Содержание
Температура теплоносителя в зависимости от наружной температуры
Температура воды в отопительной системе зависит от температуры воздуха на улице и поддерживается в ней по специальному температурному графику, который рассчитывается специалистами для разных источников теплоснабжения по разному, в зависимости от местных погодных условий.
Данные графики разрабатываются таким образом, чтобы в холодное время года в жилых помещениях поддерживалась комфортная для человека температура, приблизительно 20-22 0С.
Дорогие читатели! Наши статьи рассказывают о типовых способах решения юридических вопросов, но каждый случай носит уникальный характер.
Если вы хотите узнать, как решить именно Вашу проблему — обращайтесь в форму онлайн-консультанта справа. Это быстро и бесплатно! Или позвоните нам по телефонам:
+7 (499) 703-47-59
Москва, Московская область
+7 (812) 309-16-93
Санкт-Петербург, Ленинградская область
8 (800) 511-69-42
Федеральный номер (звонок бесплатный для всех регионов России)!
Температура теплоносителя в системе отопления: нормы
Как уже говорилось, график температур напрямую зависит от температуры воздуха снаружи. Соответственно, чем ниже температура воздуха, тем больше потерь тепла.
Возникает вопрос, какой показатель температуры нужно применять в расчете? Данный показатель уже выведен, и его можно найти в нормативных документах.
В его основе лежит средняя температура пяти самых холодных дней в году. При этом берется период 50 лет, и выбираются 8 самых холодных зим.
По какой причине именно так рассчитывается среднедневная температура?
В первую очередь, это дает возможность быть готовым к низким температурам в зимнее время года, которые бывают один раз за несколько лет.
Также, принимая во внимание этот показатель, можно значительно сэкономить на затратах при создании отопительных систем. Если рассматривать это в объемах массового строительства, то сумма, которую можно сэкономить, будет значительной.
Конечно же, температура отапливаемого помещения будет зависеть от того, какая температура у теплоносителя.
Существует еще несколько факторов, которые также влияют на температуру в помещениях:
- Чем ниже температура воздуха снаружи, тем она ниже и в помещении;
- Также на температуру влияет скорость ветра. Чем сильнее ветровые нагрузки, тем больше увеличиваются теплопотери через оконные рамы, входные двери;
- Насколько герметично заделаны стыки в стенах дома. Например, утепление фасадных стен дома или металлопластиковые окна — это те факторы, которые повлияют на температуру внутри помещения.
На сегодняшний день изменились строительные нормы. Строительные компании увеличивают стоимость своих объектов за счет теплоизоляционных работ, таких как утепление фасадной части дома, подвальных помещений, фундамента, крыши и кровли.
Затраты на утепление дома довольно велики, но это является гарантией того, что в дальнейшем вы будете экономить на отоплении, т. к. данные меры влияют на снижение затрат на покупку топлива.
Насколько это актуально на сегодняшний момент? Безусловно, именно по этой причине, строительные компании идут на увеличение стоимости постройки домов, зная, что меры по утеплению дома, со временем, окупятся с лихвой.
Температура радиаторов
Все о чем говорилось выше, безусловно, важно. Но главное, что влияет на температуру в помещениях – это температура радиаторных батарей. Как правило, температура в центральных системах отопления колеблется от 70 до 90 градусов.
Всем известно, что нужного температурного режима внутри помещения, лишь этим критерием, добиться невозможно, учитывая еще и то, что во всех комнатах температура должна быть разной, т. к. каждое помещение имеет свое предназначение:
- Если комната угловая, то температурный режим не должен опускаться ниже + 20 0С, а в других комнатах является нормой температура не ниже +18 0С, в душевой комнате не ниже +25 0С. Если температура на улице опустится до -300С или ниже, то все указанные выше показатели повысятся до +22 0С и 20 0С соответственно;
- В помещениях, предназначенных для детей – от +18 0С до +230С. Но и тут температурный режим зависит от того, для чего это помещение предназначено. В бассейнах – не ниже +300С, а на верандах для прогулки – не ниже +120С;
- В детских школах — не ниже 210С, а в спальнях интернатов – не ниже 160С;
- В культурно массовых заведениях температура колеблется от 160С до 210С. Для библиотек – до 180С.
Нормы температурных режимов утверждены для всех помещений в зависимости от того, какое у них предназначение. Выше указана лишь малая часть из огромного перечня.
На норму температурного режима в комнате влияет то, как интенсивно человек двигается внутри нее. Чем меньше движений совершает человек, тем температура в комнате должна быть выше.
На этом основывается распределение тепла. Как доказательство – в спортивных учреждениях, где человек находится в движении, поддерживать на высоком уровне температуру не целесообразно, по этой причине, температурный показатель там не выше +180С.
Факторы, влияющие на температуру батарей:
- Температура за пределами помещения;
- Вид отопительной системы. Для однотрубной системы, нормой температурного показателя является +1050С, а для двухтрубной +950С. Разница температур в системе подачи и отвода не должна быть выше 105-700С и 95-700С соответственно;
- Направленность поступления теплоносителя на радиаторные батареи. Если разводка сверху, тогда разница составляет 20С, а если разводка снизу, тогда 30С;
- Вид отопительного прибора. У радиаторов и конвекторов разная теплоотдача, а значит, отличается и температурный режим. У радиаторов теплоотдача выше, чем у конвекторов.
Но все равно, все понимают, что теплоотдача, будь то радиатор или конвектор, будет зависеть от температуры на улице.
Если на улице 0 0С, тогда температурный режим для радиаторов должен колебаться в приделах 40-45 0С при подаче и 35-380С при обратке. Что касается конвекторов, то температура при подаче – 41-490С, а при обратке 36-400С.
При морозе в -200С, эти данные для радиаторов будут составлять 67-770С и 53-550С соответственно, а для конвекторов– 68-790С/55-570С соответственно. А уже при 40 градусном морозе, что для конвекторов, что для радиаторов, это данные стандартны – 95-105 на подаче горячей воды и 700С на обработке.
Температурный график подачи теплоносителя в систему отопления
В зависимости от температуры на улице, рассчитываются значения температуры теплоносителя и имеют такие значения (данные показатели температуры округлены для удобства):
Температурные показатели воздуха снаружи, °С | Температурные показатели воды на входе, °С | Температурные показатели воды отопительной системе, °С | Температурные показатели воды после отопительной системы, °С | |||
8 | 52 | 51 | 45 | 42 | 40 | 34 |
7 | 55 | 51 | 47 | 44 | 41 | 35 |
6 | 57 | 53 | 49 | 45 | 43 | 36 |
5 | 59 | 55 | 50 | 47 | 44 | 37 |
4 | 61 | 57 | 52 | 48 | 45 | 38 |
3 | 64 | 59 | 54 | 50 | 47 | 39 |
2 | 66 | 61 | 56 | 51 | 48 | 40 |
1 | 69 | 63 | 57 | 53 | 50 | 41 |
0 | 71 | 65 | 59 | 55 | 51 | 42 |
-1 | 73 | 67 | 61 | 56 | 52 | 43 |
-2 | 76 | 69 | 62 | 58 | 54 | 44 |
-3 | 78 | 71 | 64 | 59 | 55 | 45 |
-4 | 80 | 73 | 66 | 61 | 56 | 45 |
-5 | 82 | 75 | 67 | 62 | 57 | 46 |
-6 | 85 | 77 | 69 | 64 | 59 | 47 |
-7 | 87 | 79 | 71 | 65 | 60 | 48 |
-8 | 89 | 80 | 72 | 66 | 61 | 49 |
-9 | 92 | 82 | 74 | 68 | 63 | 49 |
-10 | 94 | 86 | 75 | 69 | 64 | 50 |
-11 | 96 | 86 | 77 | 71 | 65 | 51 |
-12 | 98 | 88 | 79 | 72 | 66 | 52 |
-13 | 101 | 90 | 80 | 74 | 68 | 53 |
-14 | 103 | 92 | 82 | 75 | 69 | 54 |
-15 | 105 | 93 | 83 | 76 | 70 | 54 |
-16 | 107 | 95 | 85 | 78 | 71 | 55 |
-17 | 109 | 97 | 86 | 79 | 72 | 56 |
-18 | 112 | 99 | 88 | 81 | 74 | 56 |
-19 | 114 | 101 | 90 | 82 | 75 | 57 |
-20 | 116 | 102 | 91 | 83 | 76 | 58 |
-21 | 118 | 104 | 93 | 85 | 77 | 59 |
-22 | 120 | 106 | 94 | 88 | 78 | 59 |
-23 | 123 | 108 | 96 | 87 | 80 | 60 |
-24 | 125 | 109 | 97 | 89 | 81 | 61 |
-25 | 128 | 112 | 98 | 90 | 82 | 62 |
-26 | 128 | 112 | 99 | 91 | 83 | 62 |
-27 | 130 | 114 | 101 | 92 | 84 | 63 |
-28 | 134 | 116 | 103 | 94 | 86 | 64 |
-29 | 136 | 118 | 105 | 96 | 87 | 64 |
-30 | 138 | 120 | 106 | 97 | 88 | 67 |
-31 | 140 | 122 | 108 | 98 | 89 | 66 |
-32 | 142 | 123 | 109 | 100 | 93 | 66 |
-33 | 144 | 125 | 111 | 101 | 91 | 67 |
-34 | 146 | 127 | 112 | 102 | 92 | 68 |
-35 | 149 | 129 | 114 | 104 | 94 | 69 |
Используя табличные данные, можно с легкостью узнать температурные показатели воды в системе панельного отопления.
Для этого вам нужно замерить обычным градусником часть теплоносителя в момент спуска из системы. Данными в 5 и 6 столбцах пользуются для прямой ветки, а 7 столбцом – для обратки.
Стоит обратить внимание, что первые три столбца указывают температуру воды на вводе, то есть не учитываются потери в теплотрассах.
Основанием для перерасчета за услуги централизованного теплоснабжения является несоответствие фактической температуры теплоносителя нормативной.
Также можно еще установить прибор учета тепла, при условии, что все квартиры в доме подключены к системе централизованного отопления. Такие приборы учета необходимо проверять ежегодно.
Дорогие читатели! Наши статьи рассказывают о типовых способах решения юридических вопросов, но каждый случай носит уникальный характер.
Если вы хотите узнать, как решить именно Вашу проблему — обращайтесь в форму онлайн-консультанта справа. Это быстро и бесплатно! Или позвоните нам по телефонам:
+7 (499) 703-47-59
Москва, Московская область
+7 (812) 309-16-93
Санкт-Петербург, Ленинградская область
8 (800) 511-69-42
Федеральный номер (звонок бесплатный для всех регионов России)!
Температурный график системы отопления: нормы, таблицы, работа теплосетей
Для поддержания комфортной температуры в доме в отопительный период необходимо контролировать температуру теплоносителя в трубах тепловых сетей. Работниками системы центрального теплоснабжения жилых помещений разрабатывается специальный температурный график, который зависит от погодных показателей, климатических особенностей региона. Температурный график может отличаться в разных населенных пунктах, также он может меняться при модернизации сетей отопления.
Зависимость температуры теплоносителя от погоды
Составляется график в тепловой сети по простому принципу – чем ниже температура на улице, тем выше должна быть она у теплоносителя.
Такое соотношение является важным основанием для работы предприятий, которые обеспечивают город теплом.
Для расчета был применен показатель, в основе которого лежит среднедневная температура пяти наиболее холодных дней в году.
ВНИМАНИЕ! Соблюдение температурного режима является важным не только для поддержания тепла в многоквартирном доме. Он также позволяет сделать расход энергоресурсов в системе отопления экономичным, рациональным.
График, в котором указывается температура теплоносителя в зависимости от наружной температуры, позволяет самым оптимальным образом распределить между потребителями многоквартирного дома не только тепло, но и горячую воду.
Как регулируется тепло в системе отопления
Регулирование тепла в многоквартирном доме в отопительный период может осуществляться двумя методами:
- Изменением расхода воды определенной постоянной температуры. Это количественный метод.
- Изменением температуры теплоносителя при постоянном объеме расхода. Это качественный метод.
Экономным и практичным является второй вариант, при котором соблюдается режим температуры в помещении независимо от погоды. Подача достаточного тепла в многоквартирный дом будет стабильной, даже если отмечается резкий перепад температур на улице.
ВНИМАНИЕ!. Нормой считается температура 20-22 градуса в квартире. Если температурные графики соблюдаются, такая норма поддерживается весь отопительный период, независимо от погодных условий, направления ветра.
При понижении температурного показателя на улице осуществляется передача данных на котельную и автоматически увеличивается градус теплоносителя.
Конкретная таблица соотношения показателей температуры на улице и теплоносителя зависит от таких факторов, как климат, оборудования котельных, технико-экономических показателей.
Причины использования температурного графика
Основой работы каждой котельной, обслуживающей жилые, административные и другие здания, на протяжении отопительного периода является температурный график, в котором указываются нормативы показателей теплоносителя в зависимости от того, какой является фактическая наружная температура.
- Составление графика дает возможность подготовить отопление к понижению температуры на улице.
- Также это экономия энергоресурсов.
ВНИМАНИЕ! Для того, чтобы контролировать температуру теплоносителя и иметь право на перерасчет из-за несоблюдения теплового режима, теплодатчик должен быть установлен в систему централизованного отопления. Приборы учета должны проходить ежегодную проверку.
Современные строительные компании могут увеличивать стоимость жилья за счет использования дорогих энергосберегающих технологий при возведении многоквартирных зданий.
Несмотря на изменение строительных технологий, применение новых материалов для утепления стен и других поверхностей здания, соблюдение в системе отопления нормы температуры теплоносителя – оптимальный способ поддержать комфортные жилищные условия.
Особенности расчета внутренней температуры в разных помещениях
Правила предусматривают поддержание температуры для жилого помещения на уровне 18˚С, но существуют некоторые нюансы в этом вопросе.
- Для угловой комнаты жилого здания теплоноситель должен обеспечить температуру 20˚С.
- Оптимальный температурный показатель для ванной комнаты — 25˚С.
- Важно знать, сколько градусов должно быть по нормативам в помещениях, предназначенных для детей. Установлен показатель от 18˚С до 23˚С. Если же это детский бассейн, нужно поддерживать температуру на уровне 30˚С.
- Минимальная температура, допустимая в школах — 21˚С.
- В заведениях, где проходят культурно-массовые мероприятия по нормативам поддерживается максимальная температура 21˚С, но показатель не должен опускаться ниже цифры 16˚С.
Для увеличения температуры в помещениях при резких похолоданиях или сильном северном ветре, работники котельной повышают градус отпуска энергии для отопительных сетей.
На теплоотдачу батарей влияет наружная температура, вид отопительной системы, направленность поступления теплоносителя, состояние коммунальных сетей, тип отопительного прибора, роль которого может выполнять как радиатор, так и конвектор.
ВНИМАНИЕ! Дельта температур между подачей на радиатор и обраткой не должна быть значительной. В противном случае будет ощущаться большая разница теплоносителя в разных комнатах и даже квартирах многоэтажного здания.
Главным фактором, все же, является погода, вот почему измерения наружного воздуха для поддержания температурного графика является первоочередной задачей.
Если на улице мороз до 20˚С, теплоноситель в радиаторе должен иметь показатель 67-77˚С, при этом норма для обратки 70˚С.
Если уличная температура нулевая, норма для теплоносителя 40-45˚С, а для обратки – 35-38˚С. Стоит отметить, что разница температур между подачей и обраткой не является большой.
Для чего потребителю нужно знать нормы подачи теплоносителя?
Оплата коммунальных услуг в графе отопление должна зависеть от того, какую температуру в квартире обеспечивает поставщик.
Таблица температурного графика, по которой должна осуществляться оптимальная работа котла, показывает, при какой температуре окружающего мира и на сколько котельная должна повышать градус энергии для источников тепла в доме.
ВАЖНО! Если параметры температурного графика не соблюдаются, потребитель может требовать перерасчет за коммунальные услуги.
Чтобы измерить показатель теплоносителя, необходимо слить немного воды с радиатора и проверить ее градус тепла. Также успешно используются тепловые датчики, приборы учета тепла, которые можно установить дома.
Датчик является обязательным оборудованием и городских котельных, и ИТП (индивидуальных тепловых пунктов).
Без таких приборов невозможно сделать работу отопительной системы экономичной и продуктивной. Измерение теплоносителя осуществляется и в системах Гвс.
Полезное видео
В данном видео даны несколько рекомендаций по созданию комфортной температуры в квартире.
Отопительный график качественного регулирования отпуска тепла по среднесуточной температуре наружного воздуха
Просматривая статистику посещения нашего блога я заметил, что очень часто фигурируют такие поисковые фразы как, например, «какая должна быть температура теплоносителя при минус 5 на улице?». Решил выложить старый график качественного регулирования отпуска тепла по среднесуточной температуре наружного воздуха. Хочу предупредить тех, кто на основании этих цифр попытается выяснить отношения с ЖЭУ или тепловыми сетями: отопительные графики для каждого отдельного населенного пункта разные (я писал об этом в статье регулирование температуры теплоносителя). По данному графику работают тепловые сети в Уфе (Башкирия).
Так же хочу обратить внимание на то, что регулирование происходит по среднесуточной температуре наружного воздуха, так что, если, например, на улице ночью минус 15 градусов, а днем минус 5, то температура теплоносителя будет поддерживаться в соответствии с графиком по минус 10 оС.
Как правило, используются следующие температурные графики: 150/70, 130/70, 115/70, 105/70, 95/70. Выбирается график в зависимости от конкретных местных условий. Домовые системы отопления работают по графикам 105/70 и 95/70. По графикам 150, 130 и 115/70 работают магистральные тепловые сети.
Рассмотрим пример как пользоваться графиком. Предположим, на улице температура «минус 10 градусов». Тепловые сети работают по температурному графику 130/70, значит при -10 оС температура теплоносителя в подающем трубопроводе тепловой сети должна быть 85,6 градусов, в подающем трубопроводе системы отопления — 70,8 оС при графике 105/70 или 65,3 оС при графике 95/70. Температура воды после системы отопления должны быть 51,7 оС.
Как правило, значения температуры в подающем трубопроводе тепловых сетей при задании на теплоисточник округляются. Например, по графику должно быть 85,6 оС, а на ТЭЦ или котельной задается 87 градусов.
Температура наружного воздуха Тнв, оС | Температура сетевой воды в подающем трубопроводе Т1, оС | Температура воды в подающем трубопроводе системы отопления Т3, оС | Температура воды после системы отопления Т2, оС | |||
---|---|---|---|---|---|---|
150 | 130 | 115 | 105 | 95 | ||
8 | 53,2 | 50,2 | 46,4 | 43,4 | 41,2 | 35,8 |
7 | 55,7 | 52,3 | 48,2 | 45,0 | 42,7 | 36,8 |
6 | 58,1 | 54,4 | 50,0 | 46,6 | 44,1 | 37,7 |
5 | 60,5 | 56,5 | 51,8 | 48,2 | 45,5 | 38,7 |
4 | 62,9 | 58,5 | 53,5 | 49,8 | 46,9 | 39,6 |
3 | 65,3 | 60,5 | 55,3 | 51,4 | 48,3 | 40,6 |
2 | 67,7 | 62,6 | 57,0 | 52,9 | 49,7 | 41,5 |
1 | 70,0 | 64,5 | 58,8 | 54,5 | 51,0 | 42,4 |
0 | 72,4 | 66,5 | 60,5 | 56,0 | 52,4 | 43,3 |
-1 | 74,7 | 68,5 | 62,2 | 57,5 | 53,7 | 44,2 |
-2 | 77,0 | 70,4 | 63,8 | 59,0 | 55,0 | 45,0 |
-3 | 79,3 | 72,4 | 65,5 | 60,5 | 56,3 | 45,9 |
-4 | 81,6 | 74,3 | 67,2 | 62,0 | 57,6 | 46,7 |
-5 | 83,9 | 76,2 | 68,8 | 63,5 | 58,9 | 47,6 |
-6 | 86,2 | 78,1 | 70,4 | 65,0 | 60,2 | 48,4 |
-7 | 88,5 | 80,0 | 72,1 | 66,4 | 61,5 | 49,2 |
-8 | 90,8 | 81,9 | 73,7 | 67,9 | 62,8 | 50,1 |
-9 | 93,0 | 83,8 | 75,3 | 69,3 | 64,0 | 50,9 |
-10 | 95,3 | 85,6 | 76,9 | 70,8 | 65,3 | 51,7 |
-11 | 97,6 | 87,5 | 78,5 | 72,2 | 66,6 | 52,5 |
-12 | 99,8 | 89,3 | 80,1 | 73,6 | 67,8 | 53,3 |
-13 | 102,0 | 91,2 | 81,7 | 75,0 | 69,0 | 54,0 |
-14 | 104,3 | 93,0 | 83,3 | 76,4 | 70,3 | 54,8 |
-15 | 106,5 | 94,8 | 84,8 | 77,9 | 71,5 | 55,6 |
-16 | 108,7 | 96,6 | 86,4 | 79,3 | 72,7 | 56,3 |
-17 | 110,9 | 98,4 | 87,9 | 80,7 | 73,9 | 57,1 |
-18 | 113,1 | 100,2 | 89,5 | 82,0 | 75,1 | 57,9 |
-19 | 115,3 | 102,0 | 91,0 | 83,4 | 76,3 | 58,6 |
-20 | 117,5 | 103,8 | 92,6 | 84,8 | 77,5 | 59,4 |
-21 | 119,7 | 105,6 | 94,1 | 86,2 | 78,7 | 60,1 |
-22 | 121,9 | 107,4 | 95,6 | 87,6 | 79,9 | 60,8 |
-23 | 124,1 | 109,2 | 97,1 | 88,9 | 81,1 | 61,6 |
-24 | 126,3 | 110,9 | 98,6 | 90,3 | 82,3 | 62,3 |
-25 | 128,5 | 112,7 | 100,2 | 91,6 | 83,5 | 63,0 |
-26 | 130,6 | 114,4 | 101,7 | 93,0 | 84,6 | 63,7 |
-27 | 132,8 | 116,2 | 103,2 | 94,3 | 85,8 | 64,4 |
-28 | 135,0 | 117,9 | 104,7 | 95,7 | 87,0 | 65,1 |
-29 | 137,1 | 119,7 | 106,1 | 97,0 | 88,1 | 65,8 |
-30 | 139,3 | 121,4 | 107,6 | 98,4 | 89,3 | 66,5 |
-31 | 141,4 | 123,1 | 109,1 | 99,7 | 90,4 | 67,2 |
-32 | 143,6 | 124,9 | 110,6 | 101,0 | 94,6 | 67,9 |
-33 | 145,7 | 126,6 | 112,1 | 102,4 | 92,7 | 68,6 |
-34 | 147,9 | 128,3 | 113,5 | 103,7 | 93,9 | 69,3 |
-35 | 150,0 | 130,0 | 115,0 | 105,0 | 95,0 | 70,0 |
Прошу не ориентироваться на диаграмму в начале поста — она не соответствует данным из таблицы.
Расчет температурного графика
Методика расчета температурного графика описана в справочнике «Наладка и эксплуатация водяных тепловых сетей» (Глава 4, п. 4.4, с. 153,).
Это довольно трудоемкий и долгий процесс, так как для каждой температуры наружного воздуха нужно считать несколько значений: Т1, Т3, Т2 и т. д.
К нашей радости у нас есть компьютер и табличный процессор MS Excel. Коллега по работе поделился со мной готовой таблицей для расчета температурного графика. Её в свое время сделала его жена, которая трудилась инженером группы режимов в тепловых сетях.
Таблица расчета температурного графика в MS Excel
Для того, чтобы Excel расчитал и построил график достаточно ввести несколько исходных значений:
- расчетная температура в подающем трубопроводе тепловой сети Т1
- расчетная температура в обратном трубопроводе тепловой сети Т2
- расчетная температура в подающем трубопроводе системы отопления Т3
- Температура наружного воздуха Тн. в.
- Температура внутри помещения Тв.п.
- коэффициент «n» (он, как правило, не изменен и равен 0,25)
- Минимальный и максимальный срез температурного графика Срез min, Срез max.
Ввод исходных данных в таблицу расчета температурного графика
Все. больше ничего от вас не требуется. Результаты вычислений будут в первой таблице листа. Она выделена жирной рамкой.
Диаграммы также перестроятся под новые значения.
Графическое изображение температурного графика
Также таблица считает температуру прямой сетевой воды с учетом скорости ветра.
Скачать расчет температурного графика
Поделись с друзьями
Похожее
Зависимость температуры теплоносителя от наружной температуры воздуха
Зависимость температуры теплоносителя от наружной температуры воздуха
Температура воды в отопительной системе зависит от температуры воздуха на улице и поддерживается в ней по специальному температурному графику, который рассчитывается специалистами для разных источников теплоснабжения по разному, в зависимости от местных погодных условий.
Данные графики разрабатываются таким образом, чтобы в холодное время года в жилых помещениях поддерживалась комфортная для человека температура, приблизительно 20-22 0 С.
Если вы хотите узнать, как решить именно Вашу проблему — обращайтесь в форму онлайн-консультанта справа. Это быстро и бесплатно ! Или позвоните нам по телефонам:
+7 (499) 703-47-59
Москва, Московская область
+7 (812) 309-16-93
Санкт-Петербург, Ленинградская область
8 (800) 511-69-42
Федеральный номер ( звонок бесплатный для всех регионов России )!
Температура теплоносителя в системе отопления: нормы
Как уже говорилось, график температур напрямую зависит от температуры воздуха снаружи. Соответственно, чем ниже температура воздуха, тем больше потерь тепла.
Возникает вопрос, какой показатель температуры нужно применять в расчете? Данный показатель уже выведен, и его можно найти в нормативных документах.
В его основе лежит средняя температура пяти самых холодных дней в году. При этом берется период 50 лет, и выбираются 8 самых холодных зим.
По какой причине именно так рассчитывается среднедневная температура?
В первую очередь, это дает возможность быть готовым к низким температурам в зимнее время года, которые бывают один раз за несколько лет.
Также, принимая во внимание этот показатель, можно значительно сэкономить на затратах при создании отопительных систем. Если рассматривать это в объемах массового строительства, то сумма, которую можно сэкономить, будет значительной.
Конечно же, температура отапливаемого помещения будет зависеть от того, какая температура у теплоносителя.
Какая температура должна быть в квартире в отопительный сезон?
О норме температуры батарей в квартире читайте тут.
Существует еще несколько факторов, которые также влияют на температуру в помещениях:
- Чем ниже температура воздуха снаружи, тем она ниже и в помещении;
- Также на температуру влияет скорость ветра. Чем сильнее ветровые нагрузки, тем больше увеличиваются теплопотери через оконные рамы, входные двери;
- Насколько герметично заделаны стыки в стенах дома. Например, утепление фасадных стен дома или металлопластиковые окна — это те факторы, которые повлияют на температуру внутри помещения.
На сегодняшний день изменились строительные нормы. Строительные компании увеличивают стоимость своих объектов за счет теплоизоляционных работ, таких как утепление фасадной части дома, подвальных помещений, фундамента, крыши и кровли.
Затраты на утепление дома довольно велики, но это является гарантией того, что в дальнейшем вы будете экономить на отоплении, т. к. данные меры влияют на снижение затрат на покупку топлива.
Насколько это актуально на сегодняшний момент? Безусловно, именно по этой причине, строительные компании идут на увеличение стоимости постройки домов, зная, что меры по утеплению дома, со временем, окупятся с лихвой.
Температура радиаторов
Все о чем говорилось выше, безусловно, важно. Но главное, что влияет на температуру в помещениях – это температура радиаторных батарей. Как правило, температура в центральных системах отопления колеблется от 70 до 90 градусов.
Всем известно, что нужного температурного режима внутри помещения, лишь этим критерием, добиться невозможно, учитывая еще и то, что во всех комнатах температура должна быть разной, т. к. каждое помещение имеет свое предназначение:
- Если комната угловая, то температурный режим не должен опускаться ниже + 20 0 С, а в других комнатах является нормой температура не ниже +18 0 С, в душевой комнате не ниже +25 0 С. Если температура на улице опустится до -30 0 С или ниже, то все указанные выше показатели повысятся до +22 0 С и 20 0 С соответственно;
- В помещениях, предназначенных для детей – от +18 0 С до +23 0 С. Но и тут температурный режим зависит от того, для чего это помещение предназначено. В бассейнах – не ниже +30 0 С, а на верандах для прогулки – не ниже +12 0 С;
- В детских школах — не ниже 21 0 С, а в спальнях интернатов – не ниже 16 0 С;
- В культурно массовых заведениях температура колеблется от 16 0 С до 21 0 С. Для библиотек – до 18 0 С.
Нормы температурных режимов утверждены для всех помещений в зависимости от того, какое у них предназначение. Выше указана лишь малая часть из огромного перечня.
На норму температурного режима в комнате влияет то, как интенсивно человек двигается внутри нее. Чем меньше движений совершает человек, тем температура в комнате должна быть выше.
На этом основывается распределение тепла. Как доказательство – в спортивных учреждениях, где человек находится в движении, поддерживать на высоком уровне температуру не целесообразно, по этой причине, температурный показатель там не выше +18 0 С.
Факторы, влияющие на температуру батарей:
- Температура за пределами помещения;
- Вид отопительной системы. Для однотрубной системы, нормой температурного показателя является +105 0 С, а для двухтрубной +95 0 С. Разница температур в системе подачи и отвода не должна быть выше 105-70 0 С и 95-70 0 С соответственно;
- Направленность поступления теплоносителя на радиаторные батареи. Если разводка сверху, тогда разница составляет 2 0 С, а если разводка снизу, тогда 3 0 С;
- Вид отопительного прибора. У радиаторов и конвекторов разная теплоотдача, а значит, отличается и температурный режим. У радиаторов теплоотдача выше, чем у конвекторов.
Но все равно, все понимают, что теплоотдача, будь то радиатор или конвектор, будет зависеть от температуры на улице.
Если на улице 0 0 С, тогда температурный режим для радиаторов должен колебаться в приделах 40-45 0 С при подаче и 35-38 0 С при обратке. Что касается конвекторов, то температура при подаче – 41-49 0 С, а при обратке 36-40 0 С.
При морозе в -20 0 С, эти данные для радиаторов будут составлять 67-77 0 С и 53-55 0 С соответственно, а для конвекторов– 68-79 0 С/55-57 0 С соответственно. А уже при 40 градусном морозе, что для конвекторов, что для радиаторов, это данные стандартны – 95-105 на подаче горячей воды и 70 0 С на обработке.
Температурный график подачи теплоносителя в систему отопления
В зависимости от температуры на улице, рассчитываются значения температуры теплоносителя и имеют такие значения (данные показатели температуры округлены для удобства):
Температурные показатели воздуха снаружи, °С | Температурные показатели воды на входе, °С | Температурные показатели воды отопительной системе, °С | Температурные показатели воды после отопительной системы, °С | |||
8 | 52 | 51 | 45 | 42 | 40 | 34 |
7 | 55 | 51 | 47 | 44 | 41 | 35 |
6 | 57 | 53 | 49 | 45 | 43 | 36 |
5 | 59 | 55 | 50 | 47 | 44 | 37 |
4 | 61 | 57 | 52 | 48 | 45 | 38 |
3 | 64 | 59 | 54 | 50 | 47 | 39 |
2 | 66 | 61 | 56 | 51 | 48 | 40 |
1 | 69 | 63 | 57 | 53 | 50 | 41 |
0 | 71 | 65 | 59 | 55 | 51 | 42 |
-1 | 73 | 67 | 61 | 56 | 52 | 43 |
-2 | 76 | 69 | 62 | 58 | 54 | 44 |
-3 | 78 | 71 | 64 | 59 | 55 | 45 |
-4 | 80 | 73 | 66 | 61 | 56 | 45 |
-5 | 82 | 75 | 67 | 62 | 57 | 46 |
-6 | 85 | 77 | 69 | 64 | 59 | 47 |
-7 | 87 | 79 | 71 | 65 | 60 | 48 |
-8 | 89 | 80 | 72 | 66 | 61 | 49 |
-9 | 92 | 82 | 74 | 68 | 63 | 49 |
-10 | 94 | 86 | 75 | 69 | 64 | 50 |
-11 | 96 | 86 | 77 | 71 | 65 | 51 |
-12 | 98 | 88 | 79 | 72 | 66 | 52 |
-13 | 101 | 90 | 80 | 74 | 68 | 53 |
-14 | 103 | 92 | 82 | 75 | 69 | 54 |
-15 | 105 | 93 | 83 | 76 | 70 | 54 |
-16 | 107 | 95 | 85 | 78 | 71 | 55 |
-17 | 109 | 97 | 86 | 79 | 72 | 56 |
-18 | 112 | 99 | 88 | 81 | 74 | 56 |
-19 | 114 | 101 | 90 | 82 | 75 | 57 |
-20 | 116 | 102 | 91 | 83 | 76 | 58 |
-21 | 118 | 104 | 93 | 85 | 77 | 59 |
-22 | 120 | 106 | 94 | 88 | 78 | 59 |
-23 | 123 | 108 | 96 | 87 | 80 | 60 |
-24 | 125 | 109 | 97 | 89 | 81 | 61 |
-25 | 128 | 112 | 98 | 90 | 82 | 62 |
-26 | 128 | 112 | 99 | 91 | 83 | 62 |
-27 | 130 | 114 | 101 | 92 | 84 | 63 |
-28 | 134 | 116 | 103 | 94 | 86 | 64 |
-29 | 136 | 118 | 105 | 96 | 87 | 64 |
-30 | 138 | 120 | 106 | 97 | 88 | 67 |
-31 | 140 | 122 | 108 | 98 | 89 | 66 |
-32 | 142 | 123 | 109 | 100 | 93 | 66 |
-33 | 144 | 125 | 111 | 101 | 91 | 67 |
-34 | 146 | 127 | 112 | 102 | 92 | 68 |
-35 | 149 | 129 | 114 | 104 | 94 | 69 |
Используя табличные данные, можно с легкостью узнать температурные показатели воды в системе панельного отопления.
Для этого вам нужно замерить обычным градусником часть теплоносителя в момент спуска из системы. Данными в 5 и 6 столбцах пользуются для прямой ветки, а 7 столбцом – для обратки.
Стоит обратить внимание, что первые три столбца указывают температуру воды на вводе, то есть не учитываются потери в теплотрассах.
Основанием для перерасчета за услуги централизованного теплоснабжения является несоответствие фактической температуры теплоносителя нормативной.
Также можно еще установить прибор учета тепла, при условии, что все квартиры в доме подключены к системе централизованного отопления. Такие приборы учета необходимо проверять ежегодно.
Если вы хотите узнать, как решить именно Вашу проблему — обращайтесь в форму онлайн-консультанта справа. Это быстро и бесплатно ! Или позвоните нам по телефонам:
+7 (499) 703-47-59
Москва, Московская область
+7 (812) 309-16-93
Санкт-Петербург, Ленинградская область
8 (800) 511-69-42
Федеральный номер ( звонок бесплатный для всех регионов России )!
Температура теплоносителя в зависимости от наружной температуры
Для поддержания комфортной температуры в доме в отопительный период необходимо контролировать температуру теплоносителя в трубах тепловых сетей. Работниками системы центрального теплоснабжения жилых помещений разрабатывается специальный температурный график, который зависит от погодных показателей, климатических особенностей региона. Температурный график может отличаться в разных населенных пунктах, также он может меняться при модернизации сетей отопления.
Зависимость температуры теплоносителя от погоды
Составляется график в тепловой сети по простому принципу – чем ниже температура на улице, тем выше должна быть она у теплоносителя.
Такое соотношение является важным основанием для работы предприятий, которые обеспечивают город теплом.
Для расчета был применен показатель, в основе которого лежит среднедневная температура пяти наиболее холодных дней в году.
ВНИМАНИЕ! Соблюдение температурного режима является важным не только для поддержания тепла в многоквартирном доме. Он также позволяет сделать расход энергоресурсов в системе отопления экономичным, рациональным.
График, в котором указывается температура теплоносителя в зависимости от наружной температуры, позволяет самым оптимальным образом распределить между потребителями многоквартирного дома не только тепло, но и горячую воду.
Как регулируется тепло в системе отопления
Регулирование тепла в многоквартирном доме в отопительный период может осуществляться двумя методами:
- Изменением расхода воды определенной постоянной температуры. Это количественный метод.
- Изменением температуры теплоносителя при постоянном объеме расхода. Это качественный метод.
Экономным и практичным является второй вариант, при котором соблюдается режим температуры в помещении независимо от погоды. Подача достаточного тепла в многоквартирный дом будет стабильной, даже если отмечается резкий перепад температур на улице.
ВНИМАНИЕ!. Нормой считается температура 20-22 градуса в квартире. Если температурные графики соблюдаются, такая норма поддерживается весь отопительный период, независимо от погодных условий, направления ветра.
При понижении температурного показателя на улице осуществляется передача данных на котельную и автоматически увеличивается градус теплоносителя.
Конкретная таблица соотношения показателей температуры на улице и теплоносителя зависит от таких факторов, как климат, оборудования котельных, технико-экономических показателей.
Причины использования температурного графика
Основой работы каждой котельной, обслуживающей жилые, административные и другие здания, на протяжении отопительного периода является температурный график, в котором указываются нормативы показателей теплоносителя в зависимости от того, какой является фактическая наружная температура.
- Составление графика дает возможность подготовить отопление к понижению температуры на улице.
- Также это экономия энергоресурсов.
ВНИМАНИЕ! Для того, чтобы контролировать температуру теплоносителя и иметь право на перерасчет из-за несоблюдения теплового режима, теплодатчик должен быть установлен в систему централизованного отопления. Приборы учета должны проходить ежегодную проверку.
Современные строительные компании могут увеличивать стоимость жилья за счет использования дорогих энергосберегающих технологий при возведении многоквартирных зданий.
Несмотря на изменение строительных технологий, применение новых материалов для утепления стен и других поверхностей здания, соблюдение в системе отопления нормы температуры теплоносителя – оптимальный способ поддержать комфортные жилищные условия.
Особенности расчета внутренней температуры в разных помещениях
Правила предусматривают поддержание температуры для жилого помещения на уровне 18˚С, но существуют некоторые нюансы в этом вопросе.
- Для угловой комнаты жилого здания теплоноситель должен обеспечить температуру 20˚С.
- Оптимальный температурный показатель для ванной комнаты —, 25˚С.
- Важно знать, сколько градусов должно быть по нормативам в помещениях, предназначенных для детей. Установлен показатель от 18˚С до 23˚С. Если же это детский бассейн, нужно поддерживать температуру на уровне 30˚С.
- Минимальная температура, допустимая в школах —, 21˚С.
- В заведениях, где проходят культурно-массовые мероприятия по нормативам поддерживается максимальная температура 21˚С, но показатель не должен опускаться ниже цифры 16˚С.
Для увеличения температуры в помещениях при резких похолоданиях или сильном северном ветре, работники котельной повышают градус отпуска энергии для отопительных сетей.
На теплоотдачу батарей влияет наружная температура, вид отопительной системы, направленность поступления теплоносителя, состояние коммунальных сетей, тип отопительного прибора, роль которого может выполнять как радиатор, так и конвектор.
ВНИМАНИЕ! Дельта температур между подачей на радиатор и обраткой не должна быть значительной. В противном случае будет ощущаться большая разница теплоносителя в разных комнатах и даже квартирах многоэтажного здания.
Главным фактором, все же, является погода, вот почему измерения наружного воздуха для поддержания температурного графика является первоочередной задачей.
Если на улице мороз до 20˚С, теплоноситель в радиаторе должен иметь показатель 67-77˚С, при этом норма для обратки 70˚С.
Если уличная температура нулевая, норма для теплоносителя 40-45˚С, а для обратки – 35-38˚С. Стоит отметить, что разница температур между подачей и обраткой не является большой.
Для чего потребителю нужно знать нормы подачи теплоносителя?
Оплата коммунальных услуг в графе отопление должна зависеть от того, какую температуру в квартире обеспечивает поставщик.
Таблица температурного графика, по которой должна осуществляться оптимальная работа котла, показывает, при какой температуре окружающего мира и на сколько котельная должна повышать градус энергии для источников тепла в доме.
ВАЖНО! Если параметры температурного графика не соблюдаются, потребитель может требовать перерасчет за коммунальные услуги.
Чтобы измерить показатель теплоносителя, необходимо слить немного воды с радиатора и проверить ее градус тепла. Также успешно используются тепловые датчики, приборы учета тепла, которые можно установить дома.
Датчик является обязательным оборудованием и городских котельных, и ИТП (индивидуальных тепловых пунктов).
Без таких приборов невозможно сделать работу отопительной системы экономичной и продуктивной. Измерение теплоносителя осуществляется и в системах Гвс.
Полезное видео
В данном видео даны несколько рекомендаций по созданию комфортной температуры в квартире.
Особенности температурного графика подачи теплоносителя в систему отопления в 2020 году
В Российской Федерации, а особенно в ее холодных регионах, отопление необходимо по меньшей мере на протяжении полугода.
А нагрев батарей, и следовательно, тепло в доме зависит от температурного графика подачи теплоносителя в отопительную систему.
Дорогие читатели! Статья рассказывает о типовых способах решения юридических вопросов, но каждый случай индивидуален. Если вы хотите узнать, как решить именно Вашу проблему – обращайтесь к консультанту:
+7 (812) 317-50-97 (Санкт-Петербург)
ЗАЯВКИ И ЗВОНКИ ПРИНИМАЮТСЯ КРУГЛОСУТОЧНО и БЕЗ ВЫХОДНЫХ ДНЕЙ.
Это быстро и БЕСПЛАТНО!
Как правило, градусы воды зависят от погодных условий на улице, и на этом основывается вся работа коммунальных организаций.
Существуют и санитарные нормы, согласно которым, климату на улице соответствуют определенные показатели подачи теплоносителя, это стоит учитывать, поскольку при несоответствующих показателях можно подать заявление на перерасчет.
Причины его использования
Чем ниже температура на улице, тем быстрее помещения избавляются от тепла, и чтобы скомпенсировать теплопотери, коммунальщики подают воду с большим нагревом.
Имеет значение нормативный показатель, согласно которому составляется график, он устанавливается на среднем показателе термометра за 5 самых холодных дней года. А вычисления проводится на основании 8-ми самых холодных зим за последние 50 лет .
Установление графика позволяет коммунальным службам не только приготовиться к самым большим морозам, но и минимизировать выход из строя систем снабжения теплом.
Только максимально рассчитанная нагрузка позволит подготовить трубопроводы и запорную арматуру, а также сэкономить на коммуникации.
Поскольку мощность отопления повышается с повышением градусов теплоносителя, можно сказать, что также влияние на комфорт жизни оказывает климат на улице, показатели ветра, а также теплоизоляция МКД.
Также важно учитывать трубы, которые применяются при подаче тепла в жилище граждан, ведь однотрубные системы теряют тепло наиболее сильно, а двухтрубная система дает большую теплоотдачу.
Поэтому в первом случае нужно разогревать воду сильнее, а во втором — можно ограничиться 95 градусами.
Для того, чтобы вода не кипела в трубах, она подается под давлением, и это дает запас тепла, но изношенность труб не позволяет этого обеспечивать, и не все жилища соответствуют уровню комфорта.
Также важно направление подачи воды в батареи, и тип приборов, ведь параметры радиатора и конвектора отличаются по теплоотдаче в пользу первых приборов.
Требования к работе систем отопления по СНиПу
Есть санитарные нормы 41-01-2003, в которых оговариваются требования к работе отопительных систем, причем большое внимание уделяется безопасности в отопительный период.
В этом случае особо опасен теплоноситель, ведь в случае прорыва из батарей хлынет кипяток, поэтому температура ограничивается 95 градусами.
Но в случае высокого нагревания требы либо кладутся в специальные шахты, в которых при прорыве вода останется, либо же трубы оснащены специальными устройствами, которые препятствуют вскипанию воды.
Полимерные трубы налагают свои нюансы, и греться они не должны больше 90 градусов. Поверхность отопительных приборов не должна быть горячее 90 градусов, и если превышение есть, то начинаются отрицательные проявления.
Прежде всего, выгорает краска на батареях и пыль в воздухе, что приводит к образованию вредных веществ, и конечно, страдает внешность радиаторов.
Поскольку ограничения были созданы для безопасности, то СНИП также заставляет ответственных лиц ограждать приборы, нагревшиеся более 75 градусов, с помощью решеток.
В лечебных учреждениях СНиП позволяет устанавливать минимальный показатель нагрева батарей на уровне 85 гр., а максимально горячую воду возможно подавать на следующие объекты:
- вестибюли;
- отапливаемые пешеходные дорожки;
- лестничные площадки;
- технические помещения;
- здания производственного назначения, при условии, что в них нет легковоспламеняющихся веществ и большого количества пыли.
Температурный график подачи теплоносителя в систему отопления применяется только в соответствующий период, то есть холодное время года, а в теплое время регулируется только вентиляция и кондиционирование помещений.
Но в любом случае отопительный график должен обеспечивать комфортный для жизни климат в жилище, а это 20-22 градуса со знаком плюс.
Как выглядит данный график
Чтобы отследить зависимость внешней температуры от показателей теплоносителя, следует ознакомиться со специальной таблицей, действующей и в 2020 году.
Чем ниже столбик термометра на улице, тем больше показатели на входе, и они снижаются не только после поступления в отопительную систему, но и в приборы, находящиеся в пространстве жилого помещения города Москва и любого другого населенного пункта.
Температура на улице, градусы | Показатели воды на входе в здание | Характеристики в системе отопления, минимум | Нагрев теплоносителя после прохождения системы |
8 | 45-52 | 40 | 34 |
7 | 47-55 | 41 | 35 |
6 | 49-57 | 43 | 36 |
5 | 50-59 | 44 | 37 |
4 | 52-61 | 45 | 38 |
3 | 54-64 | 47 | 39 |
2 | 56-66 | 48 | 40 |
1 | 57-69 | 50 | 41 |
0 | 59-71 | 51 | 42 |
-1 | 61-73 | 52 | 43 |
-2 | 62-76 | 54 | 44 |
-3 | 64-78 | 55 | 45 |
-4 | 66-80 | 56 | 45 |
-5 | 67-82 | 57 | 46 |
-6 | 69-85 | 59 | 47 |
-7 | 71-87 | 60 | 48 |
-8 | 72-89 | 61 | 49 |
-9 | 74-92 | 63 | 49 |
-10 | 75-94 | 64 | 50 |
-15 | 83-105 | 70 | 54 |
-20 | 91-116 | 76 | 58 |
-25 | 98-128 | 82 | 62 |
-30 | 106-138 | 88 | 67 |
-35 | 114-149 | 94 | 69 |
Коммунальщики СПб проводят контрольные замеры, чтобы выявить соответствие нормам, но есть нюансы, связанные с трубами для горячего теплоносителя и обраткой.
Цифры на входе указываются без потерь тепла, которые наличествуют при транспортировке горячей воды.
При этом график нужен не только поставщикам, но и потребителям, которые при недостаточных показателях, не соответствующих норме, могут потребовать перерасчета.
В жалобе следует указать, какая температура наружного воздуха сохраняется в помещении, и на этом основании подается обращение.
На основании этого контролеры проводят исследования теплоносителя, и если он не соответствует разработанному графику, то организация выплатит компенсацию и будет обязана наладить нормальное снабжение потребителя.
Расчет внутренней температуры в разных помещениях дома
Чтобы нахождение дома было для человека комфортным, нужно иметь в виду существующие санитарные нормы касательно воздуха в разных комнатах.
Они зависят от времени суток и не могут опускаться ниже таких показателей:
В угловых комнатах днем | Ниже 20-ти градусов |
Центральные комнаты днем | Менее 18-ти градусов |
Угловые комнаты в ночное время | Меньше, чем 17 градусов тепла |
Центральные комнаты в ночной период | Менее 15-ти градусов |
Если необходимо рассчитать теплопотери помещений, то следует понимать, что формула очень сложная, и при этом используется только специалистами для определения нужной теплоты подачи.
Но для комфортной жизни необходимо, чтобы в разных помещениях не было резкого перепада тепла и холода, а перемещение по жилым комнатам было максимально удобным.
Так, в помещениях для детей необходимо выдержать 18-23 градуса со знаком “плюс”, в детских учебных учреждениях действует режим, согласно которому нужно соблюдать 21 градус тепла .
Чтобы в ванной не было ощущения сырости, следует установить там 25 градусов тепла, поскольку при высокой влажности и прохладе будет чувствоваться влага, а также возникнет грибок.
Чем больше люди двигаются в помещении, тем меньше должны быть значения термометра, и если речь о спортивном учреждении, то там оптимально будет установить режим в +18 гр.
Теплоснабжение потребителей производится несколькими организациями, за тем, что вода дошла в отопительную систему, следит персонал котельной, а трубы и их состояние контролируется теплосетями населенного пункта.
Элеватор, который находится в подвале и приводит воду в оптимальное состояние путем смешивания, обслуживается ЖЭКом, поэтому для решения разных проблем необходимо направлять обращения в разные учреждения.
Видео: расширительный бак закрытого типа
Способы регулировки
Если параметры поступающей воды приходят в несоответствующее состояние по пути к дому, это проблема, которую решает котельная, но движение теплоносителя, а соответственно и климат в жилых помещениях — это сфера ответственности управляющих компаний.
И если у жильцов в домах холодно, причиной этому является несоблюдение графика. Но отрегулировать показатели отопления можно несколькими методами.
Это делается путем рассверливания детали, на время чего приостанавливается подача тепла в дом. Также есть метод глушения подсоса, когда сопло снимается, и подсос глушится миллиметровым стальным блином.
В результате вода в трубах будет подаваться при 130 градусах, но применяется метод только в экстренных ситуациях.
Посреди отопительного сезона показатель может намного повыситься, поэтому ее регулируют использованием специальной задвижки на самом элеваторе.
Подача горячей воды передается на подающий трубопровод, а на обратку при этом ставится манометр.
Регуляция осуществляется закрытием задвижки на подающей трубе, после чего она немного приоткрывается, а манометр служит для контроля давления.
Температурный режим в Российской Федерации разрабатывается, чтобы обеспечивать нужный микроклимат в жилых помещениях, а также подавать тепло даже при большом морозе на улице.
Соблюдение режима поставки контролируется как управляющей компанией, так и самими потребителями, и когда теплоноситель не соответствует установленным нормам, человек, который владеет жильем, может обратиться для перерасчета и принятия мер.
Эти нормы действуют только в холодное время года, и для теплых месяцев попросту неприменимы.
- В связи с частыми изменениями в законодательстве информация порой устаревает быстрее, чем мы успеваем ее обновлять на сайте.
- Все случаи очень индивидуальны и зависят от множества факторов. Базовая информация не гарантирует решение именно Ваших проблем.
Поэтому для вас круглосуточно работают БЕСПЛАТНЫЕ эксперты-консультанты!
- Задайте вопрос через форму (внизу), либо через онлайн-чат
- Позвоните на горячую линию:
- Москва и Область – +7 (499) 110-56-12
- Санкт-Петербург и область – +7 (812) 317-50-97
- Регионы – 8 (800) 222-69-48
ЗАЯВКИ И ЗВОНКИ ПРИНИМАЮТСЯ КРУГЛОСУТОЧНО и БЕЗ ВЫХОДНЫХ ДНЕЙ.
Источники:http://domosite.ru/nedvizhimost/temperatura-teplonositelya-v-zavisimosti-ot-naruzhnoy-temperaturyi
http://realtyaudit.ru/temperaturnyj-grafik-podachi-teplonositelja-v-sistemu-otoplenija/
http://propertyhelp.ru/kvartira/kommunalnye-uslugi/pravila-predostavleniya.html
Температурный график отопления — AQUEO.RU
Подача тепла в помещение связана с простейшим температурным графиком. Температурные значения воды, которая подается из котельной, не изменяются в помещении. Они имеют стандартные значения и находятся в пределах от +70ºС до +95ºС. Такой температурный график системы отопления является самым востребованным.
Регулировка температуры воздуха в доме
Не везде на территории страны есть централизованное отопление, поэтому многие жители устанавливают независимые системы. Их температурный график отличается от первого варианта. В этом случае температурные показатели значительно снижены. Они зависят от эффективности современных котлов отопления.
Если температура доходит до +35ºС, то котел будет работать на максимальной мощности. Это зависит от нагревательного элемента, где тепловая энергия может забираться уходящими газами. Если температурные значения будут больше +70ºС, то производительность котла падает. В таком случае в его технической характеристике указывается КПД 100%.
Температурный график и его расчет
Как будет выглядеть график, зависит от температуры наружного воздуха. Чем больше отрицательное значение наружной температуры, тем больше теплопотери. Многие не знают, откуда брать данный показатель. Эта температура прописана в нормативных документах. За расчетное значение принимают температуры самой холодной пятидневки, причем берется самое низкое значение за последние 50 лет.
График зависимости наружной и внутренней температуры
На графике представлена зависимость наружной и внутренней температуры. Допустим, температура наружного воздуха равна -17ºС. Проведя вверх линию до пересечения с t2, получим точку, характеризующую температуру воды в системе отопления.
Благодаря температурному графику, можно подготовить систему отопления даже под самые суровые условия. Также он сокращает материальные затраты на установку отопительной системы. Если рассматривать этот фактор с точки зрения массового строительства, экономия является существенной.
Температура внутри помещения зависит от температуры теплоносителя, а также других факторов:
- Температура наружного воздуха. Чем она меньше, тем отрицательнее это сказывается на отоплении;
- Ветер. При возникновении сильного ветра теплопотери увеличиваются;
- Температура внутри помещения зависит от теплоизоляции конструктивных элементов здания.
За последние 5 лет принципы строительства изменились. Строители увеличивают стоимость дома с помощью теплоизоляции элементов. Как правило, это касается подвалов, крыш, фундаментов. Эти дорогостоящие мероприятия впоследствии позволяют жильцам экономить на системе отопления.
Температурный график отопления
На графике показывается зависимость температуры наружного и внутреннего воздуха. Чем ниже температура наружного воздуха, тем выше будет температура теплоносителя в системе.
Температурный график разрабатывается для каждого города во время отопительного периода. В малых населенных пунктах составляется температурный график котельной, которая обеспечивает необходимое количество теплоносителя потребителю.
Изменять температурный график можно несколькими способами:
- количественным – характеризуется изменением расхода теплоносителя, подаваемого в систему отопления;
- качественным – состоит в регулировании температуры теплоносителя перед подачей в помещения;
- временным – дискретный метод подачи воды в систему.
Температурный график представляет собой график отопительных трубопроводов, который распределяет отопительную нагрузку и регулируется с помощью централизованных систем. Существует также повышенный график, он создается для замкнутой системы отопления, то есть для обеспечения подачи горячего теплоносителя в подключаемые объекты. При применении открытой системы необходимо проводить корректировку температурного графика, так как теплоноситель расходуется не только на отопление, но и бытовое водопотребление.
Расчет температурного графика производится по простому методу. Чтобы его построить, необходимы исходные температурные данные воздуха:
- наружного;
- в помещении;
- в подающем и обратном трубопроводе;
- на выходе из здания.
Кроме того, следует знать номинальную тепловую нагрузку. Все остальные коэффициенты нормируются справочной документацией. Расчет системы производится для любого температурного графика, в зависимости от назначения помещения. Например, для крупных промышленных и гражданских объектов составляется график 150/70, 130/70, 115/70. Для жилых домов этот показатель составляет 105/70 и 95/70. Первый показатель показывает температуру на подачи, а второй — на обратке. Результаты расчетов заносятся в специальную таблицу, где показывается температура в определенных точках отопительной системы, в зависимости от наружной температуры воздуха.
Основным фактором при расчете температурного графика является наружная температура воздуха. Расчетная таблица должна быть составлена так, чтобы максимальные значения температуры теплоносителя в системе отопления (график 95/70) обеспечивали обогрев помещения. Температуры в помещении предусмотрены нормативными документами.
Температура отопительных приборов
Температура отопительных приборов
Основной показатель — температура отопительных приборов. Идеальным температурным графиком для отопления является 90/70ºС. Добиться такого показателя невозможно, так как температура внутри помещения должна быть не одинаковой. Она определяется в зависимости от назначения помещения.
В соответствии со стандартами, температура в угловой жилой комнате составляет +20ºС, в остальных – +18ºС; в ванной – +25ºС. Если наружная температура воздуха равна -30ºС, то показатели увеличиваются на 2ºС.
Кроме того, существует нормы для других типов помещений:
- в помещениях, где находятся дети – +18ºС до +23ºС;
- детские учебные учреждения – +21ºС;
- в культурных заведениях с массовым посещением – +16ºС до +21ºС.
Такая область температурных значений составлена для всех видов помещений. Она зависит от выполняемых движений внутри комнаты: чем их больше, тем меньше температура воздуха. Например, в спортивных учреждениях люди много двигаются, поэтому температура составляет всего +18ºС.
Температура воздуха в помещении
Существуют определенные факторы, от которых зависит температура отопительных приборов:
- Температура наружного воздуха;
- Вид системы отопления и перепад температур: для однотрубной системы – +105ºС, а для однотрубной – +95ºС. Соответственно перепады в для первой области составляют 105/70ºС, а для второй – 95/70ºС;
- Направление подачи теплоносителя в отопительные приборы. При верхней подаче разница должна быть 2 ºС, при нижней – 3ºС;
- Вид отопительных приборов: теплоотдачи отличаются, поэтому будет отличаться температурный график.
В первую очередь, температура теплоносителя зависит от наружного воздуха. Например, на улице температура равна 0ºС. При этом температурный режим в радиаторах должен быть равен на подаче 40-45ºС, а на обратке – 38ºС. При температуре воздуха ниже нуля, например, -20ºС, эти показатели изменяются. В данном случае температура подачи становится равна 77/55ºС. Если показатель температуры доходит до -40ºС, то показатели становятся стандартными, то есть на подаче +95/105ºС, а на обратке – +70ºС.
Дополнительные параметры
Чтобы определенная температура теплоносителя дошла до потребителя, необходимо следить за состоянием наружного воздуха. Например, если она составляет -40ºС, котельная должна подавать горячую воду с показателем в +130ºС. По ходу теплоноситель теряет тепло, но все равно температура остается большой при поступлении в квартиры. Оптимальное значение +95ºС. Для этого в подвалах монтируют элеваторный узел, служащий для смешивания горячей воды из котельной и теплоносителя с обратного трубопровода.
За теплотрассу отвечает несколько учреждений. За подачу горячего теплоносителя в систему отопления следит котельная, а за состоянием трубопроводов – городские тепловые сети. За элеваторный элемент несет ответственность ЖЕК. Поэтому чтобы решить проблему подачи теплоносителя в новый дом, необходимо обращаться в разные конторы.
Монтаж отопительных приборов производят в соответствии с нормативными документами. Если собственник сам производит замену батареи, то он отвечает за функционирование отопительной системы и изменение температурного режима.
Способы регулировки
Демонтаж элеваторного узла
Если за параметры теплоносителя, выходящего из теплого пункта, отвечает котельная, то за температуру внутри помещения должны отвечать работники ЖЕКа. Многие жильцы жалуются на холод в квартирах. Это происходит из-за отклонения температурного графика. В редких случаях бывает, что температура повышается на определенное значение.
Регулировку параметров отопления можно произвести тремя способами:
- Рассверливание сопла.
Если температура теплоносителя на подаче и обратке существенно занижена, то необходимо увеличить диаметр сопла элеватора. Таким образом, через него будет проходить больше жидкости.
Как это осуществить? Для начала перекрывается запорная арматура (домовые задвижки и краны на элеваторном узле). Далее снимается элеватор и сопло. Затем его рассверливают на 0,5-2 мм, в зависимости от того, насколько необходимо повысить температуру теплоносителя. После этих процедур, элеватор монтируется на прежнее место и запускается в эксплуатацию.
Чтобы обеспечить достаточную герметичность фланцевого соединения, необходимо заменить паронитовые прокладки на резиновые.
- Глушение подсоса.
При сильных холодах, когда возникает проблема замерзания отопительной системы в квартире, сопло можно полностью снять. В этом случае подсос может стать перемычкой. Для этого необходимо его заглушить с помощью стального блина, толщиной в 1 мм. Такой процесс выполняется только в критических ситуациях, так как температура в трубопроводах и отопительных приборах будет достигать 130ºС.
- Регулировка перепада.
В середине отопительного периода может возникнуть значительное повышение температуры. Поэтому необходимо регулировать ее с помощью специальной задвижки на элеваторе. Для этого подачу горячего теплоносителя переключают на подающий трубопровод. На обратку монтируется манометр. Регулировка происходит путем закрытия задвижки на подающем трубопроводе. Далее задвижка приоткрывается, при этом следует контролировать давление с помощью манометра. Если ее просто открыть, то возникнет просадка щечек. То есть повышение перепада давления происходит на обратном трубопроводе. Каждый день показатель увеличивается на 0,2 атмосферу, причем температуру в системе отопления необходимо постоянно контролировать.
Теплоснабжение. Видео
Как устроено теплоснабжение частных и многоквартирных домов, можно узнать из видео ниже.
При составлении температурного графика отопления необходимо учитывать различные факторы. В этот список входят не только конструктивные элементы здания, но температура наружного воздуха, а также вид системы отопления.
Вконтакте
Одноклассники
Зависимость температуры теплоносителя от уличной температуры
Сегодня наиболее распространёнными отопительными системами на территории Федерации являются работающие на воде. Температура воды в батареях непосредственно зависит показателей температуры воздуха снаружи, то есть на улице, в определённый период времени. Законодательно утверждён и соответствующий график, согласно которому ответственные специалисты рассчитывают температуры, беря во внимание местные погодные условия и источник теплового снабжения.
Графики температуры теплоносителя в зависимости от наружной температуры разработаны с учётом поддержки обязательных температурных режимов в помещении, таких, которые считаются для среднестатистического человека оптимальными и комфортными.
Чем холоднее на улице, тем выше уровень потери тепла. По этой причине важно знать, какие показатели применимы при расчёте нужных показателей. Самостоятельно ничего высчитывать не нужно. Все цифры утверждены соответствующими нормативными документами. В их основе лежат средние температуры пяти наиболее холодных дней года. Также взят период последних пятидесяти лет с отбором восьми наиболее холодных зим за данное время.
Благодаря таким расчетам есть возможность подготовиться к низким температурам зимой, встречающимся как минимум раз в несколько лет. В свою очередь, это позволяет существенно экономить при создании отопительной системы.
Дорогие читатели!
Наши статьи рассказывают о типовых способах решения юридических
вопросов, но каждый случай носит уникальный характер.
Если вы хотите узнать, как решить именно Вашу проблему —
обращайтесь в форму онлайн-консультанта справа →
Это быстро и бесплатно! Или звоните нам по телефонам (круглосуточно):
Если вы хотите узнать, как решить именно Вашу проблему — позвоните нам по телефону. Это быстро и бесплатно!
+7 (812) 467-34-81 Санкт-Петербург, Ленинградская область +7 (800) 333-89-17 Регионы (звонок бесплатный для всех регионов России)
Дополнительно влияющие факторы
На сами же температуры теплоносителя непосредственное влияние имеют также такие не менее весомые факторы, как:
- Понижение температур на улице, которое влечёт аналогичное внутри помещения;
- Скорость движения ветра – чем она выше, тем больше тепловая потеря через входную дверь, окна;
- Герметичность стен и стыков (установка металлопластиковых окон и утепление фасадов значимо влияет на сохранение тепла).
В последнее время произошли некоторые изменения в строительных нормах. По этой причине строительные компании часто проводят теплоизоляционные работы не только на фасадах многоквартирных домов, но и в подвальных помещениях, фундаменте, крыше, кровле. Соответственно, стоимость таких строительных объектов повышается. При этом важно знать, что расходы по утеплению весьма значительны, но с другой стороны, это гарантия экономии тепла и сниженные затраты на отопление.
Со своей стороны строительные компании понимают, что понесённые ими расходы на утепление объектов буду полностью и в скором времени окуплены. Для собственников это также выгодно, поскольку коммунальные платежи весьма высоки, и если платить, то действительно за полученное и сохранённое тепло, а не за его утерю из-за недостаточной изоляции помещений.
Температура в радиаторе
Тем не менее, несмотря на то, какие погодные условия вне помещения и насколько оно утеплено, наиболее важную роль играет всё же теплоотдача радиатора. Обычно в центральных отопительных системах температуры колеблются в пределах от 70 до 90 градусов. Однако важно учитывать и то, что этот критерий не является единственным для того, чтобы иметь нужный температурный режим, особенно в жилых помещениях, где в каждой отдельной комнате температуры должны быть не одинаковы, зависимо от целевого назначения.
Так, например, в угловых комнатах не должно быть менее 20 градусов, притом, что в других допускаются 18 градусов. Кроме того, если температура на улице понижается до -30, установленные нормы для комнат должны быть больше на два градуса.
Те помещения, которые предназначены для детей, должны иметь температурный предел от 18 до 23 градусов, в зависимости от того, для чего они предназначены. Так в бассейне не может быть менее 30 градусов, а на веранде должно быть не меньше 12 градусов.
Говоря о школьном образовательном учреждении, там не должно быть ниже 21 градуса, а в спальне интерната – минимум 16 градусов. Для культурного массового заведения нормы от 16 градусов до 21, а для библиотеки – не более 18 градусов.
Что влияет на температуру батарей?
Помимо тепловой отдачи теплоносителя и температур снаружи, тепло в помещении зависит и от активности людей внутри. Чем больше движений совершается человеком, тем ниже может быть температурный режим и наоборот. Это также обязательно учитывается при распределении тепла. В качестве примера можно взять любое спортивное учреждение, где люди априори находятся в активном движении. Здесь не является целесообразным поддержание высоких температур, так как это будет доставлять дискомфорт. Соответственно, показатель в 18 градусов — оптимальный.
Можно отметить, что на тепловые показатели батарей внутри любых помещений влияет не только наружная температура воздуха и скорость ветра, но также:
- Разновидность отопительных систем – для однотрубных норма 105 градусов, для двухтрубных – 95 градусов. При этом не допустимо, чтобы разница в системах отвода и подачи тепла превышала 105-700 и 95-700 градусов соответственно;
- Направление поступлений теплоносителей на радиаторных батареях – при верхней разводке разница может быть в 20 градусов, а при нижней – 30;
- Разновидность отопительных приборов – радиаторы и конвекторы имеют разную тепловую отдачу, соответственно, и температурные режимы у них разные (теплоотдача конвектора ниже, чем у радиатора).
Утверждённые графики
Поскольку температура на улице имеет непосредственное влияние на тепло внутри помещений, утверждён специальный температурный график.
Показатели температур снаружи | Вода на входе, °С | Вода в отопительной системе, °С | Вода на выходе, °С |
---|---|---|---|
8 °С | от 51 до 52 | 42-45 | от 34 до 40 |
7 °С | от 51 до 55 | 44-47 | от 35 до 41 |
6 °С | от 53 до 57 | 45-49 | от 36 до 46 |
5 °С | от 55 до 59 | 47-50 | от 37до 44 |
4 °С | от 57 до 61 | 48-52 | от 38 до 45 |
3 °С | от 59 до 64 | 50-54 | от 39 до 47 |
2 °С | от 61 до 66 | 51-56 | от 40 до 48 |
1 °С | от 63 до 69 | 53-57 | от 41 до 50 |
0 °С | от 65 до 71 | 55-59 | от 42 до 51 |
-1 °С | от 67 до 73 | 56-61 | от 43 до 52 |
-2 °С | от 69 до 76 | 58-62 | от 44 до 54 |
-3 °С | от 71 до 78 | 59-64 | от 45до 55 |
-4 °С | от 73 до 80 | 61-66 | от 45 до 56 |
-5 °С | от 75 до 82 | 62-67 | от 46до 57 |
-6 °С | от 77 до 85 | 64-69 | от 47 до 59 |
-7 °С | от 79 до 87 | 65-71 | от 48 до 62 |
-8 °С | от 80 до 89 | 66-72 | от 49 до 61 |
-9 °С | от 82 до 92 | 66-72 | от 49 до 63 |
-10 °С | от 86 до 94 | 69-75 | от 50 до 64 |
-11 °С | от 86 до 96 | 71-77 | от 51 до 65 |
-12 °С | от 88 до 98 | 72-79 | от 59 до 66 |
-13 °С | от 90 до 101 | 74-80 | от 53 до 68 |
-14 °С | от 92 до 103 | 75-82 | от 54 до 69 |
-15 °С | от 93 до 105 | 76-83 | от 54 до 70 |
-16 °С | от 95 до 107 | 79-86 | от 56 до 72 |
-17 °С | от 97 до 109 | 79-86 | от 56 до 72 |
-18 °С | от 99 до 112 | 81-88 | от 56 до 74 |
-19 °С | от 101 до 114 | 82-90 | от 57 до 75 |
-20 °С | от 102 до 116 | 83-91 | от 58 до 76 |
-21 °С | от 104 до 118 | 85-93 | от 59 до 77 |
-22 °С | от 106 до 120 | 88-94 | от 59 до 78 |
-23 °С | от 108 до 123 | 87-96 | от 60 до 80 |
-24 °С | от 109 до 125 | 89-97 | от 61 до 81 |
-25 °С | от 112 до 128 | 90-98 | от 62 до 82 |
-26 °С | от 112 до 128 | 91-99 | от 62 до 83 |
-27 °С | от 114 до 130 | 92-101 | от 63 до 84 |
-28 °С | от 116 до 134 | 94-103 | от 64 до 86 |
-29 °С | от 118 до 136 | 96-105 | от 64 до 87 |
-30 °С | от 120 до 138 | 97-106 | от 67 до 88 |
-31 °С | от 122 до 140 | 98-108 | от 66 до 89 |
-32 °С | от 123 до 142 | 100-109 | от 66 до 93 |
-33 °С | от 125 до 144 | 101-111 | от 67 до 91 |
-34 °С | от 127 до 146 | 102-112 | от 68 до 92 |
-35 °С | от 129 до 149 | 104-114 | от 69 до 94 |
Что также важно знать?
Благодаря табличным данным, не составляет особого труда узнать о температурных показателях воды в системах центрального отопления. Измеряется нужная часть теплоносителя обыкновенным градусником в тот момент, когда происходит спуск системы. Выявленные несоответствия фактических температур установленным нормам является основанием для осуществления перерасчёта оплаты коммунальной услуги. Очень актуальными на сегодняшний день стали общие домовые счётчики учёта тепловой энергии.
Ответственность за температуру воды, которая нагревается в теплотрассе, несёт местная ТЭЦ или же котельная. Транспортировка тепловых носителей и минимальные потери возложены на организацию, обслуживающую тепловую сеть. Обслуживает и настраивает элеваторный узел ЖЭУ или управляющая компания.
Важно знать, что диаметр самого сопла элеватора обязательно должен быть согласован с коммунальной тепловой сетью. Все вопросы, касающиеся низкой температуры в помещении, нужно решать с управляющим органом многоквартирного дома или иного недвижимого объекта, о котором идёт речь. Обязанность данных органов – обеспечить граждан минимальными санитарными нормами температур.
Нормы в жилых помещениях
Чтобы понимать, когда действительно актуально подавать на перерасчет оплаты за коммунальную услугу и требовать принятия какие-либо мер по обеспечению тепла, необходимо знать нормы тепла в жилых помещениях. Эти нормы полностью урегулированы российским законодательством.
Так в тёплое время года жилые помещения не отапливаются и нормами для них являются 22-25 градусов тепла. В холодное же время применимы следующие показатели:
- Жилые комнаты – 20-22;
- Жилые комнаты в северном регионе – 21-23;
- Кухня – 19-21;
- Совмещённый санитарный узел, ванная – 24-26;
- Туалет – 19-21;
- Межквартирные коридоры – 18-20;
- Детская комната – 23-24.
Тем не менее, не стоит забывать и о здравом смысле. Например, спальни должны обязательно проветриваться, в них не должно быть слишком жарко, но и холодно быть также не может. Температурный режим в детской комнате должен регулироваться соответственно возрасту ребёнка. Для грудничка это верхний предел. По мере взросления планка снижается к нижним границам.
Тепло в ванной зависит также от влажности данной комнаты. Если помещение плохо вентилируется, возникает большое содержание воды в воздухе, а это создаёт ощущение сырости и может быть не безопасно для здоровья жильцов.
подача теплоносителя, температура наружного воздуха для расчета, отопительный сезон
Содержание:
Существуют определенные закономерности, по которым меняется температура теплоносителя в центральном отоплении. Для того, чтобы адекватно прослеживать эти колебания, существуют специальные графики.
Причины температурных изменений
Для начала важно понять несколько моментов:
- Когда изменяются погодные условия, это автоматически влечет за собой изменение теплопотерь. При наступлении холодов для поддержания в жилище оптимального микроклимата тратится на порядок больше тепловой энергии, чем в теплый период. При этом уровень расходуемого тепла рассчитывается не точной температурой уличного воздуха: для этого используется т.н. «дельта» разницы между улицей и внутренними помещениями. К примеру, +25 градусов в квартире и -20 за ее стенами повлекут за собой точно такие же затраты тепла, как при +18 и -27 соответственно.
- Постоянство теплового потока от батарей отопления обеспечивается стабильной температурой теплоносителя. При снижении температуры в помещении будет наблюдаться некоторый подъем температуры радиаторов: этому способствует увеличение дельты между теплоносителем и воздухом в помещении. В любом случае, это не сможет адекватно компенсировать возрастание тепловых потерь посредством через стены. Объясняется это установкой ограничений для нижней границы температуры в жилище действующим СНиПом на уровне +18-22 градусов.
Логичнее всего решить возникшую проблему увеличения потерь повышением температуры теплоносителя. Важно, чтобы ее возрастание происходило параллельно снижению температуры воздуха за окном: чем там холоднее, тем большие потери тепла нуждаются в восполнении. Для облегчения ориентации в этом вопросе на каком-то этапе было решено создать специальные таблицы согласования обоих значений. Исходя из этого, можно сказать, что под температурным графиком системы отопления подразумевается выведение зависимости уровня нагрева воды в подающем и обратном трубопроводе по отношению к температурному режиму на улице.
Особенности температурного графика
Вышеупомянутые графики встречаются в двух разновидностях:
- Для сетей теплоподачи.
- Для системы отопления внутри дома.
Для понимания того, чем отличаются оба этих понятия, желательно для начала разобраться в особенностях работы централизованного отопления.
Связка между ТЭЦ и тепловыми сетями
Назначением этой комбинации является сообщение теплоносителю должного уровня нагрева, с последующей транспортировкой его к месту потребления. Теплотрассы обычно имеют длину в несколько десятков километров, при общей площади поверхности в десятки тысяч квадратных метров. Хотя магистральные сети и подвергаются тщательной теплоизоляции, без теплопотерь обойтись невозможно.
По ходу движения между ТЭЦ (или котельной) и жилыми помещениями наблюдается некоторое остывание технической воды. Сам по себе напрашивается вывод: чтобы донести до потребителя приемлемый уровень нагрева теплоносителя, его необходимо подавать внутрь теплотрассы из ТЭЦ в максимально нагретом состоянии. Повешение температуры ограничено точкой кипения. Ее можно сместить в сторону повышения температуры, если увеличивать давление в трубах.
Стандартный показатель давления в подающей трубы теплотрассы находится в пределах 7-8 атм. Данный уровень, несмотря на потери напора по ходу транспортировки теплоносителя, дает возможность обеспечить эффективную работу отопительной системы в зданиях высотой до 16 этажей. При этом дополнительные насосы обычно не нужны.
Очень важно то, что такое давление не создает опасности для системы в целом: трассы, стояки, подводки, смесительные шланги и другие узлы сохраняют свою работоспособность длительное время. Учитывая определенный запас для верхнего предела температуры подачи, его значение берется, как +150 градусов. Пролегание самых стандартных температурных графиков подачи теплоносителя в систему отопления проходит в промежутке между 150/70 — 105/70 (температуры подающей и обратной трассы).
Особенности подачи теплоносителя в систему отопления
Домовая система отопления характеризуется наличием ряда дополнительных ограничений:
- Значение наибольшего нагрева теплоносителя в контуре ограничено показателем +95 градусов для двухтрубной системы и +105 для однотрубной системы отопления. Следует заметить, что дошкольные воспитательные учреждения характеризуются наличием более строгих ограничений: там температура батарей не должна подниматься выше +37 градусов. Чтобы компенсировать такое уменьшение температуры подачи, приходится наращивать число радиаторных секций. Внутренние помещения детских садов, расположенных в регионах с особо суровыми климатическими условиями, буквально напичканы батареями.
- Желательно добиться минимальной температурной дельты графика подачи отопления между подающим и обратным трубопроводами: в противном случае степень нагрева радиаторных секций в здании будет иметь большую разницу. Для этого теплоноситель внутри системы должен двигаться максимально быстро. Однако тут есть своя опасность: из-за высокой скорости циркуляции воды внутри отопительного контура ее температура на выходе обратно в трассу будет излишне высокой. В итоге это может привести к серьезным нарушениям в работе ТЭЦ.
Для преодоления возникшей проблемы каждый дом оснащается одним или несколькими элеваторными модулями. Благодаря им поток воды из подающего трубопровода разбавляется порцией из обратки. Используя эту смесь, можно добиться быстрой циркуляции значительных объемов теплоносителя, не подвергая при этом опасности излишнего нагрева обратный трубопровод магистрали. Система отопления внутри жилищ задается отдельным температурным графиком отопления, где учитывается наличие элеватора. Двухтрубные контуры обслуживаются отопительным температурным графиком 95-70, однотрубные — 105-70 (такие схемы почти не встречаются в многоэтажных зданиях). Читайте также: «Какая температура должна быть в батареях центрального отопления – нормы и стандарты».
Влияние климатических зон на температуру наружного воздуха
Главным фактором, напрямую влияющим на составление температурного графика на отопительный сезон, выступает расчетная зимняя температура. По ходу составления стараются добиться того, чтобы наибольшие значения (95/70 и 105/70) при максимальных морозах гарантировали нужную СНиП температуру. Температура наружного воздуха для расчета отопления берется из специальной таблицы климатических зон.
Особенности регулировки
Параметры тепловых трасс находятся в зоне ответственности руководства ТЭЦ и теплосетей. В то же время за параметры сети внутри здания отвечают работники ЖЭКа. В основном жалобы жильцов на холод касаются отклонений в нижнюю сторону. Намного реже встречаются ситуации, когда замеры внутри тепловиков свидетельствуют о повышенной температуре обратки.
Существует несколько способов нормализации параметров системы, которые можно реализовать самостоятельно:
- Рассверливание сопла. Решить проблему занижения температуры жидкости в обратке можно путем расширения элеваторного сопла. Для этого нужно закрыть все задвижки и вентили на элеваторе. После этого модуль снимают, вытаскивают его сопло и рассверливают на 0,5-1 мм. После сборки элеватора его запускают для стравливания воздуха в обратном порядке. Паронитовые уплотнители на фланцах рекомендуется заменить резиновыми: их изготовляют по размеру фланца из автомобильной камеры.
- Глушение подсоса. В экстремальных случаях (при наступлении сверхнизких морозов) сопло можно вообще демонтировать. В таком случае возникает угроза того, что подсос начнет выполнять функцию перемычки: чтобы это не допустить, его глушат. Для этого используется стальной блин толщиной от 1 мм. Данный способ является экстренным, т.к. это может спровоцировать скачок температуры батарей до +130 градусов.
- Управление перепадом. Временным способом решения проблемы повышения температуры является корректировка перепада элеваторной задвижкой. Для этого необходимо перенаправить ГВС на подающую трубу: обратка при этом оснащается манометром. Входную задвижку обратного трубопровода полностью закрывают. Далее нужно понемногу открывать вентиль, постоянно сверяя свои действия с показаниями манометра.
Просто закрытая задвижка может спровоцировать остановку и разморозку контура. Снижение разницы достигается благодаря росту давления на обратке (0,2 атм./сутки). Температуру в системе необходимо проверять каждый день: она должна соответствовать отопительному температурному графику.
Температура наружного воздуха — обзор
ВОДА ИЗ МОРЕЙ, ОЗЕР И РЕК
По сравнению с наружным воздухом, морская / озерная / речная вода имеет много преимуществ в качестве источника тепла. Температура более стабильна и не будет падать так низко, как на открытом воздухе. Жидкость может перекачиваться при сравнительно небольшой потребляемой мощности. Жидкости также обладают лучшими термодинамическими качествами, чем газы (что касается воды, это в большей степени факт).
Конечно, у воды есть и недостатки.Очевидно, это доступно не везде. Вы не можете охлаждать его ниже 0 ° C, если только содержание соли не является высоким или вы не используете какой-либо льдогенератор, см. Ниже! Следует учитывать опасность коррозии. В некоторых приложениях могут возникнуть проблемы с ростом водорослей и т. Д.
Швеция имеет длинную береговую линию, множество озер и рек. Поэтому естественно, что многие тепловые насосы используют воду в качестве источника тепла. Есть два общепринятых принципа поглощения тепла. Один из них — перекачивать воду и распылять ее на испарители, как правило, на больших заводах.Другим методом вы размещаете пластиковые трубы в море / озере / реке. В большинстве случаев трубы крепятся на дне моря / озера / реки, но есть примеры, когда они помещаются в воду по спирали. Основным недостатком последнего принципа является риск повреждения якорей и т. Д.
Основным пользователем большого теплового насоса для морской воды является Stockholm Energy, компания, отвечающая за производство и распределение тепла и электроэнергии в Стокгольме. В таблице 1 показаны предприятия, работающие на данный момент.Как видите, сточные воды также используются в качестве источника тепла на многих крупных предприятиях. Все станции вырабатывают тепло для сети централизованного теплоснабжения Стокгольма. Фактически 2,0 ТВтч, что составляет 45% годовой потребности в тепле в Стокгольме, вырабатывается тепловыми насосами.
Таблица 1. Тепловые насосы, эксплуатируемые Stockholm Energi.
Завод | Источник тепла | Хладагент | Тепловая мощность | COP (1987) |
---|---|---|---|---|
Värtaverk 2 | Морская вода | R12; 15 тонн | 14 МВт | 2,40 |
Värtaverk 3 | Морская вода | R12; 7 тонн | 7 МВт | 2,60 |
Ropsten 1 | Морская вода | R22; 61 тонна | 75 МВт | 3,35 |
Ropsten 2 | Морская вода | R22; 61 тонна | 75 МВт | 3,22 |
VP 100 | Морская вода | R500; 80 тонн | 100 МВт | 2,53 * |
Loudden | Сточные воды | R12; 3 тонны | 5 МВт | |
Hammarby 1 | Сточные воды | R22; 47 тонн | 50 МВт | |
Hammarby 2 | Сточные воды | R500; 45 тонн | 50 МВт | |
Värtaverk 1 | Техническая вода | R12; 1 тонна | 2,5 МВт | |
Skarpnäck | Наружный воздух | R12; 12 тонн | 4,5 МВт |
Обратите внимание, что приведенные выше значения COP относятся только к электроэнергии, потребляемой компрессорами, за исключением установки VP100.Для этого указан общий COP. Общий КПД для трех заводов Ropsten 1 + 2 и VP100 составил 2,81. Обычно сокращение за счет вспомогательного электричества составляет примерно 10%. Очевидно, можно ожидать, что общий годовой COP для большого теплового насоса с морской водой составит от 2,5 до 3.
Как видно из таблицы 1, используются различные типы хладагентов. Некоторые установки даже используют R22, несмотря на необходимость высоких температур конденсации. Эти установки показывают, что с турбокомпрессорами R22 может использоваться даже для целей централизованного теплоснабжения.Температура исходящей воды может приближаться к 80 ° C. Это, конечно, очень интересно, поскольку все мы хотим свести к минимуму использование R12 и других полностью галогенизированных сред CFC. Ежегодная утечка с этих крупных заводов составляет примерно 5% от общего объема заполнения. Возможно, удастся снизить утечку до 1 или 2%.
На рисунке 2 показано, как мощность станции 100 МВт, упомянутой в таблице 1, уменьшается при низких температурах морской воды. Установка работает на максимальной мощности при температуре на входе до 2 ° C.Затем регулировка производительности снижает тепловую мощность. На практике установка останавливается при температуре на входе ниже 1,5 ° C. Однако такие низкие температуры случаются очень редко и наблюдаются всего несколько дней в течение четырех лет эксплуатации.
Рис. 2. Производительность теплового насоса с морской водой при низких температурах.
На небольших предприятиях часто используются пластиковые трубы, проложенные на дне моря, озера или реки. Используются разные виды рассолов. Пожалуй, карбонат калия (K 2 CO 3 ) — лучший выбор по цене, термодинамическим и коррозионным характеристикам.В этих системах жизненно важно, чтобы трубы были правильно закреплены на дне. В противном случае существует риск того, что они всплывут зимой, когда на поверхности труб может образоваться лед.
Вышеописанные методы полностью отработаны, в настоящее время в эксплуатации находится много действующих заводов. Несмотря на это, проводятся испытания других методов использования морской / озерной / речной воды в качестве источника тепла. Другой тип теплообменника используется в тепловом насосе, расположенном в Стремсборге, здании на небольшом острове в самом центре Стокгольма.Вода здесь забирается в теплообменник, расположенный в подвале здания. Теплообменник состоит из точечно сваренных пластин того же типа, что и упомянутый выше. Пластины изогнуты в форме кругов переменного диаметра и помещены в пакет с самым маленьким кругом, находящимся дальше всего. Вода течет в промежутках между пластинами, а рассол циркулирует внутри пластин. Щетки вращаются в зазорах между пластинами. Они улучшают теплопередачу, перемешивая воду. Щетки также обладают очень важным очищающим эффектом.Поэтому теплообменник также очень полезен в промышленных приложениях и т. Д., Где вода сильно загрязнена (однако в данном случае это не так).
Конструкция позволяет поглощать тепло воды при очень низкой температуре. В одном случае были измерены следующие данные:
Температура наружного воздуха –14 ° C
Температура морской воды; на входе 0,46 ° C, на выходе 0,31 ° C
Температура рассола; −2,3 / -2,0 ° C
Температура конденсации / испарения 58 / — 15 ° C
Тепловая мощность / электричество компрессора / общая электроэнергия 62,5 / 25/34 кВт
As вы видите, что КС падает с 2,5 до 1,85 из-за вспомогательного питания.Это можно улучшить с помощью меньшего потока рассола или системы прямого расширения.
Самая низкая рабочая температура — габаритный вариант; чем ниже температура на входе, тем выше расход воды и испаритель большего размера. На рис. 3 показаны результаты измерений на установке, аналогичной конструкции, представленной на рис. 2.
Рис. 3. Тепловая мощность и температура морской воды для большого теплового насоса, расположенного в Лидингё, недалеко от Стокгольма.
Если есть озеро с глубокими илистыми донными отложениями, методика, опробованная в Валлентуне, в 30 км к северу от Стокгольма, может представлять интерес.Здесь проложено 360 км пластиковых труб на трех уровнях в донных отложениях. С помощью специально сконструированной машины были уложены трубы длиной 1000 м на глубину 2, 4 и 6 м, создав таким образом накопитель тепла 1,3 мм 3 . Летом поверхностная вода перекачивается по трубам и далее в испаритель теплового насоса. Таким образом, донные отложения нагреваются и сохраняют тепло на зимний период. Зимой температура воды в озерах падает примерно до 2 ° C.При перекачивании через резервуар температура воды поднимется примерно до 5 ° C. Таким образом улучшаются зимние характеристики, а размеры системы отличаются от обычных установок. Максимальная тепловая мощность теплового насоса составляет 8,5 МВт.
Возможно, самая захватывающая попытка — поглотить тепло путем превращения воды в лед. При этом можно использовать чрезвычайно низкие температуры воды и очень низкий расход воды. Однако сделать такую систему простой и хорошо работающей на практике кажется очень сложной задачей.Испытания по этому принципу проводятся в Селене, в 400 км к северо-западу от Стокгольма. Вода из реки Далалвен по трубе на 250 м транспортируется в недавно построенный многоквартирный дом, где установлен тепловой насос. Зимой температура воды очень близка к 0 ° C. Испарители состоят из десяти вертикальных пластин, соединенных попарно. Вода из реки разбрызгивается по тарелкам, на которых она замерзает до состояния льда. Через определенные промежутки времени конденсат из конденсатора распределяется по испарителям, по одной паре, и таким образом размораживает поверхность.Возникло несколько проблем с тепловым насосом, одна из которых — рыхление льда из испарителей. Кажется, теперь эти проблемы решены. Вместо этого возникли проблемы со сбросом льда в реку. Лед имеет тенденцию застревать где-нибудь в канализационной трубе длиной 250 м. Надеюсь, это будет решено следующей зимой (89/90).
ДРУГИЕ ИСТОЧНИКИ ТЕПЛА
В холодном северном климате естественно искать другие источники тепла, кроме наружного воздуха и морской воды. Тай может быть найден в природе или связан с деятельностью человека.Также используются различные природные источники тепла. Почва и коренная порода обычно используются для бытовых тепловых насосов. Грунтовые воды используются как для домашних, так и для довольно крупных растений. Поскольку в этой статье в основном рассматриваются более крупные растения и использование грунтовых вод в качестве источника тепла не отличается от стран с более теплым климатом, они не обсуждаются далее.
Однако здесь было бы интересно упомянуть об использовании отработанного воздуха. Если тепловой насос должен быть экономически конкурентоспособным, он должен обеспечивать большую часть годовой потребности в тепле.При использовании вытяжного воздуха поток источника тепла фиксируется требованиями комфорта. Единственный способ увеличить выходную мощность теплового насоса — это больше охладить вытяжной воздух. При этом вы обнаружите, что может возникнуть такая же проблема с морозом, что и при использовании наружного воздуха. Либо вы должны ограничить исходящую температуру отработанного воздуха, либо вам придется установить устройство для размораживания. Такое устройство оснащено несколькими тепловыми насосами, использующими отработанный воздух. Общий принцип — остановить работу теплового насоса и дать теплому воздуху разморозить охлаждающий змеевик (ы).На больших установках можно последовательно останавливать поток рассола через часть змеевиков. Этот метод с хорошими результатами применяется для тепловых насосов с тепловой мощностью до 1,7 МВт. Однако самый большой из известных тепловых насосов, использующих отработанный воздух, с выходной тепловой мощностью 3,2 МВт, ограничивает температуру выходящего рассола на уровне −2 ° C. Таким образом, не возникнет заморозков. Какой метод выбрать, зависит от реальных размерных факторов.
Как понятно из вышеизложенного, отработанный воздух может использоваться в качестве источника тепла также для крупных централизованных предприятий.В некоторых случаях это альтернатива наружному воздуху, морской воде и т. Д. Вышеупомянутая установка мощностью 3,2 МВт в Таби работает с хорошими результатами с весны 1986 года. Поскольку установка была продана с гарантированным энергосбережением, ее эксплуатационные характеристики были тщательно проверены. За последний годовой период с 880617 по 8
было отпущено 23,2 ГВтч тепла. Общая годовая потребность в тепле составляет примерно 37 ГВтч. Тепловой насос мог бы дать даже больше, если бы время его работы не было ограничено экономическими причинами в летние месяцы.Это было сделано потому, что электроэнергия продавалась по очень низкой и не облагаемой налогом цене при наличии «излишка». Однако эта выгодная цена распространяется на электрические котлы с определенной подпиской. Тепловой насос потребляет 9,8 ГВтч электроэнергии, что дает общий годовой COP 2,37. Учитывая высокую температуру вперед, в среднем 74,2 ° C, это хороший результат.
Тепловой насос Täby и вышеупомянутая установка Fisksätra очень похожи. Они примерно одинакового размера и конструкции, хотя используют разные источники тепла.Сравнение двух заводов показывает, что их характеристики были схожими, хотя завод в Тэби выдает тепло примерно на 20 ° C более высокой температуры. Отработанный воздух кажется лучшим источником тепла, по крайней мере, с технической точки зрения. Однако вы должны учитывать, что если температура радиатора была ниже, вы должны решить, чтобы уменьшить тепловую мощность или увеличить падение температуры отработанного воздуха. При выборе последнего возникнет проблема с морозом. Когда вытяжной воздух используется для больших тепловых насосов, необходимо построить разветвленную сеть рассола.В Täby система рассола содержит немногим более 100 м 3 20% раствора этанола. Он собирает тепло от 69 охлаждающих змеевиков в зданиях. Такая закрытая система может вызвать технические трудности и будет более дорогостоящей, чем концентрированная система рекуперации тепла наружного воздуха. Инвестиционные затраты в ценах 1989 года для завода в Таби составляют 16 миллионов шведских крон, а для завода в Фискатра — 14 миллионов шведских крон.
Интересный факт, касающийся теплового насоса Fisksätra, заключается в том, что он продавался в условиях жесткой конкуренции с системами тепловых насосов с морской водой обоих коммерческих принципов, см. Выше.Кажется, что воздух, наружный или вытяжной, являются очень конкурентоспособными источниками тепла, по крайней мере, до размеров около 3 МВт тепловой мощности. Какой выбрать, зависит от реального помещения.
Современные цены на электроэнергию и нефть делают практически невозможным установку тепловых насосов на строго рентабельной основе. Возможно, экологические аспекты окажут положительное влияние на рынок тепловых насосов в ближайшем будущем, если проблема ХФУ будет успешно решена. Однако есть одна ниша, в которой техника с тепловым насосом, несомненно, является прибыльной, а именно для комбинированных целей охлаждения и обогрева.В регионах с холодным климатом эта потребность может быть востребована на производстве, в офисах и на спортивных площадках. Эти системы не следует подробно обсуждать в этой статье. Однако следует отметить, что в северном климате отопительное оборудование играет очень важную роль для экономики этих предприятий. Они могут работать в режиме только отопления в течение значительного времени года. Этот факт часто приводит к сравнительно сложной системе как в отношении строительства, так и управления.
Изменение температуры и теплоемкость
Цели обучения
К концу этого раздела вы сможете:
- Наблюдайте за теплопередачей и изменением температуры и массы.
- Расчет конечной температуры после передачи тепла между двумя объектами.
Одним из основных эффектов теплопередачи является изменение температуры: нагрев увеличивает температуру, а охлаждение снижает ее. Мы предполагаем, что фазового перехода нет, и что система или система не выполняет никаких работ. Эксперименты показывают, что передаваемое тепло зависит от трех факторов: изменения температуры, массы системы, а также вещества и фазы вещества.
Рисунок 1.Тепло Q , передаваемое для изменения температуры, зависит от величины изменения температуры, массы системы, а также от вещества и фазы. (а) Количество переданного тепла прямо пропорционально изменению температуры. Чтобы удвоить изменение температуры массы m, вам нужно добавить в два раза больше тепла. (б) Количество передаваемого тепла также прямо пропорционально массе. Чтобы вызвать эквивалентное изменение температуры в удвоенной массе, вам нужно добавить в два раза больше тепла.(c) Количество передаваемого тепла зависит от вещества и его фазы. Если требуется количество тепла Q , чтобы вызвать изменение температуры Δ T в данной массе меди, потребуется в 10,8 раза больше тепла, чтобы вызвать эквивалентное изменение температуры в той же массе воды, при условии отсутствия фазы. изменение любого вещества.
Зависимость от изменения температуры и массы легко понять. Поскольку (средняя) кинетическая энергия атома или молекулы пропорциональна абсолютной температуре, внутренняя энергия системы пропорциональна абсолютной температуре и количеству атомов или молекул.Благодаря тому, что переданное тепло равно изменению внутренней энергии, тепло пропорционально массе вещества и изменению температуры. Передаваемое тепло также зависит от вещества, так что, например, количество тепла, необходимое для повышения температуры, меньше для спирта, чем для воды. Для одного и того же вещества передаваемое тепло также зависит от фазы (газ, жидкость или твердое тело).
Теплопередача и изменение температуры
Количественная связь между теплопередачей и изменением температуры включает все три фактора: Q = мк Δ T , где Q — символ теплопередачи, м — масса вещества и Δ T — изменение температуры.Обозначение c означает удельную теплоемкость и зависит от материала и фазы. Удельная теплоемкость — это количество тепла, необходимое для изменения температуры 1,00 кг массы на 1,00 ° C. Удельная теплоемкость c — это свойство вещества; его единица СИ — Дж / (кг К) или Дж / (кг ºC). Напомним, что изменение температуры (Δ T ) одинаково в единицах кельвина и градусов Цельсия. Если теплопередача измеряется в килокалориях, то единица удельной теплоемкости — ккал / (кг ⋅ ºC).
Значения удельной теплоемкости обычно необходимо искать в таблицах, потому что нет простого способа их вычислить. Как правило, удельная теплоемкость также зависит от температуры. В таблице 1 приведены типичные значения теплоемкости для различных веществ. За исключением газов, температурная и объемная зависимость удельной теплоемкости большинства веществ слабая. Из этой таблицы видно, что удельная теплоемкость воды в пять раз больше, чем у стекла и в десять раз больше, чем у железа, что означает, что требуется в пять раз больше тепла, чтобы поднять температуру воды на ту же величину, что и у стекла, и в десять раз больше. много тепла для повышения температуры воды, как для утюга.Фактически, вода имеет одну из самых высоких удельной теплоемкости из всех материалов, что важно для поддержания жизни на Земле.
Пример 1. Расчет необходимого тепла: нагрев воды в алюминиевой кастрюле
Алюминиевая кастрюля массой 0,500 кг на плите используется для нагрева 0,250 л воды с 20,0 ° C до 80,0 ° C. а) Сколько тепла требуется? Какой процент тепла используется для повышения температуры (б) сковороды и (в) воды?
Стратегия
Кастрюля и вода всегда имеют одинаковую температуру.Когда вы ставите кастрюлю на плиту, температура воды и кастрюли повышается на одинаковую величину. Мы используем уравнение теплопередачи для данного изменения температуры и массы воды и алюминия. Значения удельной теплоемкости воды и алюминия приведены в таблице 1.
Решение
Поскольку вода находится в тепловом контакте с алюминием, кастрюля и вода имеют одинаковую температуру.
Рассчитать разницу температур:
Δ T = T f — T i = 60.0ºC.
Рассчитайте массу воды. Поскольку плотность воды составляет 1000 кг / м 3 , один литр воды имеет массу 1 кг, а масса 0,250 литра воды составляет м w = 0,250 кг.
Рассчитайте тепло, передаваемое воде. Используйте удельную теплоемкость воды в таблице 1:
.
Q w = м w c w Δ T = (0,250 кг) (4186 Дж / кгºC) (60,0ºC) = 62.8 кДж.
Рассчитайте тепло, передаваемое алюминию. Используйте удельную теплоемкость алюминия в таблице 1:
.
Q Al = м Al c Al Δ T = (0,500 кг) (900 Дж / кгºC) (60,0ºC) = 27,0 × 10 4 J = 27,0 кДж . <
Сравните процент тепла, поступающего в сковороду, и в воду. Сначала найдите общее переданное тепло:
Q Итого = Q w + Q Al = 62.8 кДж + 27,0 кДж = 89,8 кДж.
Таким образом, количество тепла, идущего на нагревание сковороды, равно
.
[латекс] \ frac {27.0 \ text {kJ}} {89.8 \ text {kJ}} \ times100 \% = 30.1 \% \\ [/ latex]
, а на подогрев воды —
.
[латекс] \ frac {62,8 \ text {кДж}} {89,8 \ text {кДж}} \ times100 \% = 69,9 \% \\ [/ latex].
Обсуждение
В этом примере тепло, передаваемое контейнеру, составляет значительную долю от общего переданного тепла. Хотя вес кастрюли в два раза больше, чем у воды, удельная теплоемкость воды более чем в четыре раза больше, чем у алюминия.Следовательно, для достижения заданного изменения температуры воды требуется чуть более чем в два раза больше тепла по сравнению с алюминиевым поддоном.
Пример 2. Расчет повышения температуры в результате работы, проделанной с веществом: перегрев тормозов грузовика на спуске
Рис. 2. Дымящиеся тормоза этого грузовика — видимое свидетельство механического эквивалента тепла.
Тормоза грузовика, используемые для контроля скорости на спуске, работают, преобразуя гравитационную потенциальную энергию в повышенную внутреннюю энергию (более высокую температуру) тормозного материала.Это преобразование предотвращает преобразование потенциальной гравитационной энергии в кинетическую энергию грузовика. Проблема в том, что масса грузовика велика по сравнению с массой тормозного материала, поглощающего энергию, и повышение температуры может происходить слишком быстро, чтобы тепло передавалось от тормозов в окружающую среду.
Рассчитайте повышение температуры 100 кг тормозного материала со средней удельной теплоемкостью 800 Дж / кг ºC, если материал сохраняет 10% энергии от грузовика массой 10 000 кг, спускающегося 75.0 м (при вертикальном перемещении) с постоянной скоростью.
Стратегия
Если тормоза не применяются, потенциальная гравитационная энергия преобразуется в кинетическую энергию. При срабатывании тормозов потенциальная гравитационная энергия преобразуется во внутреннюю энергию тормозного материала. Сначала мы вычисляем гравитационную потенциальную энергию ( Mgh ), которую весь грузовик теряет при спуске, а затем находим повышение температуры, возникающее только в тормозном материале.
Решение
- Рассчитайте изменение гравитационной потенциальной энергии при спуске грузовика Mgh = (10,000 кг) (9.{\ circ} C \\ [/ латекс].
Обсуждение
Эта температура близка к температуре кипения воды. Если бы грузовик ехал какое-то время, то непосредственно перед спуском температура тормозов, вероятно, была бы выше, чем температура окружающей среды. Повышение температуры при спуске, вероятно, приведет к повышению температуры тормозного материала выше точки кипения воды, поэтому этот метод непрактичен. Однако та же идея лежит в основе недавней гибридной технологии автомобилей, в которой механическая энергия (гравитационная потенциальная энергия) преобразуется тормозами в электрическую энергию (аккумулятор).
Таблица 1. Удельная теплоемкость различных веществ | ||
---|---|---|
Вещества | Удельная теплоемкость ( c ) | |
Твердые вещества | Дж / кг ⋅ ºC | ккал / кг ⋅ ºC |
Алюминий | 900 | 0,215 |
Асбест | 800 | 0,19 |
Бетон, гранит (средний) | 840 | 0.20 |
Медь | 387 | 0,0924 |
Стекло | 840 | 0,20 |
Золото | 129 | 0,0308 |
Человеческое тело (в среднем при 37 ° C) | 3500 | 0,83 |
Лед (в среднем от −50 ° C до 0 ° C) | 2090 | 0,50 |
Чугун, сталь | 452 | 0,108 |
Свинец | 128 | 0.0305 |
Серебро | 235 | 0,0562 |
Дерево | 1700 | 0,4 |
Жидкости | ||
Бензол | 1740 | 0,415 |
этанол | 2450 | 0,586 |
Глицерин | 2410 | 0,576 |
Меркурий | 139 | 0,0333 |
Вода (15.0 ° С) | 4186 | 1.000 |
Газы | ||
Воздух (сухой) | 721 (1015) | 0,172 (0,242) |
Аммиак | 1670 (2190) | 0,399 (0,523) |
Двуокись углерода | 638 (833) | 0,152 (0,199) |
Азот | 739 (1040) | 0,177 (0,248) |
Кислород | 651 (913) | 0.156 (0,218) |
Пар (100 ° C) | 1520 (2020) | 0,363 (0,482) |
Обратите внимание, что Пример 2 является иллюстрацией механического эквивалента тепла. В качестве альтернативы повышение температуры может быть произведено с помощью паяльной лампы, а не механически.
Пример 3. Расчет конечной температуры при передаче тепла между двумя телами: заливка холодной воды в горячую кастрюлю
Допустим, вы залили 0,250 кг 20.0ºC воды (около чашки) в алюминиевую кастрюлю весом 0,500 кг, снятую с плиты, при температуре 150ºC. Предположим, что поддон стоит на изолированной подушке и выкипает незначительное количество воды. Какова температура, когда вода и поддон через короткое время достигают теплового равновесия?
Стратегия
Кастрюлю кладут на изолирующую подкладку, чтобы тепло не передавалось с окружающей средой. Изначально кастрюля и вода не находятся в тепловом равновесии: кастрюля имеет более высокую температуру, чем вода.Затем теплообмен восстанавливает тепловое равновесие, когда вода и поддон соприкасаются. Поскольку теплопередача между поддоном и водой происходит быстро, масса испарившейся воды незначительна, а величина тепла, теряемого поддоном, равна теплу, полученному водой. Обмен тепла прекращается, когда достигается тепловое равновесие между кастрюлей и водой. Теплообмен можно записать как | Q горячий | = Q холодный .
Решение
Используйте уравнение теплопередачи Q = mc Δ T , чтобы выразить тепло, теряемое алюминиевой сковородой, через массу сковороды, удельную теплоемкость алюминия, начальную температуру сковороды и конечная температура: Q горячий = м Al c Al ( T f — 150ºC).
Выразите тепло, полученное водой, через массу воды, удельную теплоемкость воды, начальную температуру воды и конечную температуру: Q холодная = м W c W ( T f — 20,0 ° C).
Обратите внимание, что Q горячий <0 и Q холодный > 0 и что они должны быть в сумме равными нулю, потому что тепло, теряемое горячей сковородой, должно быть таким же, как тепло, полученное холодной водой:
[латекс] \ begin {array} {lll} Q _ {\ text {cold}} + Q _ {\ text {hot}} & = & 0 \\ Q _ {\ text {cold}} & = & — Q _ {\ text {hot}} \\ m _ {\ text {W}} c _ {\ text {W}} \ left (T _ {\ text {f}} — 20.{\ circ} \ text {C} \ end {array} \\ [/ latex]
Обсуждение
Это типичная проблема калориметрии — два тела при разных температурах контактируют друг с другом и обмениваются теплом до тех пор, пока не будет достигнута общая температура. Почему конечная температура намного ближе к 20,0ºC, чем к 150ºC? Причина в том, что вода имеет большую удельную теплоемкость, чем большинство обычных веществ, и поэтому претерпевает небольшое изменение температуры при данной теплопередаче. Большой водоем, например озеро, требует большого количества тепла для значительного повышения температуры.Это объясняет, почему температура в озере остается относительно постоянной в течение дня, даже когда изменение температуры воздуха велико. Однако температура воды действительно меняется в течение длительного времени (например, с лета на зиму).
Эксперимент на вынос: изменение температуры земли и воды
Что нагревается быстрее, земля или вода?
Для изучения разницы в теплоемкости:
- Поместите равные массы сухого песка (или почвы) и воды одинаковой температуры в две небольшие банки.(Средняя плотность почвы или песка примерно в 1,6 раза больше плотности воды, поэтому вы можете получить примерно равную массу, используя на 50% больше воды по объему.)
- Нагрейте оба предмета (с помощью духовки или нагревательной лампы) одинаковое время.
- Запишите конечную температуру двух масс.
- Теперь доведите обе банки до одинаковой температуры, нагревая их в течение более длительного периода времени.
- Снимите банки с источника тепла и измеряйте их температуру каждые 5 минут в течение примерно 30 минут.
Какой образец остывает быстрее всего? Эта деятельность воспроизводит явления, ответственные за дующий с суши и морской бриз.
Проверьте свое понимание
Если 25 кДж необходимо для повышения температуры блока с 25 ° C до 30 ° C, сколько тепла необходимо для нагрева блока с 45 ° C до 50 ° C?
Решение
Теплопередача зависит только от разницы температур. Поскольку разница температур в обоих случаях одинакова, во втором случае необходимы те же 25 кДж.
Сводка раздела
- Передача тепла Q , которая приводит к изменению Δ T температуры тела массой м составляет Q = мк Δ T , где c — удельная теплоемкость материала. Это соотношение также можно рассматривать как определение удельной теплоемкости.
Концептуальные вопросы
- Какие три фактора влияют на теплопередачу, необходимую для изменения температуры объекта?
- Тормоза в автомобиле повышают температуру на Δ T при остановке автомобиля со скорости v .Насколько больше Δ T было бы, если бы автомобиль изначально имел вдвое большую скорость? Вы можете предположить, что автомобиль останавливается достаточно быстро, чтобы не отводить тепло от тормозов.
Задачи и упражнения
- В жаркий день температура в бассейне объемом 80 000 л повышается на 1,50ºC. Какова чистая теплопередача при этом нагреве? Игнорируйте любые осложнения, такие как потеря воды из-за испарения.
- Докажите, что 1 кал / г · ºC = 1 ккал / кг · ºC.
- Для стерилизации 50.Стеклянная детская бутылочка 0 г, мы должны поднять ее температуру с 22,0 ° С до 95,0 ° С. Какая требуется теплопередача?
- Одинаковая передача тепла идентичным массам разных веществ вызывает разные изменения температуры. Рассчитайте конечную температуру, когда 1,00 ккал тепла передается 1,00 кг следующих веществ, первоначально при 20,0 ° C: (a) вода; (б) бетон; (в) сталь; и d) ртуть.
- Потирание рук согревает их, превращая работу в тепловую энергию. Если женщина трет руки взад и вперед в общей сложности 20 движений, на расстоянии 7.50 см на руб, а при средней силе трения 40,0 Н, что такое повышение температуры? Масса согреваемых тканей всего 0,100 кг, в основном в ладонях и пальцах.
- Блок чистого материала массой 0,250 кг нагревают с 20,0 ° C до 65,0 ° C за счет добавления 4,35 кДж энергии. Вычислите его удельную теплоемкость и определите вещество, из которого он, скорее всего, состоит.
- Предположим, что одинаковые количества тепла передаются различным массам меди и воды, вызывая одинаковые изменения температуры.Какое отношение массы меди к воде?
- (a) Количество килокалорий в пище определяется калориметрическими методами, при которых пища сжигается и измеряется теплоотдача. Сколько килокалорий на грамм содержится в арахисе весом 5,00 г, если энергия его горения передается 0,500 кг воды, содержащейся в алюминиевой чашке весом 0,100 кг, что вызывает повышение температуры на 54,9 ° C? (b) Сравните свой ответ с информацией на этикетке, содержащейся на упаковке арахиса, и прокомментируйте, согласуются ли значения.
- После интенсивных упражнений температура тела человека весом 80,0 кг составляет 40,0 ° C. С какой скоростью в ваттах человек должен передавать тепловую энергию, чтобы снизить температуру тела до 37,0 ° C за 30,0 мин, если тело продолжает вырабатывать энергию со скоростью 150 Вт? 1 Вт = 1 Дж / с или 1 Вт = 1 Дж / с.
- Даже после остановки после периода нормальной эксплуатации большой промышленный ядерный реактор передает тепловую энергию со скоростью 150 МВт за счет радиоактивного распада продуктов деления.Эта теплопередача вызывает быстрое повышение температуры в случае отказа системы охлаждения (1 Вт = 1 джоуль / сек или 1 Вт = 1 Дж / с и 1 МВт = 1 мегаватт). (a) Рассчитайте скорость повышения температуры в градусах Цельсия в секунду (ºC / с), если масса активной зоны реактора составляет 1,60 × 10 5 кг, а ее средняя удельная теплоемкость составляет 0,3349 кДж / кг ºC. (b) Сколько времени потребуется, чтобы получить повышение температуры на 2000 ° C, которое может привести к расплавлению некоторых металлов, содержащих радиоактивные материалы? (Начальная скорость повышения температуры будет больше, чем рассчитанная здесь, потому что теплопередача сосредоточена в меньшей массе.Позже, однако, повышение температуры замедлится, потому что стальная защитная оболочка 5 × 10 5 кг также начнет нагреваться.)
Рисунок 3. Бассейн с радиоактивным отработавшим топливом на атомной электростанции. Отработанное топливо долго остается горячим. (кредит: Министерство энергетики США)
Глоссарий
удельная теплоемкость: количество тепла, необходимое для изменения температуры 1,00 кг вещества на 1,00 ºC
Избранные решения проблем и упражнения
1.5,02 × 10 8 Дж
3. 3.07 × 10 3 Дж
5. 0,171ºC
7. 10,8
9. 617 Вт
Градусы нагрева и охлаждения в днях Градусные дни основаны на предположении, что при наружной температуре 65 ° F нам не нужно обогревать или охлаждать, чтобы чувствовать себя комфортно.Градусо-дни — это разница между средней дневной температурой (высокая температура плюс низкая, деленная на два) и 65 ° F. Если среднее значение температуры выше 65 ° F, мы вычитаем 65 из среднего и получаем градус охлаждения в днях . Если среднее значение температуры ниже 65 ° F, мы вычитаем среднее значение из 65 и получаем градус нагрева в днях . ——————— ——————— — —————————— Пример 1: Высокая температура в конкретный день составляла 90 ° F, а низкая температура — 66 ° F.Средняя температура в тот день была: (90 ° F + 66 ° F) / 2 = 78 ° F Поскольку результат выше 65 ° F: 78 ° F — 65 ° F = 13 Градус охлаждения в днях
Пример 2: Высокая температура в конкретный день составляла 33 ° F, а низкая — 25 ° F. Средняя температура в тот день была: Поскольку результат ниже 65 ° F: 65 ° F — 29 ° F = 36 Градус нагрева дней . Вычисления, показанные в двух приведенных выше примерах, выполняются для каждого дня в году, а суточные градусо-дни суммируются, чтобы мы могли сравнивать месяцы и времена года. |
Влияние температуры объема и пленки на теплоносители
Влияние температуры массы и пленки на теплоносители
Передача тепла обычно происходит от объекта с высокой температурой к объекту с более низкой температурой. Обычно при нормальной работе теплоносителей передача тепла осуществляется всеми тремя способами — конвекцией, теплопроводностью и излучением.Первый — принудительной конвекцией теплоносителя циркуляционным насосом. Конвекция — это передача тепла за счет массового движения жидкости, когда нагретая жидкость движется от источника тепла или нагревателя, перенося с собой энергию к источнику, на который она нацелена на нагрев. Второй — за счет передачи тепла от нагревающей жидкости через стенку трубы к нагреваемой среде. Наконец, за счет излучения, от тепла, испускаемого стенкой трубки, которая нагревается теплоносителем для нагрева целевой среды.
Расход теплоносителя или среды используется для определения максимальной температуры, возникающей в системе отопления. Эта температура возникает в нагревателе. Важно поддерживать высокий расход за счет конвекции внутри нагревательной трубки. Это уменьшит разницу между температурой пленки стенки / трубки и температурой в объеме теплоносителя, сохраняя при этом высокий коэффициент теплопередачи пленки.
Максимальная температура в объеме — это самая высокая средняя температура теплоносителя, которая обычно имеет место на выходе из нагревателя жидкости.Термическое разложение теплоносителя будет удваиваться на каждые 18–20 ° F повышения температуры жидкости в объеме. Это может привести к сокращению срока службы теплоносителя вдвое, если он будет работать почти на 20 ° F выше максимальной номинальной температуры в объеме. Понижение температуры в аналогичных градусах снизило бы скорость разложения жидкости вдвое. Следовательно, небольшие изменения температуры могут иметь большое влияние на срок службы теплоносителя при повышенных температурах. Очень важно понять, почему важно точно определить предел термической стабильности для жидкости, а также работать при соответствующей температуре объема теплоносителя.
Кроме того, температура пленки является важным аспектом скорости термического разложения теплоносителя. Максимальная температура пленки — это самая высокая температура, которую жидкость испытывает в системе. Максимальная температура пленки обычно находится рядом со стенкой трубки на поверхности нагрева и обычно на 50 ° F (10 ° C) выше, чем температура жидкости в объеме.
В типичных системах от 15 до 25% общего разложения теплоносителя происходит в области пленки.Учтите также, что если расход теплоносителя уменьшается, а подвод тепла остается постоянным, температура пленки и массы увеличится. Это также приводит к тому, что меньшая масса жидкости доступна для отвода тепла, передаваемого стенке трубы. А поскольку коэффициент пленки почти линейно зависит от скорости, температура пленки будет увеличиваться из-за снижения эффективности теплопередачи. Это приведет к термической деградации теплоносителя по мере того, как он достигнет и превзойдет температуру пленки системы.
В заключение, важно понимать правильную рабочую температуру жидкости в объеме, а также ее максимальную температуру пленки. Работа, близкая к любому условию или превосходящая его, может привести к более быстрой деградации вашего теплоносителя.
Для получения дополнительной технической поддержки звоните в MultiTherm® TechTeam по телефону 800-225-7440.
Ключевые моменты в этом выпуске:
- Четко определите рабочую температуру жидкости в объеме и максимальную температуру пленки.
- Срок службы теплоносителя сокращается вдвое при работе на 18–20 ° F выше максимальной температуры в объеме.
- Срок службы жидкости можно увеличить вдвое, работая на 18–20 ° F ниже максимальной температуры в объеме.
- От 15 до 25% разложения жидкости происходит в диапазоне температур пленки. Уменьшение потока теплоносителя может привести к перегреву и ухудшению качества масла, поскольку оно превышает максимальную температуру пленки.
- MultiTherm® представляет новую стойкую к окислению HTF с высокой температурой вспышки и более низким давлением пара.
- MultiTherm® представляет новую экономичную HTF с высокой температурой вспышки и более низким давлением пара
- Не забудьте проводить ежегодный анализ жидкости для теплоносителя.
MultiTherm® представляет новое экономичное масло для теплоносителя
MultiTherm® предлагает новую экономичную альтернативу для пользователей теплоносителя. MultiTherm IG-1® — это минеральное масло высокой степени очистки, прошедшее гидроочистку Группы II, предназначенное в первую очередь для использования в закрытых системах теплопередачи.MultiTherm IG-1® разработан для использования в системах с обратной связью, которые оснащены расширительными баками, предохранительными клапанами и азотной подушкой. В правильно спроектированных системах он обеспечивает бесперебойное и продолжительное обслуживание конечного пользователя.
MultiTherm IG-1® является отличным теплоносителем на многих рынках, которые ищут экономичную альтернативу своим промышленным производственным процессам. Общие заявки на
MultiTherm IG-1®; теплообменное оборудование, используемое в производстве битумной черепицы и кровельных смесей, оборудования для укладки дорог, литья под давлением, на рынках бумаги и ДСП.MultiTherm IG-1® обеспечивает превосходную теплопроводность при высоких температурах; низкое давление пара; и высокая температура воспламенения, а также устойчивость к тепловому пробою и длительный термический срок службы в системах с замкнутым контуром.
Если вы ищете экономичный жидкий теплоноситель, вам необходимо рассмотреть MultiTherm IG-1®.
MultiTherm® представляет новое стойкое к окислению масло-теплоноситель
MultiTherm® предлагает следующее поколение теплоносителя для нашей растущей базы пользователей теплоносителя.MultiTherm OG-1® — это базовое масло гидрокрекинга в сочетании с новейшим запатентованным ингибитором / стабилизатором окисления. MultiTherm OG-1® был разработан для удовлетворения растущих и жестких требований к жидкофазной теплопередаче в открытых системах.
MultiTherm OG-1® обеспечивает превосходную теплопроводность при высоких температурах; низкое давление пара; и высокая температура воспламенения. Термическая стабильность благодаря преимуществам стойкости к окислению снижает эффективность таких компонентов, как отложения кокса и твердых частиц.
Наконец, более длительный срок службы масла означает меньшие затраты на техническое обслуживание; меньшее время простоя технологического процесса, меньшее количество утилизации масла и уменьшение вредного воздействия на окружающую среду.
Итак, если у вас система с открытым контуром или ваш расширительный бак открыт для атмосферы, тогда MultiTherm OG-1® — это продукт для вас.
Не забудьте проводить ежегодный анализ жидкости
Разработайте программу профилактического обслуживания нагревателя для горячего масла, ежегодно проводя анализ жидкости для теплоносителя. MultiTherm TechTeam® может помочь вам по телефону 800-225-7440.
Изоляция и температура — полезная взаимосвязь
Введение
Понимание того, что температурный профиль в сборке изменяется пропорционально значениям R отдельных компонентов, является полезным инструментом для прогнозирования температурного градиента в стене. Изолирующая способность изоляции в основном характеризуется ее коэффициентом сопротивления теплопередаче или сопротивлением тепловому потоку. Единицы R-значения (квадратные футы * градусы F * час) / BTU кажутся неестественными, но их легче понять, если поместить их в контекст.
Основное уравнение теплопередачи:
Q (БТЕ / ч) = U (общий коэффициент теплопередачи)
x A (квадратные футы) x ∆T (градусы F)
Единицами U (общего коэффициента теплопередачи) являются БТЕ / час на квадратный фут на градус F. Это имеет смысл. Для единицы площади (1 квадратный фут) U описывает тепловой поток (БТЕ / час) для движущей силы разницы температур в 1 ° F.
R равно 1 / U, поэтому единицы R становятся (квадратные футы * градусы F) / BTU в час или (квадратные футы * градусы F * час) / BTU.Понимание единиц R объясняет то, что сообщество изоляторов знает интуитивно: по мере увеличения значения R U и, как следствие, скорость теплопередачи уменьшаются. Хотя значение R влияет на ключевой параметр теплового потока, оно не дает полной картины. Температурный профиль или градиент в сборке также могут иметь значение.
Температурный профиль
Изменение температуры в элементе сборки пропорционально доле этого элемента в общем R-значении сборки.Чтобы проиллюстрировать этот принцип, рассмотрим упрощенный случай секции стены с изоляцией из войлока R-13 в полости стойки и сплошным слоем пенопластовой изоляции толщиной 1 дюйм, как показано на Рисунке 1 (каркас, внутренняя отделка, обшивка и сайдинг не показаны. для простоты примера). Для температуры в помещении 68 ° F и температуры наружного воздуха 8 ° F температура на границе раздела между войлоком и пеной будет 27 ° F (эффект пленок внутреннего и наружного воздуха не учитывается).
Таблица 1 показывает расчет для примера на Рисунке 1.Этот метод применим к любому количеству слоев компонентов в сборке.
Важное приложение
С точки зрения теплового потока, общее правило состоит в том, что чем больше изоляция, тем лучше (меньший тепловой поток). Тепловой поток не всегда является единственным соображением.
Рассмотрим здание с изолированной стальной крышей, подвесным потолком и каналом возврата ОВК, поэтому полость над потолком не является вытяжным воздухозаборником. Таблица 2 показывает расчет U-значения для этой сборки.
Применение расчета градиента температуры к неизолированной конструкции потолка позволяет прогнозировать температуру полости потолка 66 ° F в расчетный день (70 ° F в помещении / 0 ° F на улице):
- Значение R в сборе: 33,36
- R-показатель снаружи до потолочной полости: 31,50
- Разница температур: (31,50 / 33,36) * (70-0) 66,1 ° F
- Температура в полости потолка (0 ° F на открытом воздухе + расчетная разница): 66,1 ° F
При температуре потолочной полости 66 ° F в самый холодный день отсутствует риск замерзания труб, и можно изолировать воздуховоды до толщины, необходимой для воздуховодов в кондиционируемом помещении.
Предположим, владелец решает утеплить потолок стекловолокном R-21 для дополнительной экономии энергии. Было бы это решение разумным? Чтобы определить ответ, дизайнер должен учитывать как стоимость сэкономленной энергии, так и влияние на температуру воздуха в полости потолка.
- Если к потолку добавить изоляцию R-21, U-значение сборки (вне помещения в занятое пространство) упадет с 0,030 до 0,018. В результате расчетные дневные тепловые потери для 1000 квадратных футов конструкции крыши / потолка снизятся с 2100 BTUH до 1260 BTUH.
- При ежегодном потреблении тепловой энергии примерно 750 эквивалентных часов при полной нагрузке (разумно для коммерческого здания с внутренним притоком тепла от света, людей и оборудования) дополнительная изоляция сэкономит 7 термов газа или 8,40 доллара в год по цене 1,20 доллара за терм. (2100 — 1260) БТЕ / час * 750 часов
100000 БТЕ / терм * 90% КПД = 7 терм Не вредно, но и не экономично. - Более важный вопрос — что произойдет с температурой в полости потолка. Дополнительная изоляция над потолком изменяет значение R этого компонента и результирующий температурный профиль. Значение R сборки 54,36
Значение R от наружного воздуха до чердака: 31,50
Разница температур (31,50 / 54,36) * (70-0): 40,6 ° F
Температура в полости потолка (0 ° F на улице + расчетная разница): 40,6 ° F
Хотя риск замерзания труб до 40 ° F по-прежнему отсутствует, температура достаточно близка для беспокойства, если здание перейдет в режим пониженной температуры в течение выходных.Кроме того, воздуховоды HVAC теперь находятся за пределами эффективной теплоизоляционной оболочки здания. Потери тепла из приточных каналов в более холодную полость потолка снизят температуру приточного воздуха для отопления в занимаемом помещении. Из-за более низкой температуры приточного воздуха некоторые жилые помещения могут не отапливаться. Аналогичным образом, охлаждающие воздуховоды будут находиться в более теплой, чем ожидалось, окружающей среде с соответствующим нежелательным (и, возможно, неожиданным) повышением температуры приточного воздуха, что снижает охлаждающую способность помещения.
Добавление изоляции снизит потери тепла, но стоимость установки может обеспечить или не обеспечить привлекательную экономию эксплуатационных расходов.И не менее важно учитывать изменение температурного профиля при принятии решения о том, сколько изоляции добавить и где ее разместить. В этом случае изоляция поверх потолка снижает температуру в полости потолка настолько, что это вызывает беспокойство.
Деревянная каркасная конструкция
Конструкция с деревянным каркасом популярна для легких коммерческих зданий или 2-х или 3-х этажных квартир над коммерческими помещениями первого этажа. Изоляция полости в 6-дюймовой стойке стены может быть R-21. Изоляционное значение R-6.88 деревянной стойки 2 × 6 настолько меньше, чем изоляция полости R-21, что расчеты U-value должны учитывать разницу.При расчете коэффициента теплопередачи для деревянного каркаса (каркасная стена или балочный потолок / стропильный потолок или сборка крыши) используется метод средневзвешенной площади. Средневзвешенное значение учитывает более низкую изоляционную ценность деревянного каркаса по сравнению с изоляцией полости. Деревянный каркас обычно используется для стен, но также используется для строительства крыши / потолка в небольших зданиях. В таблице 3 показан расчет коэффициента теплопередачи для деревянного каркаса крыши с чердаком без вентиляции и изоляцией в стропилах крыши.
Рассмотрим вариант вышеупомянутого примера потолочной камеры статического давления — небольшое офисное здание с деревянным каркасом и конструкцией крыши, показанной в Таблице 3.Середина чердака может быть законченным пространством с коленными стенами и незанятым местом под навесом, оставленным для оборудования HVAC и воздуховодов. Карнизное пространство находится внутри изолированной оболочки, поэтому воздуховоды и оборудование HVAC могут быть изолированы в соответствии со стандартами для оборудования в кондиционируемом помещении. С изоляцией в стропилах и чердаке без вентиляции пол карниза / потолок занимаемого пространства ниже, как правило, не изолирован.
Расчет градиента температуры для этой конструкции предсказывает температуру 60 ° F в пространстве карниза в расчетный день (70 ° F в помещении / 0 ° F на улице):
- U-значение сборки (средневзвешенное значение на стойках и между стойками): 0.024
- Значение R в сборе (1 / U): 41,67
- Показатель U от улицы до чердака (средневзвешенное значение): 0,028
- R-коэффициент от улицы до чердака (1 / U): 35,71
- Разница температур (35,71 / 41,67) * (70-0): 60,0 ° F
- Температура пространства карниза (0 ° F на улице + расчетная разница): 60,0 ° F
При 60 ° F в пространстве карниза в самый холодный день отсутствует риск замерзания труб и минимальные потери тепла из каналов системы отопления.
Допустим, хозяин решил утеплить потолок этажом ниже.С дополнительной изоляцией R-38 в отсеках балок потолка коэффициент U сборки (вне помещения в занимаемое пространство) упадет с 0,024 до 0,014.
Дополнительная изоляция в нишах потолочных балок (перекрытие карниза) изменяет долю этого компонента в R-значении сборки и результирующем температурном профиле:
- Значение U в сборе (средневзвешенное значение для шпилек и между ними): 0,014
- Значение R в сборе (1 / U): 71,43
- Показатель U от улицы до чердака (средневзвешенный): 0.028
- R-коэффициент от улицы до чердака (1 / U): 35,71
- Разница температур (35,71 / 71,43) * (70-0): 35,0 ° F
- Температура пространства карниза (0 ° F на открытом воздухе + расчетная разница): 35,0 ° F
Хотя по-прежнему нет риска замерзания труб, проходящих через пространство карниза, температура находится в опасно близком диапазоне. При настройке пониженной температуры 55 ° F температура в пространстве карниза может упасть ниже 32 ° F, и возникнет опасность замерзания трубы, если наружная температура упадет ниже 9 ° F.
Что еще более важно, высокий коэффициент сопротивления изоляции в полу нижнего потолка выводит систему отопления за пределы эффективной изоляционной оболочки. Как и в случае с изолированной полостью потолка, потери тепла из приточных каналов в более холодное карнизное пространство снизят температуру приточного воздуха в занимаемом помещении. Более низкая температура приточного воздуха из-за теплоизоляции пола карниза может привести к нехватке тепла в помещениях, находящихся ниже.
Мосты холода и температура поверхности
Пример конструкции деревянного каркаса иллюстрирует метод средневзвешенного значения для учета тепловых мостов, которые имеют некоторую изоляционную ценность.Тепловые мосты, такие как стальные шпильки, не имеющие изоляционных свойств, представляют собой другую проблему.
Стандарт ASHRAE 90.1 и Международный кодекс по энергосбережению (IECC) содержат поправки к R ‑ значениям изоляции полости для учета теплового мостикового эффекта стальных шпилек. Разработчики таблицы рассчитали многомерный тепловой поток, чтобы обеспечить поправочные коэффициенты, которые исключают необходимость расчета средневзвешенного значения, используемого для деревянного каркаса. В таблице 4 перечислены некоторые распространенные случаи из Standard 90.1 / таблицы IECC.
Эффективные R-значения полости представляют собой комбинированные характеристики стойки (или балки, или стропила) и изоляции. Нет необходимости в вычислении средневзвешенного значения (при обрамлении / между каркасами), используемом для деревянного каркасного строительства. Значения R в таблице относятся к расчетам теплопотерь и температуры помещения.
Риск конденсации и связанное с ним явление «ореола» (отложения мелких частиц грязи, выделяющие шпильки) зависят от местной температуры поверхности.Расчет значения R / градиента температуры, который прогнозирует профиль температуры в сборке, также работает для прогнозирования температуры внутренней поверхности. Для этого расчета R-значение от внешней стороны до внутренней поверхности равно R-значению сборки за вычетом R-значения внутренней воздушной пленки:
- 0,68 для вертикальных поверхностей
- 0,61 для горизонтальных поверхностей с тепловым потоком вверх
- 0,92 для горизонтальных поверхностей с тепловым потоком вниз
Конденсат образуется на любой поверхности, температура которой ниже точки росы окружающего воздуха.Если температура поверхности ниже 32 ° F (что может случиться с дверными и оконными рамами), конденсат выглядит как иней. Пятна или отложения грязи, как правило, возникают там, где локальная температура поверхности ниже, чем на прилегающих поверхностях.
Стальные шпильки обладают такой высокой теплопроводностью по сравнению с изоляцией, что аналитикам требуется методика для оценки температуры поверхности в «каркасе» конструкции каркаса из стальных стоек. Модифицированный зонный метод для металлических стен с изолированными полостями1, 2 обеспечивает работоспособную технику.
Рассмотрим 2 конструкции каркасной стены с одинаковыми значениями коэффициента теплопередачи: стойки 2 × 6 с изоляцией полости R-21 (U = 0,106 в сборе) и стойки 2 × 4 с изоляцией полости R-11 и сплошной изоляцией R ‑ 3 снаружи стоек (сборка U = 0,095). В таблице 5 представлены расчеты коэффициента теплопередачи для этих двух стен.
Стена 2 × 4 имеет небольшое преимущество с точки зрения более низких тепловых потерь, но экономия энергии по сравнению со стеной 2 × 6 может не оправдать дополнительных затрат труда и материалов для установки изоляционного слоя из пенопласта.(Непривлекательная экономика не мешает строительным нормам требовать наличия непрерывного изоляционного слоя для конструкции стен с полыми стальными стойками.)
Анализ температуры поверхности с учетом теплового моста стальной шпильки может привести к другому выводу.
Теплопроводность стальных шпилек (314 БТЕ / час / фут на дюйм толщины) настолько выше, чем у стекловолокна (0,29 БТЕ / час / фут на дюйм толщины), что эффект теплового моста стальной шпильки выходит за рамки ширина шпильки.Высокая теплопроводность (низкое значение R) стальной стойки означает, что холодная область стойки хорошо проникает в конструкцию стены. Когда эти холодные секции находятся в середине конструкции стены, тепло течет по ширине изолированной полости (к холодной стойке) в дополнение к течению в основном направлении через толщину стены. Этот тепловой поток через стену (в отличие от стены) увеличивает зону воздействия или эффективную ширину теплового моста стальной стойки.
Зону воздействия или эффективную ширину стальной шпильки можно оценить как ширину фланца (обычно 1‑5 / 8 ″) плюс удвоенная глубина оболочки и других элементов, прикрепленных к внешней стороне шпильки с максимальным 1 ″ .3 В таблице 6 показаны зоны воздействия, значения коэффициента теплопередачи и температуры поверхности для примера стены 2 × 6 и стены 2 × 4 с непрерывной изоляцией R-3.
* Т дюйм = 70 ° F; Т вых = 20 ° F
При расчете коэффициента теплопередачи для зоны воздействия используется метод средневзвешенного значения, аналогичный методу, используемому для деревянного каркаса с небольшой разницей.Для стальных шпилек в этом методе фланцы и перегородка шпильки рассматриваются как отдельные расчетные слои.4
Температуры поверхностей в таблице 6 были рассчитаны с использованием метода R-значение / температурный градиент, который использовался для случаев потолка и карниза выше. Например, температура поверхности стены с каркасом 2 × 4 с непрерывной изоляцией из пенопласта 1/2 ″ составляет:
- U-значение сборки (средневзвешенное значение для зоны влияния): 0,180
- Значение R в сборе (1 / U): 5,56
- R-значение вне помещения на поверхность 4.88
- Разница температур (4,88 / 5,56) * (70-20): 43,9 ° F
- Температура чердака (0 ° F на открытом воздухе + расчетная разница): 63,9 ° F
Как и в случае с температурой полости потолка и карниза, общее значение R ‑ не говорит всей картины. Слой непрерывной изоляции в стене 2 × 4 защищает стальную стойку с высокой проводимостью от воздействия температуры, близкой к температуре наружного воздуха. Это уменьшает последствия теплового моста и повышает температуру внутренней поверхности.Требования строительных норм и правил для слоя непрерывной изоляции за пределами конструкции стены с полыми стальными стойками служат полезной цели.
Take Away Message
Понимание того, что профиль температуры в сборке изменяется пропорционально значениям R ‑ отдельных компонентов, является полезным инструментом для прогнозирования температурного градиента в стене. Расчет температурных профилей может дать разработчикам информацию о том, где разместить изоляцию в сборке. Он также может прогнозировать температуру поверхности и риск конденсации и предоставляет инструмент для оценки альтернативных вариантов конструкции.
Источники
- Американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха. Справочник ASHRAE 2017: основы. Дюйм-фунт изд. Атланта, Джорджия: ASHRAE, стр 27.5-27.6.
- Barbour, E., Goodrow, J., Kosny, J., and Christian, J.E., Mon. «Тепловые характеристики стен со стальным каркасом. Заключительный отчет.» Соединенные Штаты. DOI: 10,2172 / 111848. https://www.osti.gov/servlets/purl/111848
- Американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха.Справочник ASHRAE 2017: основы. Дюйм-фунт изд. Атланта, Джорджия: ASHRAE, стр. 27.5–27.6.
- Американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха. Справочник ASHRAE 2017: основы. Дюйм-фунт изд. Атланта, Джорджия: ASHRAE, пример 5, стр. 27.5-27.6.
NDBC — Научное образование — Что вызывает разницу в температуре воздуха между поверхностью суши и водоемом?
Чтобы ответить на этот вопрос, мы должны рассмотреть различные пути распространения тепла.
вокруг и сквозь предметы.
Существует три метода перемещения тепла:
- ПРОВОДИМОСТЬ — Передача тепла через среду.
Вот так мы готовим еду на плите. Тепло от горелки печи отводится
через среду (металлический горшок) к еде. - КОНВЕКЦИЯ — Передача тепла за счет физического
движение объекта. Мы можем наблюдать конвекцию, глядя на кастрюлю с кипящей водой.
Вы когда-нибудь замечали, что когда горшок с водой кипит, кажется, что вода течет по течению.
вертикальное круговое движение? Это конвекция.Пакет с подогретой водой внизу
Горшка поднимается, по мере того, как поднимается, отдает часть своего тепла. Потому что он теряет тепло,
посылка холоднее окружающей воды. Затем он опускается на дно горшка
и процесс запускается снова. Путь подъема воды с последующим опусканием
вода очерчивает круг. - ИЗЛУЧЕНИЕ — Передача тепла посредством волн. Этот
это самый сложный для понимания метод теплопередачи. Тем не менее, мы испытываем это каждые
день.Мы чувствуем воздействие радиации всякий раз, когда стоим возле плиты или духовки,
использовал. Мы чувствуем тепло, исходящее от плиты или духовки к нашей коже. Точно так же у нас есть все
был на улице в солнечный, жаркий летний день. Если мы посмотрим на небо, мы почувствуем лучи
Солнце падает на наши лица. Солнце излучает на Землю свое тепло.
Именно благодаря одному из вышеперечисленных процессов теплопередачи происходит повышение температуры воздуха.
зимой на глубоководной станции 41001 будет теплее, чем на наземной станции CLKN7.
месяцы.Какой процесс вы считаете причиной разницы температур воздуха?
между этими двумя станциями? Подскажу, это как-то связано с температурой
воды океана. Давайте посмотрим на график средней температуры воздуха и воды от
Станция 41001.
Как видно из графика, температура воды в январе (месяц 1) и феврале (месяц 2)
составляют около 20 градусов, тогда как соответствующая температура воздуха составляет около 15 градусов. Это 5
градусная разница в температуре воздуха и воды в одном и том же географическом месте !!
Мы можем выяснить, какой процесс теплопередачи влияет на температуру воздуха на станции
41001, применив три метода к нашей ситуации, а затем мы можем выбрать тот, который кажется наиболее подходящим.
логично.
Во-первых, давайте посмотрим на проводимость. Этот процесс включает в себя передачу тепла через проводящий
средний. Что ж, между воздухом и водной поверхностью ничего не существует. В нашей ситуации жара
переходя непосредственно из воды в воздух, не проходя через проводящую среду. Следовательно,
это неприменимый процесс, который вызывает теплые зимние температуры воздуха на станции.
41001.
Конвекция предполагает движение нагретых предметов. Физическое движение должно быть результатом
нагревание, например, в кастрюле с кипящей водой, где вертикальное движение вызвано
дно кастрюли прикладывают к сильному теплу.Потому что вода в океане не движется внутрь и не проходит
атмосферы в результате нагрева воды солнцем, конвекция не влияет на
разница температур воздуха и воды. Океанская вода движется через несколько нижних футов воздуха, как
волны на поверхности океана, но этого не происходит из-за солнечного тепла.
Последний процесс, радиация, вызывает повышение температуры воздуха над водой в зимнее время.
чем зимние температуры воздуха над сушей. Тепло океана излучается (излучается)
в воздух, тем самым делая воздух значительно теплее.
Вернуться в дом естественнонаучного образования
курсов PDH онлайн. PDH для профессиональных инженеров. ПДХ Инжиниринг.
«Мне нравится широта ваших курсов по HVAC; не только экология или экономия энергии
курсов. «
Russell Bailey, P.E.
Нью-Йорк
«Это укрепило мои текущие знания и научило меня еще нескольким новым вещам
, чтобы познакомить меня с новыми источниками
информации.»
Стивен Дедак, П.Е.
Нью-Джерси
«Материал был очень информативным и организованным. Я многому научился, и они были
.
очень быстро отвечает на вопросы.
Это было на высшем уровне. Будет использовать
снова. Спасибо. «
Blair Hayward, P.E.
Альберта, Канада
«Простой в использовании сайт.Хорошо организовано. Я действительно буду снова пользоваться вашими услугами.
проеду по вашей роте
имя другим на работе. «
Roy Pfleiderer, P.E.
Нью-Йорк
«Справочные материалы были превосходными, и курс был очень информативным, особенно потому, что я думал, что я уже знаком.
с деталями Канзас
Городская авария Хаятт.»
Майкл Морган, P.E.
Техас
«Мне очень нравится ваша бизнес-модель. Мне нравится просматривать текст перед покупкой. Я нашел класс
.
информативно и полезно
на моей работе »
Вильям Сенкевич, П.Е.
Флорида
«У вас большой выбор курсов, а статьи очень информативны.Вы
— лучшее, что я нашел ».
Russell Smith, P.E.
Пенсильвания
«Я считаю, что такой подход позволяет работающему инженеру легко зарабатывать PDH, давая время на просмотр
материал. «
Jesus Sierra, P.E.
Калифорния
«Спасибо, что позволили мне просмотреть неправильные ответы.На самом деле
человек узнает больше
от отказов »
John Scondras, P.E.
Пенсильвания
«Курс составлен хорошо, и использование тематических исследований является эффективным.
способ обучения »
Джек Лундберг, P.E.
Висконсин
«Я очень впечатлен тем, как вы представляете курсы; i.е., позволяя
студент для ознакомления с курсом
материалов до оплаты и
получает викторину «
Арвин Свангер, П.Е.
Вирджиния
«Спасибо за то, что вы предложили все эти замечательные курсы. Я определенно выучил и
получил огромное удовольствие «.
Мехди Рахими, П.Е.
Нью-Йорк
«Я очень доволен предлагаемыми курсами, качеством материалов и простотой поиска.
на связи
курсов.»
Уильям Валериоти, P.E.
Техас
«Этот материал в значительной степени оправдал мои ожидания. По курсу было легко следовать. Фотографии в основном обеспечивали хорошее наглядное представление о
обсуждаемых тем ».
Майкл Райан, P.E.
Пенсильвания
«Именно то, что я искал. Потребовался 1 балл по этике, и я нашел его здесь.»
Джеральд Нотт, П.Е.
Нью-Джерси
«Это был мой первый онлайн-опыт получения необходимых мне кредитов PDH. Это было
информативно, выгодно и экономично.
Я очень рекомендую
всем инженерам »
Джеймс Шурелл, P.E.
Огайо
«Я понимаю, что вопросы относятся к« реальному миру »и имеют отношение к моей практике, и
не на основании каких-то неясных раздел
законов, которые не применяются
до «нормальная» практика.»
Марк Каноник, П.Е.
Нью-Йорк
«Отличный опыт! Я многому научился, чтобы перенести его на свой медицинский прибор.
, организация. «
»
Иван Харлан, П.Е.
Теннесси
«Материалы курса содержали хорошее, не слишком математическое, с хорошим акцентом на практическое применение технологий».
Юджин Бойл, П.E.
Калифорния
«Это был очень приятный опыт. Тема была интересной и хорошо изложенной,
а онлайн формат был очень
доступный и удобный для
использовать. Большое спасибо. «
Патрисия Адамс, P.E.
Канзас
«Отличный способ добиться соответствия требованиям PE Continuing Education в рамках ограничений по времени лицензиата.»
Joseph Frissora, P.E.
Нью-Джерси
«Должен признаться, я действительно многому научился. Помогает иметь печатный тест во время
обзор текстового материала. Я
также оценил просмотр
Предоставлено фактических случаев »
Жаклин Брукс, П.Е.
Флорида
«Документ» Общие ошибки ADA при проектировании объектов «очень полезен.Модель
тест действительно потребовал исследований в
документ но ответы были
в наличии »
Гарольд Катлер, П.Е.
Массачусетс
«Я эффективно использовал свое время. Спасибо за то, что у вас есть широкий выбор.
в транспортной инженерии, что мне нужно
для выполнения требований
Сертификат ВОМ.»
Джозеф Гилрой, П.Е.
Иллинойс
«Очень удобный и доступный способ заработать CEU для моих требований PG в Делавэре».
Ричард Роудс, P.E.
Мэриленд
«Я многому научился с защитным заземлением. До сих пор все курсы, которые я прошел, были отличными.
Надеюсь увидеть больше 40%
курсов со скидкой.»
Кристина Николас, П.Е.
Нью-Йорк
«Только что сдал экзамен по радиологическим стандартам и с нетерпением жду возможности сдать дополнительный
курсов. Процесс прост, и
намного эффективнее, чем
приходится путешествовать. «
Деннис Мейер, P.E.
Айдахо
«Услуги, предоставляемые CEDengineering, очень полезны для профессионалов
Инженеры получат блоки PDH
в любое время.Очень удобно ».
Пол Абелла, P.E.
Аризона
«Пока все отлично! Поскольку я постоянно работаю матерью двоих детей, у меня мало
время искать, где на
получить мои кредиты от. «
Кристен Фаррелл, P.E.
Висконсин
«Это было очень познавательно и познавательно.Легко для понимания с иллюстрациями
и графики; определенно делает это
проще поглотить все
теорий. »
Виктор Окампо, P.Eng.
Альберта, Канада
«Хороший обзор принципов работы с полупроводниками. Мне понравилось пройти курс по
.
мой собственный темп во время моего утро
метро
на работу.»
Клиффорд Гринблатт, П.Е.
Мэриленд
«Просто найти интересные курсы, скачать документы и взять
викторина. Я бы очень рекомендовал
вам на любой PE, требующий
CE единиц. «
Марк Хардкасл, П.Е.
Миссури
«Очень хороший выбор тем из многих областей техники.»
Randall Dreiling, P.E.
Миссури
«Я заново узнал то, что забыл. Я также рад оказать финансовую помощь
по ваш промо-адрес который
сниженная цена
на 40%. «
Конрадо Казем, П.E.
Теннесси
«Отличный курс по разумной цене. Воспользуюсь вашими услугами в будущем».
Charles Fleischer, P.E.
Нью-Йорк
«Это был хороший тест и фактически подтвердил, что я прочитал профессиональную этику
кодов и Нью-Мексико
правил. «
Брун Гильберт, П.E.
Калифорния
«Мне очень понравились занятия. Они стоили потраченного времени и усилий».
Дэвид Рейнольдс, P.E.
Канзас
«Очень доволен качеством тестовых документов. Буду использовать CEDengineerng
при необходимости дополнительных
Сертификация
. «
Томас Каппеллин, П.E.
Иллинойс
«У меня истек срок действия курса, но вы все же выполнили свое обязательство и дали
мне то, за что я заплатил — много
оценено! «
Джефф Ханслик, P.E.
Оклахома
«CEDengineering предлагает удобные, экономичные и актуальные курсы.
для инженера »
Майк Зайдл, П.E.
Небраска
«Курс был по разумной цене, а материал был кратким и
хорошо организовано. «
Glen Schwartz, P.E.
Нью-Джерси
«Вопросы подходили для уроков, а материал урока —
.
хороший справочный материал
для деревянного дизайна. «
Брайан Адамс, П.E.
Миннесота
«Отлично, я смог получить полезные рекомендации по простому телефонному звонку.»
Роберт Велнер, P.E.
Нью-Йорк
«У меня был большой опыт работы в прибрежном строительстве — проектирование
Здание курс и
очень рекомендую .»
Денис Солано, P.E.
Флорида
«Очень понятный, хорошо организованный веб-сайт. Материалы курса этики Нью-Джерси были очень хорошими
хорошо подготовлены. «
Юджин Брэкбилл, P.E.
Коннектикут
«Очень хороший опыт. Мне нравится возможность загружать учебные материалы по номеру
.
обзор где угодно и
всякий раз.»
Тим Чиддикс, P.E.
Колорадо
«Отлично! Поддерживаю широкий выбор тем на выбор».
Уильям Бараттино, P.E.
Вирджиния
«Процесс прямой, без всякой ерунды. Хороший опыт».
Тайрон Бааш, П.E.
Иллинойс
«Вопросы на экзамене были зондирующими и продемонстрировали понимание
материала. Полная
и всесторонний ».
Майкл Тобин, P.E.
Аризона
«Это мой второй курс, и мне понравилось то, что мне предложили этот курс
поможет по телефону
работ.»
Рики Хефлин, П.Е.
Оклахома
«Очень быстро и легко ориентироваться. Я определенно буду использовать этот сайт снова».
Анджела Уотсон, P.E.
Монтана
«Легко выполнить. Нет путаницы при подходе к сдаче теста или записи сертификата».
Кеннет Пейдж, П.E.
Мэриленд
«Это был отличный источник информации о солнечном нагреве воды. Информативный
и отличное освежение ».
Луан Мане, П.Е.
Conneticut
«Мне нравится подход к регистрации и возможность читать материалы в автономном режиме, а затем
Вернись, чтобы пройти викторину. «
Алекс Млсна, П.E.
Индиана
«Я оценил объем информации, предоставленной для класса. Я знаю
это вся информация, которую я могу
использование в реальных жизненных ситуациях »
Натали Дерингер, P.E.
Южная Дакота
«Обзорные материалы и образец теста были достаточно подробными, чтобы позволить мне
успешно завершено
курс.»
Ира Бродский, П.Е.
Нью-Джерси
«Веб-сайтом легко пользоваться, вы можете скачать материалы для изучения, а потом вернуться
и пройдите викторину. Очень
удобно а на моем
собственный график «
Майкл Гладд, P.E.
Грузия
«Спасибо за хорошие курсы на протяжении многих лет.»
Деннис Фундзак, П.Е.
Огайо
«Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать PDH
Сертификат
. Спасибо за изготовление
процесс простой. »
Fred Schaejbe, P.E.
Висконсин
«Опыт положительный.Быстро нашел курс, который соответствовал моим потребностям, и прошел
одночасовое PDH в
один час. «
Стив Торкильдсон, P.E.
Южная Каролина
«Мне понравилось загружать документы для просмотра содержания
и пригодность, до
имея для оплаты
материал .»
Ричард Вимеленберг, P.E.
Мэриленд
«Это хорошее напоминание об ЭЭ для инженеров, не занимающихся электричеством».
Дуглас Стаффорд, П.Е.
Техас
«Всегда есть возможности для улучшения, но я ничего не могу придумать в вашем
процесс, которому требуется
улучшение.»
Thomas Stalcup, P.E.
Арканзас
«Мне очень нравится удобство участия в викторине онлайн и получение сразу
Свидетельство
. «
Марлен Делани, П.Е.
Иллинойс
«Учебные модули CEDengineering — это очень удобный способ доступа к информации по номеру
.
многие различные технические зоны за пределами
по своей специализации без
надо ехать.