналогичного дня (di) с использованием (3) [26]

ED (AT˜, d, di) = ∑h = 124 (AT˜h (d) −AT˜h (di)) 2

(3)

где ED (AT˜, d, di) — ED между днем ​​d и историческими днями di относительно значения AT˜. Дни с аналогичным графиком AT будут иметь очень маленькие значения ED, поэтому соответствующее значение тепловой нагрузки выбрано в качестве оценочного значения. Параметры AT могут быть получены из прогнозируемых метеорологических данных.

5. График работы ЭБ для обеспечения гибкости

Чтобы спланировать время работы ЭБ для зарядки резервуара для горячей воды, следует процедура оптимизации, описанная в (11) и (12). Целевая функция — минимизировать затраты на электроэнергию для производства горячей воды для удовлетворения спроса и потребностей в хранении. Ограничения рассчитывают энергию, хранящуюся в резервуаре для хранения, и не позволяют резервуару для хранения заряжаться больше, чем его допустимый максимальный и минимальный предел. Энергия, извлекаемая из сети, равна 0 (когда EB выключен) или равна номинальной мощности электронагревателя EB (Pb, когда EB включен).Энергия, извлекаемая из сети, должна быть способна заряжать хранилище, а также удовлетворять спрос. Несмотря на то, что есть возможности для управления мощностью ЭБ в несколько этапов, проблема здесь упрощается с помощью только включения и выключения, чтобы продемонстрировать гибкость в работе ЭБ в условиях динамического тарифа с помощью предполагаемого спроса. Кроме того, работа ЭБ в часы пик в вечернее время ограничена, чтобы свести к минимуму проблемы, связанные с перегрузкой сети и пониженным напряжением в низковольтной жилой сети Дании, из-за интеграции и работы электрических котлов (ЭБ) [6].Тепловая энергия, хранящаяся в резервуаре в конце дня, максимизируется, чтобы проиллюстрировать, что резервуар для хранения не только обеспечивает гибкость, удовлетворяя потребность в тепловой энергии во время высокой цены на электроэнергию и пикового спроса на электроэнергию, но также сохраняет энергию в течение периода низкая цена на электроэнергию в течение 24 часов по спотовой цене на рынке электроэнергии.

Minimize∑t = 124CtPg, т

(11)

Ограничения St + 1 = St − QDHW, t + Pg, tSmin≤St≤SmaxPg, t∈ [0, PbΔt] Pg, t = 0 для 17≤t≤20 (Smax − PbΔt) ≤St≤Smaxfort = 24

(12)

Здесь C = цена энергии [евро / МВтч].Pg = энергия, извлеченная из сети [МВтч]. S = энергия, которая может быть извлечена из хранилища [МВтч]. QDHW = тепловая нагрузка [МВтч]. Pb = номинальная мощность EB [2,4 МВт]. Индексы: t = время [ч], min = минимум, max = максимум, ini = начальное значение. Максимальная энергия, которая может храниться в резервуаре для горячей воды, определяется выражением (13)

Smax = MbCw (Ts-Tr) / (3600 × 106) [МВтч]

(13)

Здесь Mb = Масса воды в хранилище [2 × 105 кг]. Ts = температура подаваемой горячей воды в баке [80 ° C]. Tr = температура возвратной воды в баке [40 ° C].Cw = удельная теплоемкость воды [4190 Дж / кг · K]. Задача оптимизации была решена путем минимизации функции затрат с помощью оптимизации грубой силы в MATLAB. Все возможные кандидаты в решения генерируются, а затем проверяются на соответствие постановке задачи, как указано в (11) и (12). Для более чем одного решения выбирается решение с меньшим количеством операций включения / выключения EB. Решения были проверены с помощью «PuLP», моделлера линейного программирования, написанного на python.

Управление EB

Оптимизированный график работы EB определяется на основе предполагаемой тепловой нагрузки.С другой стороны, фактическая потребность в тепле будет в некоторой степени отличаться от расчетной стоимости. Это приводит к ошибке оценки. Если ошибка велика, это может привести к тому, что температура резервуара-хранилища будет отклоняться от указанного предела (T10≤75 ° C, когда хранилище заряжено, и T7≥46 ° C, чтобы ограничить разряд хранилища до 70% его емкости). Таким образом, чтобы компенсировать большую ошибку в расчетной потребности по отношению к фактическому значению, оптимизированный график работы EB усилен контроллерами пределов на основе управления гистерезисом, реализованным с помощью RS-триггера, для включения / выключения EB, как показано на рисунке 12.Это гарантирует, что температура горячей воды в накопительном баке находится в пределах указанного предела. На рисунке 12а показано, что при температуре нижнего слоя T10≥75 ° C EB необходимо выключить, как описано в разделе 4.1. Он отключается только на короткий период, пока температура седьмого слоя (T7) не станет ниже 78 ° C, чтобы он мог в дальнейшем следовать графику. Рисунок 12b гарантирует, что если T7 <46 ° C (накопитель разряжается более чем на 70% своей емкости), EB включается до тех пор, пока он не будет полностью заряжен (т.е.е., T10≥75 ° C). Помимо этих двух условий, ЭБ работает по установленному графику. Общая стратегия управления показана в таблице 3, где Ca - управляющий сигнал для включения и выключения EB, а Ca1 - сигнал запланированного включения / выключения EB.

7. Выводы

Этот документ показывает суть суточного использования тепловой энергии летом и зимой в жилом районе, а также факторы, влияющие на оценку потребности в тепле, такие как параметры поведения пользователя и параметры внешней среды.На основе этих факторов была реализована модель нейронной сети и аналогичный дневной метод оценки. Используя эту модель, можно получить оценку использования тепла для одной и той же области, но не для других областей. Так что уже имеющуюся модель вряд ли можно будет использовать для новых предметов. Тем не менее, выводы этой статьи об использовании входных параметров для определения потребности в тепле в конкретной области и ее влияния на характер использования были оправданы.

Результаты анализа данных о потреблении тепла (QDHW) позволяют сделать некоторые важные выводы о структуре энергопотребления в зависимости от времени и дня использования, отражая поведение пользователей без ущерба для конфиденциальности отдельных лиц.Эта ценная информация полезна для определения генерации тепловой нагрузки и потребности в хранении. Когда большие ТЭЦ заменяются небольшими тепловыми насосами или электрическими котлами и интегрируются в электросетевую сеть, это увеличивает потребность в электроэнергии с профилем, показанным на Рисунке 4. Таким образом, в непиковые часы, когда спрос на электроэнергию низкий, Теплоаккумулятор можно использовать для хранения излишков электроэнергии, вырабатываемой ветряными турбинами и другими возобновляемыми источниками энергии. Это хранилище тепловой энергии можно использовать в часы пик, снижая выбросы парниковых газов при производстве горячей воды.Кроме того, расчетное значение потребности в тепле помогает в определении диапазона требований к аккумулированию тепла для удовлетворения потребительского спроса, а также реакции спроса на использование модуля аккумулирования тепла в качестве гибкой потребительской нагрузки в многоэнергетической системе.

Как умный термостат подключается к котлу

Умные термостаты произвели революцию в том, как мы обогреваем наши дома. Суперзарядка вашего бойлера и предоставление вам полного контроля над отоплением и горячей водой, где бы вы ни находились.

В этой статье мы подробнее рассмотрим, как интеллектуальные термостаты и бойлеры работают вместе. Итак, если вам интересно, как подключить беспроводной термостат к вашему котлу или почему вы должны его использовать, вы попали в нужное место.


Как умные термостаты работают с котлами?

Умный термостат соединяет ваш бойлер со смартфоном через Интернет. Это означает, что вы можете устанавливать, настраивать и выключать обогрев, когда вы дома и когда вас нет.


Как умный термостат подключается к вашему котлу?

Большинство интеллектуальных термостатов состоят из трех частей: концентратора, приемника и интеллектуального термостата.

Концентратор подключается к широкополосному маршрутизатору, а приемник затем подключается к котлу. Это подключает ваш котел к Интернету, чтобы им можно было управлять удаленно, и позволяет ему общаться с вашим интеллектуальным термостатом.


Как подключить умный термостат к вашему котлу:

Каждый интеллектуальный термостат подключается по-своему.Мы всегда рекомендуем вызывать экспертов (здесь, в Hive, мы сотрудничаем с инженерами British Gas). Но если у вас есть опыт работы с электропроводкой, вот как подключить термостат Hive к вашему котлу:

  1. Подключите концентратор Hive к широкополосному маршрутизатору с помощью прилагаемого сетевого кабеля. Затем вставьте шнур питания в концентратор и вставьте его в розетку.

  2. Прежде чем продолжить, убедитесь, что подача электроэнергии в центральное отопление отключена.

  3. После этого установите приемник в удобном месте рядом с котлом, но на расстоянии не менее 30 см от крупных металлических предметов (во избежание помех радиосигналам).

  4. Завершите настройку термостата с помощью приложения Hive.


Может ли умный термостат работать с любым бойлером?

Умные термостаты обычно работают с большинством котлов. Но если вы найдете тот, который вам нравится, мы рекомендуем дважды проконсультироваться с производителем, прежде чем нажимать кнопку «Купить».

Hive Active Heating работает с большинством британских систем центрального отопления, работающих на газе и сжиженном нефтяном газе, а также с большинством жидкотопливных котлов. И если у вас есть отдельный резервуар для горячей воды, он тоже может это контролировать.

Электрокотлы немного другие. Если ваш котел работает со стандартным комнатным термостатом или программатором, то Hive может им управлять. Но он не работает с водонагревателями или индивидуальными электрическими обогревателями.


Почему вы должны использовать умный термостат для вашего котла?

С чего начать! Программируемый термостат, прикрепленный к стене в коридоре, отлично подойдет, если у вас одно и то же расписание на каждый день.Но, к счастью, жизнь не так предсказуема.

Что произойдет, если вы решите пойти выпить после работы? Или неожиданное солнечное заклинание. Все это время ваш котел радостно обогревает ваш дом.

С помощью интеллектуального термостата вы можете быстро настроить расписание с помощью смартфона.

И плюсов тоже куча побольше. Некоторые из них, например термостат Hive, оснащены функцией геолокации, которая отправит вам предупреждение, если вы выйдете на улицу, не отключив обогрев.И еще один, когда ты снова идешь домой. Так что вы всегда можете прийти домой в теплый дом, даже не обогревая пустой.

Многие умные термостаты также имеют функцию реагирования на погодные условия. Они будут следить за погодой и автоматически регулировать температуру термостата котла. Так что, если на улице внезапно наступит холод, температура внутри резко повысится, и вам даже не придется предпринимать никаких действий.

Подобные полезные функции — отличный способ облегчить повседневную жизнь.Узнайте больше о нашем удостоенном наград интеллектуальном термостате Hive Active Heating на нашем главном веб-сайте.

Оптимальное размещение и размер тепловых насосов и котлов, работающих только на тепло, в объединенных электрических и тепловых сетях

Основные характеристики

Вложенный PSO интегрируется с расширенной моделью потока нагрузки энергетического концентратора.

Учитываются рабочие параметры, потери и ограничения в обеих сетях.

До 41.2% потерь электроэнергии можно сэкономить.

Достигается экономия эксплуатационных расходов до 5%.

Наблюдаются лучший профиль напряжения и нагрузка линии передачи.

Abstract

Сообщается, что мультиэнергетические системы имеют лучшие экологические и экономические характеристики по сравнению с традиционными энергосистемами с одной несущей. Одним из таких примеров является электрификация сетей централизованного теплоснабжения с использованием тепловых насосов и комбинированных теплоэнергетических технологий.Однако из-за отсутствия подходящих инструментов моделирования определение размеров и оптимальное размещение тепловых насосов всегда выполняется только с точки зрения тепловых сетей, что иногда ставит под угрозу электрическую сеть. В этой статье предлагается интегрированный алгоритм оптимизации для преодоления такого ограничения. Модель потока нагрузки, основанная на расширенном подходе к концентратору энергии, сочетается с алгоритмом оптимизации роя вложенных частиц. В тематических исследованиях рассматриваются отходы для получения энергии из теплоэлектроцентрали, тепловых насосов (ТН), тепловых котлов (ТК), солнечных фотоэлектрических установок, ветряных турбин и импорта из соседних сетей.Результаты показывают, что оптимальное размещение и определение размеров ТК и ТК с использованием предложенной методологии позволяет избежать недопустимых профилей напряжения и перегрузки распределительной электросети, которые могут возникнуть при оптимизации только с точки зрения тепловых сетей. Он также показывает, что можно сэкономить до 41,2% потерь электроэнергии и 5% общих эксплуатационных расходов.

Ключевые слова

Расширенный энергетический узел

Объединенные электрические и тепловые сети

Тепловой насос

Энергетические сети с несколькими носителями

Мультиэнергетические системы

Оптимизация роя частиц (PSO)

Рекомендуемые статьи Цитирующие статьи (0)

© 2019 Авторы.Опубликовано Elsevier Ltd.

Рекомендуемые статьи

Ссылки на статьи

Можно ли установить таймер на мой электрический бойлер? — Энергид

Бойлеры обычно работают непрерывно, поэтому вода горячее и днем, и ночью. Используя таймер или систему программирования времени, встроенную в ваш прибор, вы решаете, когда следует нагреть воду ; например только ночью.

Бак котла хорошо изолирован и требует мало энергии, чтобы поддерживать воду горячей 24 часа в сутки.Тем не менее, программирование времени нагрева может сэкономить вам несколько кВтч, с тем недостатком, что вода имеет максимальную температуру только в определенное время дня.

Кому это принесет пользу?

Владельцы солнечных панелей

Вы получите наибольшую выгоду от эксплуатации котла в самое жаркое время дня, в середине дня.

Если вы не пользуетесь этой энергией («обратный счетчик»), электроэнергия, которую вы возвращаете в сеть в течение дня, будет стоить намного меньше, чем то, что вы получаете от нее вечером или ночью.Поэтому в ваших интересах сделать приоритетным использование собственного источника энергии.

Потребители с двойным счетчиком выиграют в меньшей степени

Если у вас сдвоенный счетчик, вы получите выгоду от нагрева воды по ночному тарифу. Однако, поскольку эти два тарифа не так различаются, как раньше, экономия невелика.

И не забывайте думать о собственном комфорте. Если вам нужно большое количество горячей воды в течение дня, объема воды, нагреваемой только ночью, может быть недостаточно.

Тщательно выбирайте таймер, чтобы избежать возгорания.

Котел часто потребляет много энергии: от 2000 до 3000 ватт (Вт) . Ваш таймер должен быть оборудован для этой цели, иначе существует опасность возгорания!

Как я могу рассчитать пропускную способность по току?

Проверьте упаковку таймера, чтобы узнать, выдержит ли он мощность вашего бойлера. Обычно это выражается как «пропускная способность по току», т.е.грамм. 10 ампер (А). Быстрый расчет подскажет, достаточно ли этого. Допустим, у вас есть бойлер мощностью 3000 Вт на 230 вольт (В).

мощность / напряжение котла = минимальное количество ампер, которое должен выдерживать ваш таймер.
3000 Вт / 230 В = 13 А.

В этом случае допустимая токовая нагрузка вашего таймера должна быть больше 13 А.

Как установить таймер?

Двухфазный котел: можно установить самому

Ваш котел снабжен заглушкой? Большой! У вас наверняка двухфазный котел.

Подключить к нему таймер так же просто, как пирог , с помощью устройства, которое подключается к обычной электрической розетке и имеет розетку для котла.

Трехфазный котел: вызов электрика

С другой стороны, трехфазный котел не имеет вилки, а подключается непосредственно к вашему распределительному щиту.

Подключение таймера к этому типу котла требует определенных технических навыков. Попросите электрика установить таймер на распределительном щите .

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *