Теплый пол без трехходового клапана: Водяной теплый пол без смесительного узла: способы монтажа

Содержание

Водяной теплый пол без смесительного узла: способы монтажа

Смесительный узел, или коллектор, в системе теплого водяного пола нужен для корректировки температуры теплоносителя. Последний нагревается котлом по заданным программой устройства параметрам. Обычно подающая температура теплоносителя составляет 55 °C. Этого достаточно, чтобы теплый пол прогревался до температуры 30 °C. Это максимально комфортное значение для холодного времени года.

При наличии коллектора, высокая подающая температура не играет роли – смеситель сам понизит ее до нужного значения путем подмешивания холодной воды. Соответственно, если планируется водяной пол без коллектора, то теплоноситель должен поступать уже заданной температуры, из чего можно сделать вывод, что для теплого пола без смесительного узла должен быть установлен отдельный котел.

Таким образом, для индивидуального радиаторного отопления нужен второй котел либо наличие централизованной общедомовой радиаторной системы. По государственным нормативам температура подачи теплоносителя в радиаторы составляет в среднем 70-80 °C, что на 20 °C выше требуемой для теплого пола.

Нюансы устройства теплого пола без смесительного узла

В некоторых случаях, монтаж коллектора для теплого пола неоправдан

Главный минус монтажа системы без коллектора – необходимость минимизировать потери температуры теплоносителя на пути «нагреватель теплоносителя – трубопровод» и в самой системе. Также нужно сохранить требуемую температуру на площади пола. Поэтому рекомендуется учитывать следующие требования:

  • Утепление стен помещения;
  • Укладка теплоизоляции на пол;
  • Наличие качественных оконных систем;
  • Укладка пола в непосредственной близости от нагревательного элемента;
  • Площадь помещения не более 20-25 м2.

Главная и частая ошибка при монтаже такой системы без узла коллектора  – попытка установки на слишком большую площадь.

Важно! Необходимо рассчитать длину контура и его схему таким образом, чтобы обратная температура теплоносителя не была слишком низкой. Иначе на теплообменнике котла будет образовываться большое количество конденсата, что приведет к быстрой поломке устройства.

Однако некоторые мастера утверждают, что в ситуации, когда «обратка» в любом случае будет холодной, может спасти установка конденсатного котла. У него высокий КПД и такому устройству не страшны низкие температуры для нагрева.

Способы монтажа теплого пола без коллектора

h3_2

Схема монтажа теплого пола без смесительного узла

Понадобятся следующие материалы и устройства:

  • Трубопровод;
  • Комплектующие для трубопровода;
  • Котел;
  • Трехходовой термостатический клапан;
  • Узел насоса.

Некоторые пытаются использовать самый простой способ монтажа – врезать систему теплых полов непосредственно в центральное общедомовое отопление. Однако такой подход грозит серьезными поломками трубопровода, т.к. температура для радиаторов намного выше, чем нужна для пола. Также при обнаружении такого «самодельного устройства» надзорными органами, собственнику квартиры грозят серьезные штрафные санкции и предписание полностью демонтировать теплый водяной пол.

Предпочтительны 2 варианта укладки трубопровода без коллектора: улитка и змейка. Причем обе схемы должны состоять из двойного трубопровода: 2 параллельные петли на теплый пол – подающая и обратная.

Плюс «змейки» в том, что можно распределять зоны нагрева. Например, обходить мебель или сантехнику. Преимущество «улитки» — более равномерный нагрев всей площади.

После укладки трубопровода его нужно подключить к котлу. Предварительно необходимо рассчитать мощность насоса. Используется следующая формула:

G =Q Х 0,86/Δt,

где G — производительность системы (л/ч),

Q — мощность системы (Вт),

0,86 — коэффициент преобразования в Ккал/ч,

Δt — перепад температуры «подача-обратка» (°C).

Насос нужен для обеспечения скорости движения теплоносителя по трубам. В зависимости от типа насоса, им можно управлять либо вручную, либо при помощи автоматики. Монтируется устройство на подающий трубопровод. В системе без смесительного узла устройство насоса располагают под котлом. Цепь между трубопроводом с насосом и котлом замыкает трехходовой термостатический клапан.

Чтобы теплый пол работал стабильно без установки смесительного узла, следует выбирать качественный мощный котел. Электрический или газовый – особого значения не имеет. Главное, чтобы мощность устройства была рассчитана конкретно на спроектированный теплый пол. Мастера рекомендуют выбирать модели с наличием насоса.

Монтаж клапана для системы без коллектора

Устанавливается клапан на трубу с подающим теплоносителем, к обратному потоку монтируется перемычка. Назначение трехходового термостатического клапана – регулировать температуру теплоносителя, который подается на насос. Фактически, это смеситель, внутри которого расположен термочувствительный элемент.

Клапан защищает систему от перегрева, а в случае поломки и прекращения подачи обратного потока, автоматически перекрывает подающий. Также клапан устраняет вероятность обратного хода подающего потока. Таким образом, клапан частично берет на себя роль коллектора.

Если площадь пола большая и наблюдаются серьезные теплопотери на «обратке», рекомендуется устанавливать клапан на холодном входящем конце. Благодаря этому, в теплообменнике не будет образовываться излишнего конденсата.

Монтаж теплого пола без насоса и смесительного узла

Необходимость в установке насоса отпадает, если отопительный котел оснащен мощным циркуляционным насосом, а площадь отопления минимальна. Главный плюс котла со встроенным насосом – грамотно подобранная комплектация. То есть, не нужно выбирать котел по отдельным характеристикам насоса, достаточно определиться с его общей мощностью.

Теплый пол без смесительного узла: особенности устройства

При установке водяного обогрева пола используется основном коллекторная система.   Но существует вариант подключения отопительного оборудования такого типа без приборов корректирующих температурный режим теплоносителя. Монтаж теплого пола без смесительного узла имеет свои особенности сборки и подключения.

Особенности устройства пола без смесительного узла

В системе обогрева пола со смесительным узлом не возникает проблем с температурным режимом теплоносителя в контуре. Нагретая котлом жидкость поступает в коллекторную группу, где происходит смешивание ее с охлажденным теплоносителем из обратной ветки контура. Благодаря этому теплый пол всегда имеет приемлемую температуру.

Монтаж водяного оборудования обогрева пола без смесительного узла предполагает рабочий процесс системы с отсутствием регулировки температурного режима поступающей в контур жидкости. Поэтому для такого типа установки требуется отдельный котел.

При установке теплого пола без коллектора нагретый отопительным прибором теплоноситель в процессе поступления в трубопровод быстро остывает. За счет этого происходит неравномерный прогрев поверхности полового покрытия.

Чтобы максимально сохранить необходимую температуру в водяном контуре следует при монтаже системы без смесительного модуля учитывать такие требования:

  • не использовать такую схему установки для помещений, площадь которых превышает 25 метров квадратных;
  • в помещении должна быть полная теплоизоляция стен, включая использование утеплителя с внутренней и внешней их стороны;
  • исключить потери тепла из окон – установить качественные стеклопакеты;
  • вся площадь половой основы должна быть покрыта теплоизоляционным материалам;
  • установку пола нужно производить сразу возле системы обогрева.

Для того, чтобы сохранить тепло при монтаже теплого пола без смесительного узла нужна обязательно теплоизоляция стен

При укладке водяного контура особое значение имеет правильный расчет его длины. Слишком большой метраж системы обогрева становится причиной заниженной температуры теплоносителя поступающего обратно. Это может привести к появлению конденсата в большом количестве на теплообменном устройстве котла. В итоге теплообменник быстро выйдет из строя.

Нюансы подключения

Для установки теплого пола без смесительного узла понадобится котел, насосная группа и термостатический смесительный трехходовой клапан. Также для монтажа требуется приобрести качественный трубопровод и комплектующие элементы для его подсоединения.

Варианты сборки

Укладка водяного контура теплого пола без коллекторного узла выполняется двумя способами:

  1. Улитка. Такая схема предполагает спиральную укладку по периметру комнаты с последовательным сужением контура к центральной части. Расположение труб подачи и обратки осуществляется через ряд.  При этом расход материала несколько снижается в сравнении другими вариантами установки, а плавный изгиб позволяет избежать образования изломов на поворотах трубопровода.
  2. Змейка. Трубы системы изначально охватывают периметр помещения, а затем переходят волнистыми изгибами в середину комнаты. Подающий и обратный контур при этом располагаются рядом. Вероятность изломов на поворотах труб в такой схеме намного выше.

Водяной теплый пол без смесительного узла улиткой

Установка системы обогрева без смесительного модуля должна проводиться по таким схемам с двойной укладкой труб – подачи и обратки.

Перед тем как подсоединить оборудование для обогрева пола к отопительному прибору следует правильно выполнить расчеты мощности насоса. Установить необходимый параметр можно с помощью такой формулы:

G =(Q×0,86)/Δt

где G является производительностью отопительной системы, Q – мощность установленного котла; Δt – величина температурных перепадов теплоносителя и 0,86 – коэффициент передачи.

Тип котла для подключения теплого пола без смесительного узла не имеет особого значения. Основным требованием к прибору является его достаточно высокая мощность. Большим плюсом будет, если в отопительное устройство идет уже со встроенным насосом. Во время функционирования отопительной системы котел должен быть настроен на необходимую температуру обогрева пола.

Специалисты рекомендуют устанавливать отопительное оборудование конденсационного типа. Такие котлы имеют довольно высокий уровень КПД, а также способны бесперебойно работать при низких температурных режимах нагрева.

Часто монтаж теплого пола без коллекторного узла производится по комбинированной схеме отопления – радиаторная система и оборудование обогрева половых покрытий. Основной задачей в таком случае становится снижение температуры теплоносителя в батареях 70-80 градусов до необходимого режима для водяного контура – 40 градусов. Поэтому установка теплого пола без коллектора предполагает обязательное наличие трехходового термостатического клапана.

Выбор насоса

Монтаж системы обогрева половых покрытий без смесительного узла предполагает обязательную установку циркуляционных приборов. В таком случае насос позволит в несколько раз увеличить давление и подаст теплоноситель с необходимой скорости в трубопровод.

От типа насоса, его мощности и качества зависит стабильность и эффективность работы теплого пола. Поэтому достаточно важно правильно выбрать циркуляционное изделие.

Для водяного обогрева пола, который устанавливается без коллекторной группы можно использовать такие виды бытовых насосов:

  1. С сухим ротором. Вращающийся элемент в таких моделях помещен в непроницаемую емкость. Большим преимуществом устройства считается достаточно высокая мощность. К недостаткам использования относят необходимость постоянного технического обслуживания прибора.
  2. С мокрым ротором. В конструкции устройства имеет колесико, расположенное в теплоносителе, который способствует охлаждению рабочих частей насоса во время рабочего процесса. Достоинством прибора является высокая износостойкость и отсутствие шума при функционирующем положении. Отрицательной стороной применения насоса с мокрым ротором является невысокий показатель КПД, среднее значение которого составляет 50 процентов.

Насос с сухим ротором

При выборе насоса для системы обогрева пола без коллектора необходимо взять во внимание, что чем длиннее метраж трубопровода, тем больше должна быть мощность прибора. Рекомендуется покупать насосы с автоматической регулировкой. При этом лучшим вариантом считается циркуляционный прибор с тремя скоростями.

Установка термостатического клапана

Такое смесительное устройство монтируется на подаче теплоносителя. После клапана обязательно устанавливается насосный узел, которому подается теплоноситель с уже отрегулированной температурой.

В схеме установки теплого пола без смесительного узла используется трехходовой термостатический клапан. В данной системе он выполняет функцию коллектора. Недостатком его использования как основного устройства для регулировки температуры жидкости является невозможность пропорционального дозирования холодной и горячей воды. Поэтому эффективность оборудования без коллекторной группы несколько ниже.

С помощью установки клапана исключается перегрев системы. При возникновении поломок отопительного оборудования, включая отсутствие подачи теплоносителя из обратного контура, термостатическое устройство перекрывает подачу жидкости. При этом клапан ограждает подачу от обратного хода.

Если теплый пол без коллектора используется для помещений с большой площадью, то смесительный клапан необходимо монтировать на входящем холодном конце.

Это позволит избежать лишних тепловых потерь и оградит от появления на теплообменнике большого количества конденсата.

Типичные ошибки при монтаже

Иногда при установке теплого водяного контура предполагают использовать центральное отопление. Данные расчеты совершенно недопустимы, так как в радиаторах температура значительно превышает требуемые показатели для системы обогрева пола, и такое подключение может нанести серьезный вред трубопроводу. При этом в квартирах без особого разрешения монтаж в общую отопительную систему запрещен.

Нередко при установке водяного обогрева пола без смесительного узла наблюдаются сбои в рабочем процессе оборудования или система не эффективно функционирует в помещении. Такие нарушения возникают при допущении некоторых ошибок во время монтажных работ:

  1. Укладка была произведена на достаточно неровную поверхность. При установке пола допускаются перепады, не превышающие пяти миллиметров.
  2. Неправильно подобранный фольгированный утеплитель. Для теплоизоляции половой основы оптимальным вариантом является вспененный полистирол. После расположения материала на всей площади пола обязательно необходимо скрепить все стыки малярным скотчем.
  3. Мощность насоса не соответствует размеру системы. Чтобы повысить продуктивность рабочего процесса теплого пола без коллекторной группы следует приобретать циркуляционные устройства с высокой мощностью.
  4. Стяжка системы обогрева выполнена в несоответствии с необходимыми техническими требованиями. При бетонной заливке иногда уклоняются от установки демпферной ленты. Такой недочет часто становится причиной образования трещин в цементном покрытии, что приводит к тепловым потерям. Также причиной разрушения стяжки может стать включение системы раньше требуемого срока. После заливки пола раствором следует выждать не менее тридцати дней для полного застывания бетона.

При правильной установке отопительная система должна обогревать не менее 70 процентов пространства в помещении. Поэтому перед монтажом оборудования следует правильно выполнить все расчеты и наметить схему укладки.

Монтаж теплого пола без смесительного узла имеет несколько основных достоинств – простота укладки и подключения, а также снижение затрат за счет отсутствия дополнительного оборудования. Но при этом следует учитывать, что эффективность данной схемы в несколько раз ниже, чем при использовании коллектора. Но если особых запросов к обогреву помещения нет, то можно значительно сэкономить, выполнив установку водяного обогрева пола без смесительной системы.

Теплый пол без насоса — особенности, монтаж, установка

Смесительный узел в водяной системе обогреваемого пола нужен для корректирования температуры теплоносителя. Установленный котел нагревает теплоноситель до требуемой температуры – 55 градусов. Этого хватает для прогрева пола до 30 градусов. Данный показатель комфортен для холодного периода года. В коллекторе смеситель самостоятельно смешивает горячую и холодную воду до нужной температуры. Если планируется теплый пол без насоса, то теплоноситель подается в систему с заданной температурой, но для этого требуется отдельный котел или наличие централизованной отопительной системы.

Иногда монтаж коллектора неоправдан

Нюансы обустройства водяного подогрева пола без применения смесительного узла

Главный минус укладки системы водяного отопления без узлов смесителя и коллектора состоит в том, что требуется минимизировать потери температуры воды на пути следования «нагреватель – контур», ведь температуру на покрытии пола нужно держать постоянной. Поэтому рекомендуется учитывать такие требования:

  1. утеплить стены здания;
  2. уложить теплоизоляционный материал в пирог напольного покрытия;
  3. установить качественные конструкции оконных рам;
  4. смонтировать напольное покрытие в максимальной близости с нагревателем;
  5. площадь комнаты не должна быть больше 20 кв. м.

Внимание! Главная ошибка в установке водяной бесколлекторной системы пола – попытка ее применения на больших площадях. Поэтому надо подсчитать продолжительность труб и схему укладки так, чтобы температура в обратной трубе не оказалась слишком низкой. Иначе в котле образуется много конденсата, а это приведет к его поломке.

Отдельные экспеты говорят, что при холодной «обратке» спасает подсоединение конденсатного котла с высоким коэффициентом полезного действия – ему не страшны низкие температуры теплоносителя.

Варианты установки системы обогреваемого пола без использования узла и коллектора

Для устройства системы водяного отопления подогреваемых полов без использования коллектора требуются следующие материалы и устройства:

  • трубы для контура;
  • котел;
  • комплектующие к трубопроводу;
  • трехходовой термостатический клапан.

Схема укладки теплого пола от централизованной системы отопления

Некоторые мастера стараются применить наиболее легкий метод монтажа – обустроить систему подогрева, присоединив ее к центральному отоплению. Это решение грозит впоследствии неисправностями трубопровода, так как температура теплоносителя батарей существенно выше, чем требуется для пола. А если надзорные организации обнаружат присутствие этого «самодельного устройства» без разрешения соответствующих органов, собственнику собственнику выпишут немалый штраф и потребуют демонтировать систему водяного теплого пола.

Укладка контура труб

Для укладки контура трубопровода используется несколько способов, самые приемлемые – улитка и змейка. Эти схемы состоят из двух параллельных петель водяного пола (подающая и обратка). Преимущество «змейки» заключается в распределении зон нагрева, к примеру, можно обойти сантехнику. Преимущество «улитки» – равномерный прогрев площади. После монтажа трубы по схеме подключения присоединяют к котлу.

Для ускорения движения воды по трубам под котлом монтируют на подачу насос, который управляется автоматически или вручную. В системе, где нет смесительного узла, схему между трубопроводом и котлом замыкает трехходовой термостатический клапан.

Внимание! Чтобы теплый пол функционировал без насоса, рекомендуется выбрать мощный котел, неважно, газовый или электрический. Главное, чтобы его мощности хватало на теплое напольное покрытие. Стоит выбрать котел с встроенным насосом.

Читайте также: Смесительный узел для теплого пола — принцип работы, установка узла своими руками

Установка клапана термостатического для теплого напольного покрытия

трехходовой термостатический клапан

Монтируют клапан на подачу теплоносителя, а к обратной трубе устанавливается перемычка. Клапан предназначен для регулировки температуры теплоносителя, он представляет собой смеситель, внутри которого установлен термочувствительный элемент. Клапан защищает систему – он автоматически прекращает поток на трубе подачи в нужный момент.

Установка обогреваемого пола без использования смесительного узла

Потребность в монтаже насоса полностью отпадает, если приобрести и установить котел с встроенным насосом. Главное преимущество такого котла – хорошо подобранная комплектация. Это значит, что не следует выбирать котел по каким-то характеристикам, достаточно определить нужную мощность.

Описанные способы установки имеют место, но лучше один раз приобрести все элементы, подключить правильно систему теплого водяного пола и не переживать, что потраченные средства на обустройство такого пола будут потрачены зря.

Средняя оценка

оценок более 0

Поделиться ссылкой

Практические советы по настройке систем напольного отопления. Настройка насосно-смесительного узла

  • Техподдержка
  • Статьи
  • Практические советы по настройке систем напольного отопления. Настройка насосно-смесительного узла

Настройка насосно-смесительного узла не так сложна, как может показаться на первый взгляд, достаточно лишь понять, как какое-либо действие влияет на работу всей системы. Можно вычислить его настройку теоретически (этому посвящена статья «Насосно-смесительный узел VALTEC COMBI. Идеология основных регулировок»). Однако теория не всегда сходится с практикой, да и точнее всё-таки провести настройку на месте по показаниям термометров. Для того, чтобы правильно осуществить настройку без расчетов, необходимо иметь включенным котел и хотя бы минимальный теплосъёмом в помещениях. Желательно, чтобы на улице была температура ниже +5 ºС. В помещениях не должно быть открытых окон или каких-либо крупных тепловыделений (работающего камина и пр.).

Начнём с того, что опишем работу насосно-смесительного узла (рис. 1, 2).

Горячая вода из патрубка A поступает в насосно-смесительный узел, после чего через насос поступает в патрубок С, который подключается к подающему коллектору системы напольного отопления. Вода, проходя петли систем напольного отопления, делится на два потока. Часть воды идёт на смешение через байпас и клапан байпаса 3. Там она смешивается с новой порцией горячей воды из котла в такой пропорции, чтобы на входе в коллектор получилась необходимая температура воды.

Часть потока воды из патрубка B отводится обратно в котел через настроечный клапан первичного контура 5 в патрубок D. На термоэлементе термостатического клапана 1 либо на контроллере задается требуемая температура воды на входе в систему напольного отопления, при этом термоэлемент либо контроллер, отслеживая температуру в точке 4, приоткрывает или прикрывает термостатический клапан 1, увеличивая или уменьшая количество горячей воды из котла, подмешиваемой к общему потоку.

В большинстве случаев для настройки узла достаточно задать на термоэлементе либо контроллере требуемую температуру теплоносителя, которую необходимо подавать в теплый пол, и требуемую скорость насоса. Мощность, расход воды и разница температур между подающим и обратным трубопроводом взаимосвязаны между собой. К тому же, разница температур между подающим и обратным трубопроводом, как и температура настройки узла, влияют на среднюю температуру пола и его теплоотдачу.

В целом, мощность любой системы напольного отопления зависит от разницы между температурой воздуха и средней температурой на поверхности пола. Повышая эту среднюю температуру, мы повышаем мощность петли.

Теперь на примере рассмотрим – от чего зависит эта самая средняя температура пола. Предположим, что у нас имеется петля напольного отопления уложенная «змейкой», в которую подаётся вода с температурой 40 ˚С, при этом из петли возвращается вода с температурой 30 ˚С (рис. 3). Допустим при этом, что температуры в точках А и Б будут 30 и 25 ˚С соответственно. Средняя температура такого пола будет около 27,5 ˚С, что соответствует мощности 80 Вт/м².

Но такая работа пола, возможно, не будет устраивать владельца, так как разница температуры поверхности в точке А и в точке Б будет велика. И пользователь, стоя в точке А, будет ощущать перегретый пол, а в точке Б будет считать пол холодным. Данную проблему можно решить, увеличив расход воды. Допустим, мы увеличим расход воды в два раза. В этом случае температура в обратном трубопроводе будет увеличиваться. Причем при увеличении расхода в два раза разница температур между подающим трубопроводом и обратным снизится тоже в два раза и составит 40 ˚С на подаче и 35 ˚С на обратном трубопроводе. В точке А и Б температуры установятся приблизительно на уровне 30 ˚С и 27,5˚С а средняя температура пола вырастет примерно до 29,5 ˚С (рис. 4).

Чтобы снизить среднюю температуру пола до начального уровня и не допустить перегрева, достаточно снизить температуру воды, подаваемой в теплый пол. Если установить термостат на 38 ˚С, то температура в обратном трубопроводе установится примерно на уровне 32 ˚С, температуры в точках А и Б будут 29 ˚С и 26,5 ˚С. При этом средняя температура пола будет равна около 27,5 ˚С, то есть такая же, как и в первом примере, но разница температур между точкой А и Б на поверхности пола будет не столь значительна.

Чтобы выровнять температуру пола, можно применять схему «улитка», но ее надо предусмотреть ещё на стадии монтажа.

    Исходя из вышеописанных примеров, можно дать следующие рекомендации по настройке расходов и температур пола:

  • чем больше расход воды через контуры теплого пола, тем меньше разница температур на поверхности пола во всех помещениях. Мощность насоса (и соответственно расход) выставляется в зависимости от разницы температур на подающем и обратном коллекторе. Для петель, уложенных «змейкой», эта разница должна составлять 3–5 ˚С. Для петель, уложенных «улиткой», разница может быть увеличена до 3–10 ˚С.

    Таким образом, чтобы определить наиболее подходящую настройку насоса, необходимо задаться определенной скоростью насоса, и через полчаса замерить разницу температур между подающим и обратным коллектором. Если разница окажется слишком высокой, то скорость насоса необходимо увеличить, либо установить более мощный насос. Нет ничего страшного в том, что разница температур окажется маленькой, в этом случае нагрев помещения будет более равномерным по всей площади.
  • температура воды, подаваемой в коллектор системы напольного отопления, напрямую влияет на среднюю температуру пола, которая в свою очередь влияет на мощность. Чем выше температура, тем выше мощность. Но необходимо выбирать эту температуру так, чтобы максимальная температура пола не превысила 29 ˚С, иначе перегретый пол будет доставлять дискомфорт.

Но зачем же нужны остальные вентили и клапаны на узле, если достаточно выставить настройки насоса и термоэлемента? Дело в том, что насосно-смесительный узел VT.COMBI за счёт своей конструкции является очень универсальным устройством, способным успешно работать в различных системах. Универсальным его делает наличие дополнительных органов регулирования, которые
позволяют расширить зону его работы и увеличить максимальную мощность.

Если требуется внедрить узел в систему со специфическими параметрами теплоносителя или «выжать» из узла максимум возможной мощности, то помимо установки термоэлемента в требуемое положение необходимо так же осуществить несколько простых операций по настройке.

Настройка балансировочного клапана байпаса (рис. 5)

    Для того чтобы лучше понять, на что влияет настройка этого клапана, рассмотрим две гипотетические ситуации:

  1. Из котла к насосно-смесительному узлу поступает теплоноситель с температурой 90 ˚С, при этом термостатический клапан настроен на поддержание температуры теплоносителя на входе в систему напольного отопления 30 ˚С, а из обратного коллектора возвращается теплоноситель с температурой 25 ˚С.

    Термостатический клапан должен принять такое положение, при котором соотношение расходов теплоносителя с температурой 90 ˚С и 25 ˚С обеспечило температуру на выходе 30 ˚С (рис. 3).

    Не сложно догадаться, что такая задача решается обычной пропорцией, и соотношение расходов воды из котла к воде из обратки должно быть 1 : 12. Иными словами, на каждый литр воды из котла должно приходиться 12 л воды из «обратки».

    Если настроечный клапан байпаса настроен в положение близкое к минимуму, то через него и будет проходить минимальное количество теплоносителя. Предположим, что клапан байпаса «3» открыт в такой позиции, что через него в данной системе проходит 12 л/мин. воды.
    Тогда термостатический клапан должен закрываться до тех пор, пока расход воды через него не будет равен 1 л/мин. В этом случае на выходе мы получим необходимые нам 30 ˚С с расходом 13 л/мин. (12 л/мин. холодной воды и 1 л/мин. горячей).

    А если начать открывать клапан байпаса? В этом случае расход теплоносителя через него начнет увеличиться. Предположим, что, открыв клапан до конца, мы получим расход 60 л/мин, при этом термостатический клапан займет такую позицию, чтобы пропускать в 12 раз меньше воды, т.е. 5 л/мин. В итоге мы получим те же 30 ˚С, но с расходом 65 л/мин. (60 л/мин. холодной воды и 6 л/мин. горячей).

    Таким образом, мы видим, что при минимальном и максимальном положении клапана байпаса узел поддерживает необходимый расход теплоносителя, но чем ниже настройка клапана, тем меньше расход будет обеспечивать такой узел, а как было сказано выше увеличение расхода через петли обеспечивает более равномерный прогрев помещения.

    Отсюда возникает вопрос – а зачем вообще закрывать клапан байпаса, если его закрытие приводит лишь к уменьшению расхода теплоносителя и как следствие уменьшение мощности системы? Чтобы ответить на этот вопрос представим себе другую
    гипотетическую ситуацию.
  2. Допустим, что котел настроен на 60 ˚С, при этом на входе в систему напольного отопления нам необходимо поддерживать 45 ˚С. Температура воды, возвращаемой из обратного коллектора составляет 35 ˚С (рис. 7).

    Как мы видим, пропорция горячей и холодной воды в этом случае должна измениться. Пропорция воды из котла и из обратки при этих температурах составит 1 : 1,5. На каждый литр воды из котла должно приходится 1,5 л воды из «обратки».

    Если настроечный клапан байпаса открыт в максимальное положение, то через него идет максимальный расход. Примем расход такой же, как и в предыдущем примере — 60 л/мин. В этом случае термостатический клапан должен открываться до тех пор, пока расход не будет равен 40 л/мин. Но клапан не может открываться бесконечно, и в какой-то момент он откроется до максимального своего положения.

    Если насос, установленный в этой системе, сможет обеспечить максимальный расход через термостатический клапан только 20 л/мин., то узел даже при полностью открытом клапане сможет обеспечить только 41 ˚С на выходе.

    Для того, чтобы узел смог обеспечить необходимую температуру 45 ˚С на входе в теплый пол, необходимо закрывать клапан байпаса до тех пор, пока пропорция воды не будет достаточной для того, чтобы обеспечить необходимую температуру теплоносителя на выходе из узла.

Исходя из вышесказанного, можно дать общие рекомендации по настройке этого клапана. В случае, если разница температур между температурой теплоносителя, поступающего из котла и температурой настройки узла велика, клапан необходимо открывать. Если температура теплоносителя из котла близка к требуемой температуре после смесительного узла, то клапан следует прикрывать.
Но как же настроить точно узел в каждом конкретном случае, если температура теплоносителя, поступающая из котла и температура, которую необходимо поддерживать на входе в систему напольного отопления, не постоянны в течение года? Неужели придётся постоянно его подстраивать? Конечно же, нет! Задача монтажника – сделать так, чтобы узел смог обеспечить требуемую температуру в любой ситуации, которая может возникнуть во время эксплуатации, обеспечивая при этом максимальный расход теплоносителя. В остальные периоды узел будет поддерживать требуемую температуру теплоносителя за счёт термостатического клапана. По большому счету, монтажник задает максимальный диапазон температур, которые насосно-смесительный узел будет поддерживать. Если монтажник задаст слишком низкий диапазон, то узел не сможет обеспечить требуемую температуру в те моменты, когда из котла идёт теплоноситель с низкой температурой. Если монтажник задаст слишком высокий диапазон, то узел будет работать не на полную свою мощность.

Как уже было сказано выше, золотую середину можно найти, используя расчетные формулы, но можно и следующим образом – надо выставить на котле минимальную температуру, которую он будет поддерживать в течение года. Если котел в течение года будет настроен на одну и ту же температуру, то выставляется именно она. Далее с термостического клапана снимается термоголовка или сервопривод. Система в таком режиме должна проработать несколько часов, пока температура на входе в теплый пол не стабилизируется. Именно такой и будет максимальная температура, которую узел сможет поддерживать. Если эта температура намного выше той, которая необходима на входе в теплый пол, то клапан байпаса приоткрывается. В большинстве случаев желательно его открыть на позицию 3 и подождать от получаса до часа, после чего опять проверить температуру на входе в систему напольного отопления. Если она опять будет велика, то продолжать открывать клапан. Если температура будет на 2–5 ºС выше, то настройку можно считать оконченной. Если же температура после узла оказалась ниже требуемой, то балансировочный клапан байпаса следует зарывать. После окончания настройки на термостатический клапан обратно монтируется термоэлемент или сервопривод. Далее узел будет регулировать требуемую температуру самостоятельно.

Внимательный читатель, возможно, скажет: «А зачем эти сложности, если можно поставить трёхходовой клапан, у которого не надо настраивать клапан байпаса?». В какой-то степени читатель будет прав – узлы с трёхходовым клапаном устроены таким образом, что при увеличении потока воды из котла одновременно уменьшается поток воды через байпас, что позволяет обойтись без упомянутого выше балансировочного клапана байпаса. Но, к сожалению, на сегодняшний день не существует идеального узла, который бы без настроек и регулировок вписывался бы в любую систему отопления. И насосно-смесительные узлы с трёхходовым клапаном тоже не лишены недостатков, и тем более, их нельзя рассматривать как узлы, не требующие настройки.

На рис. 8 представлена схема насосно-смесительного узла собранная на базе трёхходового клапана VT.MR03 (рис. 9). Требуемая температура теплоносителя в таком узле достигается за счёт все той же пропорции воды, поступающей из котла и воды, поступающей из «обратки».

Рассмотрим работу такого узла на тех же примерах, что и в предыдущих случаях.

Из котла к насосно-смесительному узлу поступает теплоноситель с температурой 90 ˚С, при этом термостатический клапан настроен на поддержание температуры теплоносителя на входе в систему напольного отопления 30 ˚С, а из обратного коллектора возвращается теплоноситель с температурой 25 ˚С. Как уже было сказано выше, пропорция воды должна быть 1 : 12. Иными словами, на каждый литр воды из котла должно приходиться 12 л воды из «обратки».

Трёхходовой клапан за счёт термоэлемента займет такое положение, при котором из котла будет поступать 1 литр воды, а из байпаса будет поступать 12 литров. При этом, если температура воды на выходе из котла, допустим, снизится, то клапан займет
новое положение, увеличив расход воды из котла и одновременно с этим уменьшив расход воды из обратного коллектора, таким образом, поддерживая необходимую температуру воды на входе в теплый пол.

К сожалению, в таком совершенном режиме узел работает только в теории. На практике часто встречаются ситуации, когда такой узел подает воду в систему напольного отопления почти без смешения. Из-за чего это происходит? Предположим, что в доме, отапливаемом напольной системой отопления, днем стало тепло (солнечная теплая погода) и все петли тёплых полов по сигналам термостатов закрылись. Узел стоит долгое время без расхода, так как все петли отключены. Вечером похолодало, и автоматика запустила работу петель напольного отопления. В течение дня вода, находящаяся в трубе между котлом и насосно-смесительным
узлом, неизбежно остынет. Трёхходовой клапан в начальный момент времени будет находиться в полностью открытом положении (проход воды из котла будет максимально открыт, проход воды из байпаса будет закрыт). Далее, как только горячая вода из котла достигнет трёхходового клапана, он начнет закрываться, но приводы у клапана, как правило, имеют задержку минимум 2–3 минуты. Всё это время в петли теплого пола будет поступать теплоноситель с температурой близкой к 90 ºС. Скорость воды в петлях в основном составляет около 0,5 м/с. Таким образом, за 2 мин. до температуры 90 ºС прогреется по 60 м всех открытых петель, что, конечно же, не понравится жильцам такого дома.

Кроме описанного выше случая, такая ситуация часто возникает из-за гистерезиса котла при поддержании им определенной температуры. Гистерезис, это разница температуры воды, при которой котел отключается и включается. У некоторых котлов это значение может достигать 20–30 градусов. Получается, что котел, находясь в выключенном состоянии, не греет воду, и она потихоньку остывает до 60–70 ºС, затем, когда котел резко включится, может произойти такой же эффект резкого перегрева петель за счёт задержки трёхходового клапана.

Такие узлы, как VT.COMBI и VT.VALMIX (рис. 14) лишены такого недостатка, так у них смешение происходит постоянно, даже при полностью открытом термостатическом клапане. За счёт этого в этих узлах невозможно резкое увеличение температуры в петлях.

Узлы с трёхходовым клапаном, несмотря на вышеописанный недостаток все же имеют право на существование. Такие узлы хорошо себя зарекомендовали в системах с гидравлической стрелкой. Гидравлическая стрелка выравнивает колебания температур во вторичных контурах.

Установка перепускного клапана в насосно-смесительный узел с трёхходовым клапаном позволяет так же снять негативный момент, возникающий при остывании воды в трубе между котлом и узлом при длительном простое. Специально для таких случаев VALTEC выпустил готовый узел с трёхходовым клапаном MINIMIX, объединяющий в себе компактность и простоту настройки (рис. 10).

Настройка балансировочного клапана первичного контура (рис. 11)

Порой встречается такая ситуация, что при открытии балансировочного клапана байпаса до максимальной позиции (Кv = 5), температура на выходе из узла все равно остается слишком большой. Можно конечно оставить все как есть, ведь термостатический клапан во время своей работы уменьшит её до необходимого значения. Однако в таком режиме узел будет обладать недостатками узла с трёхходовым клапаном описанным выше. А именно, при резких колебаниях температур в первичном контуре узел может не успеть среагировать и подать в теплый пол теплоноситель с завышенной температурой.

Происходит это, как правило, из-за котлового насоса с чрезмерной мощностью. За счёт большого напора котлового насоса при открытом термостатическом клапане в узел поступает слишком большой расход котловой воды, для разбавления которой, не хватает расхода обратки даже с открытым балансировочным клапаном на байпасе.

Конечно же, эту проблему с точки зрения энергосбережения лучше решать, уменьшая мощность котлового насоса, но если его мощность выбрана, исходя из обеспечения необходимым расходом удаленных радиаторов, а на насосно-смесительном узле напор
оказался большим из-за близкого расположения к насосу, то на выручку приходит как раз балансировочный клапан первичного контура. При помощи него можно ограничить максимальный расход котловой воды.

Его настройка схожа с настройкой балансировочного клапана байпаса. Если при настройке балансировочного клапана байпаса оказалось так, что он дошёл до максимального значения, при этом температура после узла все ещё слишком велика, то тогда приступаем к закрытию балансировочного клапана первичного контура. Его желательно закрывать постепенно по 0,5–1,0 оборотов, после чего следить за изменением температуры воды после узла. Как только температура после узла станет на 2–5 ºС выше требуемой, то настройку можно считать оконченной.

Настройка перепускного клапана (рис. 12)

К сожалению, на сегодняшний день многие производители насосно-смесительных узлов пренебрегают данным устройством, более того, многие даже не понимают, зачем перепускной клапан нужен, и вводят в заблуждение коллег сомнениями о его необходимости.
На самом деле, у него несколько функций, он нужен для защиты насоса от работы на «закрытую задвижку», для предотвращения влияния петель теплого пола друг на друга во время регулировки и для поддержания узла в рабочем режиме в течение длительных простоев.

Перепускной клапан предотвращает работу на закрытую задвижку следующим образом: как только происходит закрытие сервоприводов, расход воды в контуре напольного отопления снижается. При снижении расхода воды через насос увеличивается
напор. Перепускной клапан устроен так, что при достижении определенного перепада давлений он открывается. Таким образом, как только напор насоса достигнет определенной точки, это будет свидетельствовать о том, что насос работает при расходе близким к нулю. Максимальный напор, развиваемый насосом, указывается непосредственно на корпусе насоса и, как правило, выбирается из ряда 2, 4, 6, 8 метров водяного столба. Если поставить перепускной клапан на давление чуть меньшее максимального напора насоса, то он откроется, как только расход в системе упадет до минимума и предохранит его от перегрева. Конечно же, подобную защиту от работы «на закрытую задвижку» можно осуществить при помощи средств автоматики.

Например, коммуникатор VT.ZC6 отслеживает сигналы от всех термостатов, и, если все термостаты дали команду на закрытие, то он отключает насос и включает его только тогда, когда хотя бы один термостат даст команду на открытие сервопривода. Но данный коммуникатор не решает остальных проблем, которые решает перепускной клапан.

Вторая проблема — это выравнивание потоков теплоносителя и исключение влияния петель друг на друга. Данная проблема заключается в том, что при работе системы автоматики петли будут закрываться сервоприводами независимо друг от друга.
При закрытии одних петель, расход воды на оставшихся петлях будет увеличиваться. Увеличение расхода воды происходит за счёт того, что стандартный трёхскоростной насос устроен таким образом, что при уменьшении расхода, он самостоятельно увеличивает напор, а в петлях теплого пола при увеличении напора создаваемого насосом увеличивается расход. Приведем конкретный пример:

Предположим, что у нас имеется насосно-смесительный узел с насосом 25/4, настроенным на скорость «2». К нему подключен коллекторный блок с пятью выходами. Так же предположим, что длина всех петель одинаковая, и при этом все петли настроены
на одинаковый расход 2 л/мин (0,12 м³/ч). По графику (оранжевые линии на рис. 13) можно увидеть, что все петли при таком расходе (суммарный расход составит 0,6 м³/ч) будут иметь потерю давления 3 м вод.ст. (или 30 кПа).

Но что произойдет, если 4 из 5 петель закроют сервоприводы. В этом случае расход воды будет стремиться к расходу через одну петлю, т.е. 0,12 м³/ч. Но при этом такой расход будет идти и через насос. Насос же в свою очередь при изменении расхода, увеличит напор до 4 м вод ст. (зеленые линии на рис. 13). В свою очередь расход по единственной оставшейся петле увеличится. Данная задача выходит за рамки этой статьи и более подробно описана в статье «Особенности расчёта систем отопления с термостатическими клапанами». Стоит отметить, что в результате совместной работы оставшейся петли и насоса в итоге расход и напор установятся в среднем положении. Т.е. расход будет равен примерно 0,3 м³/ч. Отсюда мы видим, что расход воды в оставшейся петле увеличится с 2 до 5 л/мин.

Подобное увеличение расхода повлечет за собой увеличение температуры теплоносителя на выходе из этой петли, что в свою очередь увеличит среднюю температуру пола. Возможно, подобные колебания средней температуры пола для многих пользователей не являются проблемой, однако в грамотной системе отопления недопустимо, чтобы тепловой режим соседних помещений каким либо
образом влиял друг на друга.

В этом случае перепускной клапан работает тем же образом, что и для защиты насоса. При закрытии петель напор насоса начинает расти. Перепускной клапан при увеличении напора открывается и перепускает часть теплоносителя в обратный коллектор. За счёт этого напор и расход теплоносителя остается практически неизменным во всех петлях. Для того чтобы перепускной клапан работал в этом режиме, необходимо его настроить на перепад чуть меньший, чем в первом случае. Если коллекторный блок оснащен расходомерами, то определить настройку достаточно просто. Для этого сначала во всех петлях настраивается требуемый расход
теплоносителя. Затем выбирается самая короткая петля либо петля с наименьшим расходом. Как правило, это одна и та же петля. Далее при помощи регулирующих клапанов закрываются все петли кроме выбранной, при этом отслеживается изменение расхода в выбранной петле. Как только все петли будут закрыты, необходимо начать открывать перепускной клапан (уменьшать давление
открытия). Клапан открывается до тех пор, пока расход воды в оставшейся петле не вернется к изначальному значению. На этом настройка перепускного клапана считается оконченной. Если после насосно-смесительного узла установлен коллекторный блок без расходомеров, то единственный известный автору статьи способ настройки перепускного – это рассчитать потерю давления в самой длинной петле и выставить это значение на клапане.

Как и ранее, данную функцию может взять на себя система автоматики. А именно – насос с частотным управлением типа VT.VRS25/4EA. У такого насоса есть режим, при котором он автоматически изменяет скорость вращения рабочего колеса при изменении расхода, поддерживая постоянный напор. Но подобные насосы, как правило, дороже обычных трёхскоростных наcосов, и их установка требует технико-экономического обоснования.

И наконец, функция поддержания узла в рабочем режиме в течении длительных простоев. Бывают ситуации, особенно в осенне-весенний период, когда средняя температура днём на улице достаточно высокая, и отопление большую часть дня не работает. Ночью температура на улице опускается, и в этот момент отопление включается. Вода в трубах в период простоя днём без циркуляции остывает, и когда автоматика вечером дает команду на запуск системы, требуется некоторое время, пока остывшая вода сменится горячей водой из котла.

Если система достаточно объёмная, то нагрев займет некоторое время. В случае же использования перепускного клапана насосно-смесительный узел будет работать и поддерживать температуру воды на заданном уровне в течении всего дня. При этом, если вода в самом узле остынет, то за счёт термостатического клапана узел подаст небольшое количество горячего теплоносителя в контур и оставит температуру на заданном уровне. Узел в любой момент будет готов подать воду с требуемой температурой в контур системы напольного отопления.

Как уже было сказано выше, функции перепускного клапана не всегда нужны, и при желании их могут на себя взять другие элементы, такие как коммуникаторы или насосы с частотным преобразователем.

Именно поэтому в 2016 году специалистами компании VALTEC был разработан насосно-смесительный узел VT.VALMIX (рис. 14). Данный узел оптимизирован и имеет более компактный корпус и, в отличие от узла VT.COMBI, не имеет встроенного перепускного клапана. Однако в этом узле, так же как и в узле VT.COMBI, имеется балансировочный клапан байпаса, балансировочный клапан первичного контура, которые позволяют осуществить его настройку практически для любой системы.

В конце статьи приведу наиболее часто встречающиеся вопросы, не освещенные выше и ответы на них:

Вопрос 1. Почему регулировка температуры воздуха в комнате, отапливаемой теплым полом, осуществляется только в режиме «открыто/закрыто»? Почему нельзя отрегулировать температуру, как на радиаторе — постепенным уменьшением расхода?

Действительно, можно осуществить регулировку систем напольного отопления «вентилем» и снижать мощность теплого пола, снижая расход через петли. Однако к теплому полу, в отличие от радиаторов, предъявляются дополнительные требования. Одно из таких требований — это распределение температур на поверхности пола. В случае, если разница температур по поверхности пола будет слишком высока, она будет явственно ощущаться человеком, что будет доставлять дискомфорт. Разница температур на поверхности пола зависит от шага укладки трубопроводов и разности температур воды на входе и выходе из петли теплого пола.
И если шаг трубы во время эксплуатации вряд ли поменяется, то разность температур — это величина не постоянная, и зависит она в основном от расхода. Уменьшение расхода в два раза приведет к тому, что разница температур теплоносителя увеличиться в два раза.

Вопрос 2. У меня установлен насосно-смесительный узел и контроллер VT.K200. По графику регулирования контроллер должен поддерживать на входе в систему напольного отопления температуру 30 ºС. А у меня по факту термометр на самом контроллере показывает температуру 35 ºС. Почему так происходит?

В этом случае ситуация с завышенной температурой связана с тем, что балансировочный клапан байпаса закрыт сильнее, чем это требуется. Проверить это легко – если в тот момент, когда после узла завышена температура, сервопривод полностью закрыт (цилиндр сервопривода находится в нижнем положении) (рис. 15, 16), то это значит, что контроллер и так уже полностью перекрыл подачу горячей воды в насосно-смесительный узел и в данный момент просто находится в режиме ожидания пока температура в контуре теплого пола опять не опустится до необходимого уровня.

Это произошло из за того, что перед узлом резко выросла температура воды из-за запуска системы после простоя, либо из- за резкого пуска котла. Клапан не смог молниеносно среагировать на подобные изменения, и узел «зачерпнул» слишком много горячей воды.

Данная проблема решается увеличением позиции настройки балансировочного клапана байпаса и, если он и так настроен в максимальное положение, то балансировочным клапаном первичного контура.

Автор: Жигалов Д.В.


© Правообладатель ООО «Веста Регионы», 2010

Все авторские права защищены. При копировании статьи ссылка на правообладателя
и/или на сайт www.valtec.ru обязательна.

Хотите узнать, как сделать теплый пол без смесительного узла?

⇐ ПредыдущаяСтр 16 из 19Следующая ⇒

Такой теплый водяной пол можно сделать, только через трехходовой клапан, и без насоса! О том, как сделать теплый пол без дополнительного насоса с помощью трехходового клапана, можно узнать здесь:Трехходовой клапан и схемы теплых полов.

Схема узла для теплого пола может быть нескольких вариантов. Рассмотрим самый простой наглядный вариант, где нет особых заморочек.

Схема подключения теплого пола.

Давайте теперь рассмотрим смесительный узел теплого пола более детально:

Смотри схему.

Пропускной клапан служит для того, чтобы пропускать или не пропускать тепло от котла в систему теплого пола. Обычно туда ставится термостатический клапан с термоголовкой. У термоголовки должен быть прикладной датчик. Этот датчик прикладывается на подающий трубопровод в контура теплых полов.

У этого вида байпас должен повторять основной диаметр прохода теплоносителя.

Недостаток данной системы, в том что при остановке контуров, насосу будет нечего качать. Но эта проблема решается добавлением второго байпаса между подающим и обратным коллектором.

Схема 1: Последовательный тип смешивания.

Кстати за место пропускного клапана можно установить балансировочный клапан или обычный шаровый кран, но этот вид требует постоянного контроля. Поэтому не рекомендуется.

Единственное и пока на сегодняшний день бесполезное достоинство данной схемы является то, что выходящий поток из смесительного узла в сторону котла, более пониженный, и равен температуре пола. Такой подход с точки зрения теплотехники более правильный и более производительный.

Схема 2. Параллельный тип смешивания.

В любых схемах за место байпаса можно поставить перепускной клапан. Он служит для того, чтобы в определенном напоре начать через себя пропускать поток. Это дает возможность постоянно не гонять воду через байпас, когда контура задействованы. Когда контура все закрыты, то перепускной клапан начинает пропускать через себя жидкость, чтобы насос не работал в нагрузку, тем самым экономил электроэнергию. А собственно, в каких случаях контура должны закрываться? Дело в том, что в продвинутых домах стоит климат контроль, который по мере нагревания может перекрывать контура. А когда возникнет ситуация, при котором все контура закроются, тут то и приходит на помощь байпас с перепускным клапаном. Он помогает насосу давать расход. Если насос не качает в нагрузку, он и потребляет меньше энергии.Перепускной клапан имеет механическую настройку необходимого напора, при котором он начинает пропускать жидкость. Вообще существуют и электрические операции, при котором насос просто выключается. Но об этом сложном явлении как-нибудь в другой раз.

Недостаток данной системы это то, что выходящий поток из смесительного узла равен температуре теплоносителя входящего в теплый пол. Температура которая входит в контур теплого пола равна температуре выходящего из смесительного узла в сторону котла.

Схема3. Параллельный тип смешивания.

Схема 3 многим напоминает схему 2, и практически по функционал мало чем отличается. Единственное отличие может возникнуть в простоте сборке.

Пропускной (термостатический) клапан, необязательно должен быть с хорошей проходимостью или большого диаметра, так как показывает практика, то проходимость, может сильно отличатся и это не портит смесительный узел. Так как насос бывает сильно влияет на расход через пропускной (термостатический) клапан. Своей затягивающей силой он очень сильно увеличивает расход воды через пропускной (термостатический) клапан. К тому же примерно расход через клапан в два раза ниже расхода насоса.

Чтобы в данной схеме соблюсти хорошую проходимость необходимо иметь хорошую проходимость через циркуляционный насос. То есть само кольцо от обратного коллектора через насос до подающего коллектора имело хороший идеальный проход без заужений. В эту схему нельзя устанавливатьтрехходовые клапаны с термочувствительным элементом. Так как трехходовые клапаны имеют маленькую проходимость в следствии этого большие местные сопротивления.

Подробнее о трехходовом клапане.

Трехходовой клапан следует ставить так(См. Схема 4):

Схема 4. Последовательный тип смешивания.

Сам по себе трехходовой клапан предназначен пропускать воду от одной ветки в остальные две ветки в зависимости от поворота клапана. То есть в данную схему нужно ставить не такой клапан, который открывает или закрывает одну линию. А плавно открывая одну линию и закрывая другую. Линия, где находится насос — она всегда открыта. При охлаждении датчика клапана открывается линия входящего тепла от котла и закрывается линия байпаса. При нагревании происходит обратная процедура. Только такой выше описанный клапан монтируется в данную схему 4.

Я уже говорил, что сами эти трехходовые клапаны с термостатом имеют плохую проходимость, и использовать их вообще не рекомендую. Только для малой производительности. В пределах 3 — 4 контуров теплого пола. Но существуют схемы, которые позволяют поставить любой трехходовой клапан. Подробнее о схемах ниже.

Ну если у Вас уже имеется трехходовы клапан с выносным датчиком, то для хорошей прокачки можно его поставить как указано на схеме 5. Но это не идеальная схема. Существуют и другие схемы.

Схема 5. Параллельный тип смешивания.

Если трехходовой без выносного датчика, то по схеме 4. Так как при схеме 5 на вход датчика не приходит остывшая вода из контуров. И он будет при поступлении горячей воды сразу закрываться.

Поиск по сайту:

Смесительная группа для теплого пола

При обустройстве теплого водяного пола важную роль играет абсолютно каждая деталь. Например, ключевую роль в распределении тепловой энергии выполняет коллектор. Гребенка может быть укомплектована самым разным образом. Один из важных ее компонентов является смесительный узел. Смесительный узел включает в себя специальный клапан. Сразу заметим, что работать теплый пол без смесительного узла сможет только в исключительных случаях. В этой статье мы расскажем вам о том, какую роль выполняет смесительная группа для теплого пола. Мы уверены, что этот материал поможет вам разобраться в этом непростом вопросе. Плюс ко всему, вы узнаете о принципе работы этого устройства. Это поможет вам осуществить правильный выбор. Как следствие, вам получится создать эффективную и надежную систему напольного отопления.

Функция смесительного узла

Для начала определим основную функцию используемого клапана в системе водяного теплого пола. Важно заметить тот факт, что для напольного обогрева крайне важно добиться приемлемой температуры. Особенно это важно если запитка напольного обогрева осуществляется из централизованной системы отопления. Как известно, в этой системе теплоноситель имеет температуру около 75 градусов по Цельсию. Безусловно, подобная температура для пола будет очень высокой. Если теплоноситель с такой температурой пойдет в систему теплого пола, то из-за высокой температуры стяжка начнет разрушаться. Понятное дело, не сразу, а постепенно через какое-то время. Более того, с такой температурой напольное покрытие будет испытывать серьезные нагрузки. Более того, ходить по такому полу будет вовсе не комфортно.

Если отталкиваться от установленных норм, то температура напольного обогрева не должна превышать 26 градусов по Цельсию. Благодаря этому воздух внутри помещения будет иметь температуру около 22 градусов по Цельсию. Эта та температура, которая считается наиболее комфортной для проживания. Итак, чтобы достичь такой температуры, теплоноситель, который поступает в отопительный контур, уложенный в стяжку пола должен иметь температуру до 50 градусов по Цельсию. Помните, что 50% тепловой энергии забирает отопительный пирог. По мере того как тепло начнет поступать в помещение, температура частично спадет. На это также влияет и характер напольного покрытия.

Итак, чтобы достичь наиболее комфортной температуры как раз-таки используется ряд специализированного оборудования. В частности, большую роль выполняет смесительный узел. И важную роль во всем этом узле выполняет клапан. Исходя из его названия, в нем осуществляется смешивание холодного и горячего теплоносителя. В результате на выходе получается комфортная температура воды. Стоит заметить, что такой кран бывает нескольких разновидностей, например:

  1. Двухходовой.
  2. Трехходовой смесительный клапан.

Итак, теперь мы предлагаем вам подробнее ознакомиться с особенностями этого устройства, чтобы понять, какой лучше всего выбрать.

Смесительный клапан – что это

Итак, смесительный клапан для теплого пола устанавливается в коллекторную группу. При поступлении теплоносителя, он сталкивается с предохранительным термостатическим клапаном. И чтобы снижать температуру воды, поступающей от котла или централизованной системы отопления устанавливается трехходовой или двухходовой смесительный кран. Процесс смешивания воды происходит полностью в автоматическом режиме. Подмес остывшей воды берется из обратного потока трубы.

Важно! Процесс перемешивания холодного и горячего теплоносителя осуществляется беспрерывно, вернее, до тех пор, пока работает система водяного теплого пола.

Теперь предлагаем вам рассмотреть особенности двухходового и трехходового крана для теплого пола.

Двухходовой клапан

Схема смесительного узла теплого пола нередко оснащается двухходовым смесительным краном. Если сказать просто, то это устройство является улучшенным прототипом обычного ручного крана. Данное устройство сравнительно простое, так что регулировать температуру теплоносителя не представляет большой сложности. При всем этом процесс охлаждения воды осуществляется в автоматическом режиме. В большинстве случае двухходовой кран устанавливается в отопительную систему вместо обычного ручного клапана, для автоматизации всего процесса.

Среди положительных сторон этого устройства можно выделить следующее:

  • Снижение температуры осуществляется в автоматизированном процессе.
  • Сама конструкция простая.
  • Низкая стоимость.
  • Простой монтаж.

Важно! Если говорить за недостатки, то этот прибор имеет определенные ограничения по своему использованию. Применение двухходового смесительного устройства можно использовать только при обогреве небольшой площади помещения. Например, при обогреве одной комнаты.

Преимущественно подобный смесительный клапан устанавливается в тех случаях, когда водяной теплый пол является дополнительным источником тепла. Благодаря ему можно корректно регулировать температуру теплоносителя. Также можно регулировать рабочее давление и интенсивность потока.

Немного расскажем о самом устройстве двухходового клапана. Корпус состоит из литой латуни или бронзы. На этом кране есть терморегулирующая головка. На ней имеется метрическая шкала для простоты управления. Стоит заметить, что термостатическая головка может изменять свое положение как вручную, так и автоматически.

Важно! Если у вас теплый водяной пол выполняет роль дополнительного источника тепла, то лучше приобретите смесительный кран с ручной настройкой. Для крупных систем теплого пола лучше купить двухходовой кран с дистанционным управлением.

Важным элементом всей конструкции является седло, его может быть два или одно. Кран с двумя седлами имеет способность перекрывать поток воды.

Принцип работы двухходового устройства очень прост и сводится к следующему:

  • Теплоноситель и обратного контура повторно направляется в трубу с подачей.
  • Как только температура теплоносителя снижается, срабатывает термостатический клапан. После этого осуществляется подмес и смешивание горячей с холодной воды.
  • Как только достигается надлежащий уровень температуры, термостатический датчик дает сигнал на перекрытие. Как следствие подмес горячего теплоносителя прекращается.

Трехходовой смесительный клапан

Теперь ознакомимся с принципом действия трехходового крана в системе теплого пола. Принцип его действия полностью отличается от двухходового устройства. В этом случае подмес к горячей воде осуществляется от котла к коллектору остывшего теплоносителя, который направляется из обратки. Что касается плюсов и минусов, то в сравнении с двухходовым клапаном, они практически схожи. Однако есть один нюанс. При включении устройства скорость потока никак не изменяется. Благодаря этому есть реальная возможность изменить уровень температуры воды, которая поступает в отопительный контур.

Что касается его особенностей, то здесь можно выделить следующее. Процесс регулировки температуры очень прост и удобен. Более того, его использование допускается для систем теплого пола большой площади. В среднем площадь может достигать до 250 квадратный метров. С другой стороны, трехходовой смесительный клапан имеет и свои отрицательные стороны.

Когда осуществляется срабатывание термостатического клапана, кран открывается полностью. В результате это может привести в худшем случае к разрыву трубопровода, а в лучшем случае, к перегреву того или иного отопительного контура. Более того, трехходовой кран имеет гораздо меньшую пропускную способность в отличие от двухходового.

Принцип работы этого устройства следующая:

  • Нагретый теплоноситель проходит через фронтальный и правый патрубок до тех пор, пока температура воды не достигнет заданной отметки.
  • Если наблюдается рост или снижение температуры, то тут включается термостатический клапан.
  • Шток приводится в движение.
  • Благодаря этому происходит подмес горячей воды или холодной.

Что касается фронтального отверстия, то оно открывается полностью только при условии, когда уровень температуры достигает до заданной отметки. Стоит заметить, что трехходовой клапан сегодня различается на несколько конструкций, а именно:

  • С сервоприводом.
  • С электроприводом.
  • С термостатической головкой.
  • С термостатическим приводом.

Каждая из моделей имеет свои технические особенности и различия. Поэтому при покупке обязательно проконсультируйтесь со специалистом. Он поможет вам выбрать то устройство, которое будет наиболее подходящим в вашем случае.

Заключение

Итак, вот мы и рассмотрели все особенности смесительного узла, а именно, смесительного клапана. Процесс подключения трехходового и двухходового клапана происходит по разной технологии. Двухходовой кран приветствует параллельную схему подключения. Что касается трехходового, то здесь отдается преимущество последовательному подключению. Более того, они различаются по площади отапливаемой поверхности. Если у вас только два или один контур, то достаточно установки одноходового клапана. Трехходовой может работать при больших площадях теплого пола.

Итак, как мы увидели, что роль смесительного узла в работе теплого пола очень важная. Мы уверенны, что этот материал помог вам разобраться с этими устройствами. Помните, что их использование позволит вам максимально автоматизировать работу напольного отопления. Плюс ко всему, мы предлагаем вам просмотр подготовленного видеоматериала, который позволит вам получить наиболее точное представление о данном устройстве. Если вы имеете опыт в этом вопросе, то делитесь с нашими читателями. Это позволит начинающим домашним умельцам делать правильный выбор и не допускать распространенных ошибок новичков.

Осоенности монтажа теплого пола без смесительного узла (коллектора): регулятора подмеса, насоса

Что такое водяной теплый пол

Водяной теплый пол — низкотемпературная система отопления, где теплоноситель подается с температурой 35-45оС, по нормам не выше 55 оС. Кроме того, теплый пол это отдельный циркуляционный контур, которому необходим отдельный циркуляционный насос.

У теплого пола есть ограничения по температуре поверхности пола — 26-31оС. Максимальный перепад температуры между разводкой подачи и обратки теплого водяного пола допускается не более 10оС. Максимальная скорость протока теплоносителя составляет 0,6 м/с.

Схема 1. Соединение теплого пола напрямую от котла

Данная схема подключения водяного теплого пола имеет теплогенератор, арматуру безопасности с насосом. Теплоноситель непосредственно от котла поступает в распределительный коллектор теплого пола и затем расходится по петлям и реверсирует обратно в котел. Котел должен быть настроен на температуру теплого пола.

При этом возникают два нюанса:

  • Желательно использовать в монтаже конденсационный котел, т.к. низкотемпературный режим для него оптимален. В этом режиме у конденсационного котла максимальный кпд. У обычного котла при работе в низкотемпературном режиме очень быстро выйдет из строя теплообменник. Если котел твердотопливный, то необходима буферная емкость для коррекции температуры, так как данный котел сложно поддается температурной регулировке.
  • Хороший вариант для теплого пола — это когда он подключен к тепловому насосу.

Схема 2. Монтаж теплого пола от трехходового клапана

схема трехходового термостатического клапана

В большинстве случаев при такой схеме монтажа и подключения водяного теплого пола мы имеем комбинированную систему отопления, здесь находятся радиаторы отопления с температурой 70-80оС и контур теплого пола с температурой 40оС. Встает вопрос, как из этих восьмидесяти сделать сорок.

Для этого применяется трехходовой термостатический клапан. Клапан устанавливается на подаче, после него обязательно устанавливается циркуляционный насос. С обратки теплого пола производится подмешивание остывшего теплоносителя к теплоносителю, который получаем из котлового контура и который в дальнейшем с помощью трехходового клапана понижается до ходовой температуры.

Минус такой схемы разводки теплого пола в невозможности дозировать пропорциональность подмеса остывшего теплоносителя горячему и в теплый пол может поступать недогретый или перегретый теплоноситель. Это снижает комфорт и эффективность системы.

Достоинством такой схемы является простота монтажа и невысокая стоимость оборудования.

Данная схема больше подходит для отопления небольших площадей и там, где нет высоких требований заказчика к комфорту и эффективности, где есть желание сэкономить.

В реальной жизни схема встречается крайне редко по причине нестабильности работы радиаторов, подключенной к единой трубе. При приоткрывании трехходового вентиля подпитывается греющий контур, а давление помпы передается в основную магистраль.

Пример реализации:

Монтаж смесительного узла

Установка смесительного узла тёплого пола не представляет большой сложности. Для этого можно использовать одну из нескольких схем подключения. Все подробности сборки смотрите в этом видео:

Место расположения

Оптимально установить коллектор между нагревательным котлом и теплым полом

Устанавливать систему в своём доме можно в любом месте, например, между водогрейным котлом и системой тёплых полов. Точки подключения смесительного узла могут находиться в следующих местах:

  • Непосредственно в помещении, оборудованном системой водяных полов.
  • В котельной, в любой удобной для этого точке.
  • В специальном шкафу, если с помощью коллектора осуществляется управление нагревательными контурами сразу в нескольких помещениях.

Статья по теме: Чем красиво и недорого отделать стены в туалете

Особенности установки коллектора

Не забудьте заземлить все электроприборы

Для правильной и безопасной работы системы при её монтаже следует соблюдать ряд нюансов:

  • клапан подмеса воды с термостатом устанавливается всегда на входе в тепловой контур;
  • все электрические приборы, входящие в состав узла, должны быть заземлены;
  • следует исключить в процессе эксплуатации любую возможность попадания влаги на электроприборы.

Собранный коллектор подмеса следует соединить с трубами подачи и обратки, согласно выбранной вами схемы монтажа. Если же вы не сильны в сантехнике или же не имеете возможности лично собирать смесительный узел из отдельных деталей, можно приобрести уже готовый узел в различных комплектациях. В этом случае вам останется лишь подключить его к отопительной системе. Подробнее о настройке автоматического терморегулятора смотрите в этом видео:

После того, как вы оснастили свой дом узлом регулировки теплоносителя, следует осуществить его подключение к электропитанию и настройку приборов.

Настройка приборов управления

Составные части системы отопления

Настройка смесительного узла производится в несколько этапов.

  1. Снимаем терморегулятор с сервоприводами, чтобы он не мог влиять на настройку клапанов.
  2. Устанавливаем перепускной клапан на максимальную отметку, чтобы он не сработал во время настройки системы.
  3. Регулируем балансировочный клапан. Принимая за основу показатели температуры на выходе из котла за 95 ºС, а максимальную температуру в трубах водяного обогрева пола на входе за 45, а на выходе — за 35ºС, после расчётов по представленной ниже формуле получаем коэффициент 4. Его и выставляем на нашем балансировочном клапане.
  4. Следующим шагом регулируем давление циркуляционного насоса. Ставим мощность насоса на минимум и постепенно увеличиваем её до тех пор, пока давление в системе не достигнет нужного показателя.
  5. Последним шагом производим настройку перепускного клапана. Выставляем на нём показание на 10% выше максимального рабочего давления в перепускном клапане.

Если смесительный узел обеспечивает работу нескольких обогревательных контуров, следует произвести балансировку давления в них, регулируя соответствующую запорную арматуру, установленную на входе каждого контура.

Схема 3. Разводка теплого пола от насосно-смесительного узла

модуль подмеса

Это смешанная схема подключения водяного теплого пола, где есть зона радиаторного отопления, теплый пол и применяется насосно-смесительный узел. Происходит подмешивание остывшего теплоносителя с обратки теплого пола к котловому.

У всех смесительных узлов присутствует балансировочный клапан, с помощью которого можно дозировать количество остывшего теплоносителя при подмесе к горячему. Это позволяет добиться четко заданной температуры теплоносителя на выходе из узла, т.е. на входе в петли теплого пола. Так существенно повышается потребительский комфорт и эффективность системы в целом.

В зависимости от модели узла, в его состав могут входить другие полезные элементы: байпас с перепускным клапаном, балансировочный клапан первичного котлового контура или шаровые краны с двух сторон от циркуляционного насоса.

Комплектующие детали

Насосно-смесительный узел для теплового пола состоит из нескольких деталей, позволяющих при необходимости подмешивать холодную жидкость систему обогрева.

Циркуляционный насос

Циркуляционный насос

Он предназначается для создания давления в системе и перемещения теплоносителя в трубах. Также с помощью насоса производится принудительное смешивание холодного и горячего теплоносителей в коллекторе.

Блок коллектора

Основная часть коллекторной системы, включающая собранные в один блок отводы для всех необходимых приборов. Каждый блок рассчитан на определённое количество отопительных контуров – от 2-х и более.

В магазине сантехники можно приобрести готовое к установке устройство или изготовить своими руками. Для этого берётся кусок водопроводной трубы, который глушится с одной стороны. Далее на трубу приваривается несколько отводов – по два на каждый отопительный контур.

Принцип работы циркуляционного насоса

Но, как показывает практика, намного проще приобрести коллекторный блок в магазине, чем пытаться сделать его самому.

Термостат

Термостат имеет двух- или трехходовой клапан

Статья по теме: Установка окон в каркасном доме: как выполнить правильный монтаж?

Термостат служит для поступления горячей воды в коллектор при понижении температуры в нагревательных элементах ниже установленной границы. Клапан термостата может быть 2-х или 3-х ходовым.

2-х ходовый клапан обеспечивает подачу в обогревающий контур пола жидкости из обратного контура, а при необходимости поднимает рабочую температуру теплоносителя и добавляет в неё горячую воду из подающего контура. Такой клапан обладает небольшой пропускной способностью, поэтому изменение температуры воды в трубах водяного пола происходит постепенно.

3-х ходовый клапан совмещает в себе одновременно со смесителем и функции байпаса. Поэтому при его установке использовать дополнительный балансировочный клапан давления не нужно. Часто такой клапан имеет сервоприводы для управления термостатами и контроллерами. Также 3-х ходовый клапан может работать в комплексе с погода зависимыми датчиками — в случае похолодания клапан автоматически увеличивает подачу воды в питающий контур. О том, как можно регулировать температуру нагрева без смесителя, смотрите в этом видео:

В частном доме целесообразно применять 2-х ходовый клапан. Он способен обеспечить нормальную работу контура смесительного коллектора для дома с общей площадью помещений до 200 кв. м. При этом его стоимость существенно ниже, чем у 3-х ходового клапана.

Балансировочный клапан

Устройство балансировочного клапана

Балансировочный клапан предназначен для сброса излишков теплоносителя из подающего контура в обратный в случае превышения давления в коллекторе подмеса тёплого пола.

Кроме перечисленных деталей схема смесительного узла тёплого пола может включать фильтры, термометр, манометр, клапаны для сброса воздуха и иные дополнительные приборы контроля и управления.

Схема 4. Подключение теплого пола от радиатора

Это специальные комплекты, предназначенные для подключения одной петли теплого пола на площадь 15-20 кв.м. Выглядят как пластиковая коробка, внутри которой в зависимости от производителя и комплектации, могут находиться ограничители по температуре теплоносителя, ограничители температуры воздуха в помещении и воздухоотводчик.

Теплоноситель поступает в петлю подключенного водяного теплого пола прямо из высокотемпературного контура, т.е. с температурой 70-80оС, остывает в петле до заданной величины и заходит новая партия горячего теплоносителя. Дополнительный насос здесь не требуется, должен справляться котловой.

Недостатком является низкий комфорт. Зоны перегрева будут присутствовать.

Достоинство данной схемы подключения водяного теплого пола в легкой установке. Применяются подобные комплекты, когда малая площадь теплого пола, малое помещение с нечастым пребыванием жильцов. Не рекомендуется устанавливать в спальнях. Подойдет для отопления санузлов, коридоров, лоджий, и т.д.

Подведем итог и сведем в таблицу:

Вид подключения Комфорт Эффективность Монтаж и настройка Надежность Цена
Обычный газовый,ТТ или дизельный ± ± + ± +
Конденсационный котел или тепловой насос + + + ±
Трехходовой термостатический клапан ± ± + + ±
Насосно-смесительный узел + + ± +
Термомонтажный комплект ± + + +

Мастера-сантехники и эксперты по теплогазоснабжению рекомендуют избегать схем подключения водяного теплого пола к рабочим ветвям отопления. Греющие контуры теплового пола лучше запитывать прямо на котел, чтобы обогрев пола мог функционировать независимо от батарей, особенно в летнее время.

Как правильно выбрать трехходовой клапан

Ключевой параметр любого трехходового клапана – пропускная способность, т.е. объем воды, который устройство способно пропустить через себя в единицу времени. При выборе устройства следует соотносить этот параметр с производительностью котла.

Здесь стоит принимать во внимание еще один нюанс. Даже если диаметр входов и выходов клапана кажется подходящим по габаритам, это ни в коем случае не свидетельствует о реальной пропускной способности устройства. Данный параметр целиком и полностью определяется внутренним сечением отверстий, которые, в зависимости от конструкции, перекрываются шаровым запором или регулирующей головкой.

В некоторых моделях габариты этого отверстия могут быть меньше входного диаметра в 4 раза. Чтобы не ошибиться и не оказаться перед необходимостью переделки дорогостоящего узла, следует перед покупкой внимательно изучить сопроводительную документацию.

Другой важный параметр устройства – поперечное сечение. В идеале клапан должен точно подходить по габаритам к размерам труб отопительной системы. Если точного соответствия достичь не удается, придется докупать переходники.

Кроме этого, стоит обратить внимание на такие нюансы:

  • Обязательно проверять наличие сопроводительной документации: гарантийных талонов, инструкций по монтажу и эксплуатации, сертификатов и лицензий.
  • При выборе материала стоит отдать предпочтение латуни или бронзе. Именно эти металлы наилучшим образом сочетаются с горячими жидкостями, а также имеют малый уровень теплового расширения. Отличить изделия из цветных металлов можно по весу – они значительно тяжелее дешевой «штамповки» из порошковых прессованных материалов, которые не обладают должным уровнем прочности.

Что касается конкретных моделей, на рынке можно найти продукцию нескольких компаний, давно зарекомендовавших себя в качестве надежных производителей:

  • Esbe. Шведская компания, продукция которой отличается надежностью, хорошими эксплуатационными качествами и привлекательным внешним видом. Гарантийный срок эксплуатации – не менее 5 лет.
  • Valtec. Совместное российско-итальянское предприятие, выпускающее термосмесительные клапаны, совмещающие доступную стоимость и хорошие технические характеристики. Гарантия на весь ассортимент устройств – 7 лет.
  • Honeywell. Американский производитель, во главу угла поставивший удобство монтажа выпускаемых изделий. Трехходовые клапаны этой марки имеют яркий дизайн, высокую надежность, но и не менее высокую стоимость.

Рекомендуем ознакомиться: Изготовление теплицы из профильной трубы и поликарбоната своими руками

Схемы укладки водяного теплого пола

Способы раскладки трубы теплого пола

Существуют три основных способа укладки водяного теплого пола: змейка, спираль (улитка) и комбинация этих вариантов. Чаще всего теплый пол монтируют улиткой, в некоторых местах используют змейку.

Схема монтажа «Улитка»

Укладка теплого улиткой позволяет более равномерно распределять тепло по всему помещению. При такой разводке труба монтируется по кругу к центру, затем от по кругу в обратном направлении.

При раскладке теплого пола улиткой нужно закладывать отступ для раскладки трубы в обратном направлении.

Укладка теплого пола змейкой

При такой укладке труба теплого пола монтируется в одном направлении и при окончании раскладки контура просто возвращается в обратку коллектора. При таком устройстве в начале контура температура теплоносителя горячее, в конце холоднее. Поэтому раскладку змейкой используют довольно редко.

Особенности применения

Теплые полы нагревают первым делом нижнюю поверхность и человека

Тёплые полы в отличие от настенных радиаторовотносятся к низкотемпературным отопительным системам. При превышении рекомендованного температурного режима в 30 – 35ºС люди в помещении будут испытывать явный дискомфорт. Всё дело в различии схем нагрева помещения при использовании этих двух способов отопления.

Настенные радиаторы, прежде всего, осуществляют прогрев верхней половины помещения. Поэтому в данном случае температура у пола может в разы отличаться от температуры воздуха у потолка.

Способы укладки труб теплого пола

Схема нагрева помещения при использовании тёплых полов совершенно противоположна – зона наибольшего прогрева в этом случае находится в нижней части помещения, там, где обычно располагаются люди. Поэтому превышение рекомендованной температуры теплоносителя приводит к ощутимому дискомфорту для обитателей жилья.

Статья по теме: Как своими руками собрать тумбу под раковину?

Кроме того, повышенная температура контура обогрева может привести к деформации финишного напольного покрытия или его отслаиванию. Во избежание этого и предназначается смесительный узел теплового пола. Тёплый пол без смесительного узла будет совершенно невозможно регулировать.

При установке максимального показателя температуры на термостате следует принимать во внимание характер напольного покрытия. Если полы в помещении застелены ламинатом, паркетом или коврами, это может значительно уменьшить теплоотдачу. В данном случае порог максимальной температуры нужно будет поднять до 40 – 55 ºС.

Расчет теплого пола

Перед подключением теплого пола по разработанной схеме, необходимо сделать его предварительный расчет. Грубый расчет Вы можете сделать самостоятельно по следующим шагам:

  1. Определите место расположения коллектора. Чаще всего его монтируют в центре этажа.
  2. Попробуйте схематично изобразить разводку труб теплого пола, соблюдая следующую информацию: при шаге 15 см на квадратный метр трубы тратится 6,5 метров трубы, длина трубы не должна превышать 100 метров, контура все должны быть примерно одинаковыми.
  3. Определяемся с метражом всех контуров и в целом можно приступать к монтажу.

Так же не забудьте сделать тепловые расчеты здания. В интернете есть множество готовых калькуляторов. Если теплопотери в помещении не превышают 100 Вт на метр квадратный, то теплый пол у вас не потребует дополнительных приборов отопления.

Монтаж теплого пола

Как определись со схемой укладки и подключения водяного пола, нужно приступать к монтажу.

  1. Подготовьте основание теплого пола. Оно должны быть ровным с минимальным перепадом высот.
  2. Уложите гидроизоляцию, если того требуют местные нормативы
  3. Уложите полистирол толщиной 10 см на первом этаже и 5 см на последующих.
  4. Постелите полиэтилен, чтобы меньше стяжки соприкасалось с изоляцией
  5. Если способом крепления у Вас является армирующая сетка, то уложите ее на полиэтилен
  6. Раскладывайте трубу теплого пола согласно утвержденной схеме
  7. Опрессуйте систему
  8. Заливайте стяжку

Сочетание теплых полов с традиционными радиаторами

Влажные полы с подогревом и радиаторы действительно можно комбинировать. В Великобритании полы с подогревом являются обычным явлением, например, на первом этаже и радиаторы на верхних этажах.

Поскольку первый этаж обычно представляет собой бетонную стяжку, особенно в новостройках, это идеальная конструкция пола для системы водяного теплого пола. Первый или верхние этажи обычно представляют собой деревянную подвесную конструкцию.Они также работают с системами напольного отопления, но иногда более практичным или экономичным может быть установка или сохранение радиаторов наверху.

В наши дни очень популярно устанавливать ufh в расширения новой сборки. Часто домовладелец решает установить УФ-систему на первом этаже. Иногда решается оставить существующую часть первого этажа «как есть», установив только УФГ в самой новой пристройке.

Нас регулярно спрашивают, как эти две системы могут работать вместе, используя одинаковую температуру воды от источника тепла.Например, в старом викторианском доме может потребоваться дополнительное тепло, где тепловые потери слишком велики для того, чтобы одна система могла обеспечить отопление всей собственности.

На самом деле это очень просто. На приведенном выше чертеже показано, как две системы могут работать с одним и тем же источником тепла. Система теплого пола использует собственную подачу от котла с смесительным клапаном и насосом, установленными на коллекторе, для понижения температуры воды, поступающей в систему теплого пола.При этом горячая вода из котла идет прямо в радиаторную систему и накопитель горячей воды.

Каждой системе нужен двухходовой клапан (то есть система «S-план»), чтобы обеспечить независимое управление. Радиаторы и горячее водоснабжение обычно регулируются двухканальным таймером, в то время как система теплого пола имеет собственные программируемые комнатные термостаты.

Если система теплого пола оснащена нашим центром коммутации Heatmiser, реле котла будет подавать питание на клапан с электроприводом, когда требуется нагрев, и беспотенциальные контакты на двухходовом клапане запускают котел.

Итак, это очень распространенная дилемма, но с очень простым решением. Свяжитесь с нами, чтобы узнать больше о том, как наш опыт в области теплого пола может помочь вам в реализации вашего проекта, или убедитесь в этом сами, посетив наши страницы с технической информацией.

Опубликовано:

Можно ли смешивать теплый пол и радиаторы?

Короче да. Блог закончился, правда? Ну нет ; Всегда полезно получить ответы для своих клиентов, когда они неизбежно задают этот самый вопрос о доступных конструкциях и возможностях теплых полов; мы уверены, что вы были там.Итак, давайте представим вам факты. В то время как полы с подогревом часто рассматриваются как новая технология, которая приходит на смену радиаторам, что воспринимается как архаичный и традиционный метод отопления, радиаторы и полы с подогревом могут очень хорошо работать вместе.

Доступны варианты

Одна из распространенных практик, которую люди, как вы, несомненно, понимают, — это установка полов с подогревом в новом здании; расширение или иначе. Таким образом, радиаторы часто хранятся во всей остальной части дома, а UFH устанавливаются только в новой секции.Поскольку новая постройка, скорее всего, будет бетонной стяжкой, сейчас самое подходящее время, а также с точки зрения энергоэффективности, для установки системы UFH.

Еще один вариант, который предпочитают многие люди, — это применение УФН внизу и сохранение радиаторов отопления наверху. Конечно, это не связано с тем, что UFH нельзя применять на первом этаже, потому что он может — особенно потому, что они часто представляют собой деревянную подвесную конструкцию — в первую очередь из-за кажущейся практичности и рентабельности только покупки система первого этажа.

Как они работают вместе?

Поскольку обе системы требуют разной температуры воды, часто возникает вопрос, как эти две системы могут работать вместе. В основном у вас есть два подхода. Самым простым является проектирование радиаторов для нормальной температуры подачи (скажем, 60 ° C), при этом и радиаторы, и полы с подогревом используют одно и то же питание от котла до зонных клапанов, а затем полагаясь на встроенный смесительный клапан. и насос, подключенный к коллектору, чтобы снизить температуру примерно до 40 ° C, прежде чем он попадет в систему UFH.

Другой вариант — установить котел на низкую температуру (например, 40 ° C), отказаться от подпольного смесительного клапана и использовать радиаторы увеличенного размера, которые будут компенсировать более низкую температуру подачи в них. Конечно, проблема в том, что у вас на стенах огромные куски стали, но…

Два порта или три порта? S-план или Y-план? А как насчет обхода?

В идеале вы выберете маршрут S-плана и будете использовать двухпортовые клапаны для обеспечения блокировки и управления котлом, один для контура рад и один для контура UFH, но это ничем не отличается от использования S-плана для управления один контур радиаторного отопления и горячее водоснабжение (ГВС) Потребуется некоторое планирование того, как вы будете управлять системой по времени, поэтому, если вы используете простые поворотные термостаты для радиаторов и пола, тогда потребуется двухканальный таймер (или трехканальный для управления ГВС).Другой вариант — использовать программируемые термостаты для пола (по одному на каждую зону входит в стандартную комплектацию) и отдельный программируемый стат для контура радиатора. Еще одно соображение — как добиться открытой или обходной зоны для радиаторов, если вы используете на них ТРВ. так вы избежите ситуации, когда ТРВ закрыты, но котел работает.

Наше предложение — просто подойти к нему как обычно и иметь полотенцесушитель или аналогичный продукт без TRV или установить автоматический байпасный клапан. Для системы UFH байпас не требуется, потому что органы управления и коммутационный центр обеспечивают необходимую электрическую блокировку, что означает, что котел не срабатывает, когда нет потребности.

Технически возможно добавить смешанную систему к существующему Y-плану с трехходовым клапаном, но мы советуем избегать этого мира боли и переходить к S-плану.

Итак … в итоге!

Таким образом, легко понять, почему многие клиенты считают, что они не могут рассчитывать на объединение обеих систем, но все это довольно просто. Если вы столкнулись с любопытным клиентом и не можете найти ответы, отправьте его в направлении нашего блога! Кроме того, если у вас есть какие-либо дополнительные вопросы, связанные с нашими услугами по уходу за полом, или вы хотите поговорить с одним из наших дружелюбных сотрудников, не стесняйтесь обращаться к нам! Вы можете связаться с нами по телефону 0333 800 1750, где наша команда экспертов будет с нетерпением ждать вашего звонка.

Мы можем посоветовать вам, как добиться блокировки, и подскажем, как заставить все это работать. Это действительно просто, если вы сделали это один раз (но помните, что Y-plan = «world-of-pain»)

В качестве альтернативы, если вы присутствуете в социальных сетях, вы можете быть в курсе всех событий Underfloor через наши учетные записи в Facebook и Twitter; так что до встречи!

Отводной клапан — обзор

3.2 Трехходовые регулирующие клапаны

Трехходовые клапаны обеспечивают переменный поток через змеевик, поддерживая в некоторой степени постоянный поток в системе, как показано на Рис. 3-1 .

Смесительные и переключающие трехходовые клапаны показаны на рис. 3-17 . В смесительном клапане два входящих потока объединяются в один выходящий поток. В отводном клапане происходит обратное. Выходной порт смесительного клапана и входной порт на отводном клапане называются общим портом, обычно обозначаемым C (для общего) или иногда AB.

Рисунок 3-17. Конфигурации смесительного (левый) и отклоняющий (правый) клапана

На рис. 3-18 , нижний порт смесительного клапана показан как обычно открытый для общего порта COM.(открыт для общего, когда стебель поднят).

Рисунок 3-18. Трехходовой смесительный клапан

Этот порт обычно обозначается NO (нормально открытый), хотя иногда он обозначается буквой B (нижний порт). Другой порт обычно закрыт по отношению к общему и обычно обозначается NC (нормально закрытый), хотя иногда он обозначается A или U (верхний порт). Общая розетка обычно обозначается COM или OUT. Отводной клапан обозначен аналогичным образом.

На рис. 3-19 общий порт отводного клапана показан в том же месте, что и на смесительном клапане, сбоку.

Рисунок 3-19. Трехходовой переключающий клапан

У некоторых производителей клапан может быть спроектирован так, что общий порт является нижним портом, а вода выходит слева и справа. Обратите внимание, что, как и в двухходовых клапанах, заглушки для смесительного и отводного клапанов расположены так, чтобы избежать гидравлического удара (т.е. поток проходит под седлом клапана). Следовательно, важно, чтобы клапан был правильно подключен к трубопроводу и помечен в соответствии с направлением потока, и смесительный клапан не должен использоваться для отвода, или наоборот.

Смесительные клапаны дешевле переключающих клапанов и поэтому встречаются чаще. В большинстве случаев, когда требуются трехходовые клапаны, они расположены в смесительной конфигурации, но иногда требуется отводной клапан.

Более частое использование смесительных клапанов вместо отводных клапанов, по-видимому, является причиной того, почему двухходовые клапаны традиционно размещаются на обратной стороне змеевика (где должен идти смесительный клапан), а не на стороне подачи (где отводной клапан может be), как показано на рис. 3-1 .С функциональной точки зрения не имеет значения, с какой стороны змеевика расположен двухходовой клапан. Двухходовые клапаны, расположенные на обратной стороне трубопровода змеевика, будут поддерживать давление нагнетания насоса на гидравлических змеевиках, чтобы обеспечить принудительную вентиляцию воздуха из возвратного коллектора змеевика. Кроме того, жидкость, проходящая через клапан на обратной стороне, сдерживается за счет потери / увеличения тепла через змеевик.

На Рисунке 3-20 показаны схемы двух типичных трехходовых смесительных клапанов.

Рисунок 3-20. Типовая компоновка трехходового смесительного клапана

Обратите внимание на то, как обозначены порты клапана; Важно, чтобы схемы управления были помечены таким образом, чтобы гарантировать, что клапан подключен к трубопроводу в желаемой конфигурации, чтобы он не смог попасть в нужное положение и должным образом реагировал на управляющее воздействие контроллера. Общий порт ориентирован таким образом, чтобы поток всегда возвращался к распределению возврата. В примере вверху Рисунок 3-20 клапан обычно закрыт для прохождения потока через змеевик.Если требуется нормально открытое расположение, метки портов на схеме можно просто поменять местами (метка NO будет показана на возврате клапана). Однако, поскольку обычно открытый порт на реальном трехходовом смесительном клапане находится внизу, простое изменение обозначения схемы приводит к ошибкам в полевых условиях. Лучше переупорядочить схему, как показано в нижней части Рис. 3-20 , так, чтобы порт NO был показан в правильном положении.

Обратите внимание на балансировочный клапан, показанный на байпасной линии змеевика на Рисунок 3-20 .Хотя обычно он не является частью системы управления (и, как таковой, он обычно не показан на схемах управления), этот клапан, тем не менее, необходим для правильной работы водораспределительной системы, если только падение давления в змеевике не очень низкое. Клапан должен быть сбалансирован, чтобы соответствовать падению давления в змеевике, чтобы, когда клапан находится в положении байпаса, падение давления было аналогично пути через змеевик. Без клапана происходит короткое замыкание жидкости, и перепад давления между подачей и возвратом в системе падает, что может привести к нехватке других змеевиков в системе, которые требуют более высокого перепада давления.

Заглушки в трехходовых клапанах доступны в том же стиле, что и двухходовые клапаны, обычно линейные и равнопроцентные. Однако не все производители выпускают оба стиля во всех размерах, поэтому у дизайнера не всегда есть гибкость в выборе в рамках одной линии производителя. В некоторых редких случаях клапаны изготавливаются с двумя разными типами заглушек, что позволяет клапану вести себя линейно для одного порта и равнопроцентно для другого. Отводные клапаны, по-видимому, доступны в основном с равнопроцентными заглушками.Выбор стиля штекера обсуждается в следующем разделе.

Хотя трехходовые клапаны чаще всего используются там, где требуется постоянный поток жидкости, в действительности они не приведут к постоянному потоку независимо от того, какой тип заглушки выбран. Как отмечалось выше, балансировочный клапан можно использовать для обеспечения того, чтобы поток был одинаковым, когда поток проходит 100% через змеевик или байпас. Однако, когда клапан находится между этими двумя крайними значениями, поток всегда будет увеличиваться с линейной пробкой и, в меньшей степени, с равнопроцентной пробкой.Причина этого станет очевидной, если мы рассмотрим размер и выбор клапанов в следующем разделе.

Перед выбором и определением размеров необходимо рассмотреть еще одну поведенческую характеристику регулирующих клапанов. Регулирующие регулирующие клапаны имеют внутреннюю рабочую характеристику, называемую «коэффициентом диапазона». Коэффициент диапазона регулирующего клапана — это отношение максимального расхода к минимальному регулируемому расходу. Эта характеристика измеряется в лабораторных условиях только с постоянным дифференциалом, применяемым к клапану.Коэффициент диапазона 10: 1 указывает, что только клапан может регулировать расход до 10%.

Установленная способность того же клапана управлять малым расходом — это «коэффициент диапазона изменения». В реальной системе давление на клапане не остается постоянным. Обычно, когда клапан закрывается, перепад давления на клапане увеличивается. Отношение перепада перепада давления, когда клапан полностью открыт, к тому, когда он почти закрыт, называется его «авторитетом». Если бы давление осталось прежним, авторитет был бы P / P = 1.Однако, если давление увеличится в четыре раза, авторитет будет = 0,25. Коэффициент диапазона изменения клапана рассчитывается путем умножения собственного коэффициента диапазона изменения на квадратный корень из авторитета клапана. Следовательно, клапан, который имеет приличный диапазон регулирования (скажем, 20: 1), но плохой авторитет (скажем, 0,2), не будет иметь хорошей способности регулировать до малых расходов (диапазон регулирования 20 • √0,2 = 9: 1) и может только обеспечивать «двухпозиционный» контроль над значительной частью диапазона расхода.

Многие регулирующие клапаны HVAC шарового типа не имеют высоких коэффициентов диапазона; крупный производитель перечисляет значения от 6.От 5: 1 до 25: 1 для их диапазона шаровых клапанов от ½ дюйма до 6 дюймов. Однако наиболее характерные шаровые регулирующие клапаны имеют очень высокий коэффициент диапазона (обычно> 150: 1).

Полы с подогревом / Радиатор Запрос | Форум сообщества Screwfix

Привет,
. Надеюсь, кто-нибудь здесь, возможно, сможет помочь с моим вопросом о подогреве полов?

У меня двойная система, состоящая из теплых полов и традиционных радиаторов. У меня проблема в том, что при включении теплого пола включаются и радиаторы.

Имеется следующая установка:

* Система состоит из котла Baxi Solo 2 60 RS с 3-скоростным насосом Grundfos (установленным на 2-ю скорость)
* Программатор Horstmann Centaurplus C27 серии 2 для котлы ЦО / ГВ с 3-ходовым клапаном
* Switch-master для ЦО и ГВ
* Бак горячей воды с собственным термостатом бака.
* Siemens RDh20 Состояние помещения в холле для радиаторной стороны системы.

Подробная информация о UFH:

Подпольная система, которая является частью вышеупомянутой системы Boiler & CH, и служит просто расширением кухни только в 1 зоне от коллектора UFH со смесителем, установленным на 45/50 градусов с насосом Grundfoss, ( Головки электрических приводов клапанов отсутствуют).
Подача и возврат для UFH отбираются из потока котла и возвращаются в коллектор UFH и насосную систему. В линии на подающей стороне находится 2-ходовой клапан Siemens DVA2 / 5.
Также имеется небольшой обратный клапан Ballofix между потоком и возвратом чуть выше 2-ходового клапана Siemens ?.
UFH управляется программируемым термостатом теплообменника на кухне.

Я знаю, что для эффективной работы системы под полом я должен запрограммировать ее на постоянное включение и эффективную работу в соответствии с настройкой температуры / времени термостата, но это оказывается трудным, поскольку радиаторы также продолжают работать. несмотря на то, что термостат радиатора выключен ?.
Это также досадное ночное происшествие, когда температура падает и УВЧ нагреваются, если мы не отключим все это полностью.
Следовательно, я не получаю максимальную пользу от теплого пола? Поскольку он отводит воду в обе системы, что делает ее менее эффективной.

Буду признателен, если кто-нибудь может посоветовать, что может быть не так? Я хотел бы попробовать устранить неполадки, прежде чем найду специалиста по напольным покрытиям ?.

Заранее спасибо
Трейси

Содержание


БАЗОВАЯ КОНСТРУКЦИЯ:

Расчет центрального отопления
и загрузка горячей воды.

Первым шагом в проектировании любой системы отопления является
рассчитать требуемую мощность центрального отопления с учетом тепловых потерь
(и прибыль) для каждой комнаты. В
Барло Хитлоад
Калькулятор — это простая программа, которую можно бесплатно скачать.
и упрощает выполнение всех необходимых расчетов.

Нужны ли еще радиаторы?

Причины, по которым можно использовать радиатор, включают:

  • Очень большие окна, которые могут
    нисходящие потоки.Радиатор будет противодействовать сквозняку, если он будет расположен ниже
    окно.

  • Радиаторы обогревают помещения быстрее, чем полы,
    Для полного нагрева может потребоваться до 3 часов. Где не может быть времени запуска
    Предполагается, что радиаторы могут потребоваться для улучшения отклика.

  • В местах с резкими перепадами температуры можно использовать
    радиатор для ускорения нагрева в этой области.

  • Области с очень высокими тепловыми потерями (лучше сократить тепло
    убытки по возможности)

  • Зоны, где невозможно укладывать пол
    трубопровод.

Стоит помнить, что чем выше тепловая масса
системы пола, тем больше время нагрева. Довольно быстро
время нагрева может быть достигнуто с помощью более тонкой стяжки над полом
изоляция. Вентиляторные конвекторы — еще одно соображение, так как они имеют более высокую
тепловыделения, и его можно экономно использовать для ускорения начального нагрева.


Принятие решения о наличии первичного распределительного трубопровода (до
коллекторов) должны быть смешаны.

Воду можно перекачивать из котла / теплоаккумулятора в
подпольные коллекторы …

  • при температуре котла (обычно до 82 ° C) с
    контроль температуры пола на коллекторах,

  • или при температуре пола, устраняя необходимость в
    блендеры и насосы на коллекторах.

Централизация контроля температуры упрощает
системы и упрощает оптимизацию погодных условий.Тем не менее, прокладка трубопроводов при полной температуре позволяет нагревать радиаторы.
лучше использовать.

Радиаторы обычно требуют воды при более высоких температурах,
83C, в отличие от 40-55C для полов с подогревом. Отправка очень горячая
вода вокруг контура пола может привести к растрескиванию стяжки или пола
температура становится некомфортно высокой. Контроль температуры некоторых
поэтому требуется, чтобы ограничить температуру воды, идущей до
теплые полы.

Таблица зависимости выходной мощности радиатора от температуры.
Взято с веб-сайта Barlo Radiators.

Если поток при 55 ° C, возврат при 45 ° C, тогда радиаторы должны быть больше
чем вдвое больше
(0,423 выход при 30 ° C Delta T из таблицы)
нормальный для достижения номинальной мощности. Если радиаторы
должны использоваться, тогда может быть более практичным обеспечить температуру
управления на подпольных коллекторах, если они расположены рядом с
радиаторы, а не слишком большие радиаторы или
температурный трубопровод.


Расчет длины и плотности необходимых трубопроводов.

Как только теплопотери в доме известны, требуемые
выходная мощность [Вт / м 2] этажей рассчитывается по разделению этажа
площадь труб теплого пола [м 2 ] по тепловым потерям / мощности [Вт].
Расчеты следует делать для каждой комнаты индивидуально.

Тепловые потери должны учитывать любой ввод радиатора, который
следует вычесть из требуемого выхода UFH.Также площадь пола в
комнаты могут быть уменьшены из-за приспособлений, таких как кухонные шкафы или
ванны. Учитывайте это при определении площади пола для использования в расчетах.

Следующая таблица,
из

Hilton-Croft UFH,
предназначен для типичной системы труб из полиэтиленгликоля.

Температура пола
C

Мощность
Вт / м 2

Расстояние между трубками
см

Плотность трубы
м / м 2

Длина контура
м

Макс.контур
Площадь м 2

Нагрев
Мощность Вт

Объем воды
л / час

Падение давления
мбар

Температура подачи 50C Температура обратной линии
40C

25.7

75

30

3,3

60

18

1350

116

50

80

24

1800

144

97

100

30

2250

194

204

115 *

35

2625

226

306

26.5

87

20

5

80

16

1392

120

71

100

20

1740

150

130

120

24

2088

180

215

200 * 27 2349 202 295

27.1

97

10

10

100 10 970 83 47
140 14 1358 117 119
180 18 1746 150 235
200 * 20 1940 167 314

Температура подачи 55 ° C Температура обратной линии
45C

26.7

91

30

3,3

40

12

1092

94

23

60

18

1628

141

70

80

24

2184

188

155

100 *

30

2730

235

285

27.7

106

20

5

60

12

1272

109

45

80

16

1696

146

100

100

20

2120

182

183

120 * 24 2544 182 183

28.5

118

10

10

100 10 1180 102 67
120 12 1416 122 109
150 15 1770 152 200
170 * 17 2006 173 284

*
максимально допустимая длина отопительного контура, включая « хвосты » труб к
многообразие.

Take
объект площадью 180 м 2 с тепловой нагрузкой 13,5 кВт, требующей 75 Вт / м 2 . С 50C
расход, температура пола
25,7C, участки трубопровода 10 x 60 м обеспечат (это действительно должно быть сделано)
по комнатам). Общий расход будет
составлять 1,16 м 3 / час (20 л / мин) при потере давления 50 мбар (напор 0,5 м).


Базовая схема расположения трубопроводов системы отопления

После того, как тепловые потери и длина требуемых трубопроводов UFH уменьшатся
был рассчитан.При работе следует учитывать следующие моменты.
ВНУТРИ ТРУБОПРОВОДОВ:

  • Сведите количество коллекторов к минимуму. Один или два будут
    сделать для большинства домашних объектов.

  • Держите коллекторы как можно центральнее и доступными для
    обслуживание.

  • Помещения с постоянным креплением, такие как кухонные шкафы,
    можно избежать (как разрешено в вычислениях).

  • Планируйте использовать трубы непрерывной длины, избегая
    соединители трубопроводов.

  • Цель состоит в том, чтобы добиться равномерной температуры пола за счет
    равномерное расположение труб.

  • Запуск подающей и обратной линии для контура параллельно
    помогает усреднить температуру. Это называется обратным возвратом .
    образец трубы


Расчет термостатического смесительного клапана и насоса UFH

Просмотр графиков потери давления для типичных смесительных клапанов UFH
(графики взяты из сети RWC
site), в 22 мм и 28 мм, мы можем видеть (продолжая пример), что на
20 л / мин система теряет 0.4 бара (напор 4 м) через клапан 22 мм, или
всего 0,15 бар (напор 1,5 м) через 28-миллиметровый клапан.

В
Кривая насоса для стандартного насоса Grundfos Alpha 15-60 показывает, что на высоте 1,16 м 3 / час насос
может создавать напор 4,4 м. Расчеты показывают всего
потеря давления через трубопровод и 22-миллиметровый смеситель на 4,5 м, однако это
больше, чем может обеспечить насос.

Хотя подойдет и насос большего размера, во избежание системного шума лучше использовать блендер 28 мм.
что вместе с трубопроводом теряет напор всего на 2 метра.Мы еще тогда
иметь запасной напор насоса 2,4 м для преодоления других
коллекторы, приводы и балансировочные клапаны.

Такие характеристики насоса могут быть построены с помощью
Grundfos WebCAPS.

Эти расчеты основаны на централизованном перемешивании для всего
имущество. Если имеется более одного коллектора с собственным
смесительный клапан и насос, затем необходимо произвести расчеты
отдельно для каждой подсистемы.

Также часто рекомендуется установить клапан защиты от перегрева, чтобы
изолируйте поток на нижний пол в случае неудачи смешивания
клапан для работы.В течение определенного периода времени вода с высокой температурой> 60 ° C может
могут привести к растрескиванию стяжки, так что защититься от этого будет разумно. Простейший
форма защиты — использовать стат, который будет изолировать питание UFH
насос и приводы. Полная защита будет включать в себя специальную изоляцию.
клапан какой-то — есть и электрический (стат + сервоклапан) и
чисто механическими (вентиль с датчиком колбы) методами. Если этот клапан
установлен в контуре UFH, тогда он должен быть приспособлен к давлению
расчет потерь.

Калибровочный котел.

После расчета общих тепловых потерь объекта
рассчитаны, потребности в горячей воде можно приблизительно рассчитать как
позволяя 2,5 кВт на человека. Это основано на ванне с горячей водой.
на каждого человека, выздоровевшего за два часа.

Сумма нагрузок на горячую воду и отопление дает минимум
размер котла. Целесообразно немного увеличить размер котла, возможно, до
30%, но котлы с большей мощностью могут страдать от циклических проблем, что снижает
КПД, особенно на котлах с фиксированной мощностью.Если термальный магазин
должен быть привязан к системе, тогда езда на велосипеде может быть преодолена даже для больших
котлы с фиксированной мощностью.


Подбор котельного насоса.

Для котла потребуется насос, размер которого соответствует его
мощность, хотя иногда котлы поставляются с заранее установленным подходящим насосом. А
требуемый расход при полном сгорании, может быть определен по мощности
котла следующим образом (обычно перепад температуры котла составляет около 10 ° C):

Расход [л / сек] = Мощность котла [Вт]
/ ( 4200 x Падение температуры котла [C] )

Пример (котел мощностью 24 кВт): расход = 24000 / (4200 x 10)
= 0.57 л / с = 35 л / мин

В системах всегда должен быть какой-либо байпас. Пока не
используется автоматический байпас, рециркуляция через байпас
(обычно низкая или без нагрузки) необходимо будет добавить к расходу.
Рекомендуется использовать автоматический байпас, поскольку он устраняет необходимость в
беспокоиться о негативном влиянии стационарных байпасов на скорость потока и
давления.

Другие клапаны, которые могут потребоваться встраивать
дизайн включает:

  • зональные клапаны для изоляции различных отопительных контуров, или
    Подача в накопитель горячей воды

  • предохранительный клапан, чтобы изолировать поток к
    пол в случае выхода из строя смесительного клапана.
    Через некоторое время вода с высокой температурой> 60 ° C может вызвать растрескивание стяжки.

Также необходимо сделать поправку на трубопровод от котла.
к коллекторам и / или накопителю горячей воды.

Операция буферного хранилища.

Единственный способ обеспечить работу конденсационных котлов
постоянно в режиме конденсации для нагрева или для устранения неудобств
цикличность котлов, заключается в привязке теплового накопителя к подпольной системе.
Накопитель действует как буфер между тепловой нагрузкой и мощностью котла.
Он экономит тепловую энергию во время работы котла, а затем использует ее.
накопленное тепло для поддержания нагрева после прекращения работы котла. Этот
так котел не должен гореть так часто, и будет гореть дольше
когда это произойдет.

Само по себе сокращение езды на велосипеде повысит эффективность,
однако выгоды также должны быть достигнуты за счет поддержания температуры обратки на уровне
котел постоянно низкий.Без теплового накопителя это очень
сложно добиться, если в котел не встроена электроника. Это
потому что для поддержания минимального расхода через котел при слабом нагреве
нагрузки, вода будет течь через байпас в обратку, поднимая
температура. Этот цикл будет продолжаться до тех пор, пока вода в этом цикле
достигает 80C (верхнее значение котла), к этому времени температура обратки
выше 60С. КПД котла тем выше, чем ниже отдача.
при температуре и 60 ° C эффективность конденсации невысока.

Для теплого пола требуется только температура подачи
55C макс. Самая низкая температура в системе — это пол.
возврат, при температуре от 30 до 45 ° C, поэтому в идеале мы хотим нагревать воду только от
От 45 ° C до 65 ° C для поддержания теплого пола (при условии, что повышение температуры на 20 ° C составляет
подходит для бойлера).

Этого легко добиться с помощью буферного хранилища, настроив
цилиндровые термостаты соответственно. Котел не загорится, пока
оба нижних термостата требуют тепла, а затем продолжат
огонь, пока оба не будут удовлетворены.Термостаты следует отрегулировать так, чтобы
что бойлер повторно нагревает воду за один проход — второй проход будет включать
возвратная вода выше 60С.

Если требуется более горячая вода, например, для работы контуров радиаторов или водопровода
теплообменники горячей воды, то верхняя часть магазина может иметь
собственный термостат, который заменяет два нижних термостата, когда это необходимо.
Самый простой способ разогреть теплоаккумулятор — просто перекачать воду.
снизу магазина до бойлера и обратно, хотя это только
возможно с вентилируемыми котельными системами.В герметичных системах медная катушка
внутри магазина используется как котел, так и пол для привода
обогревать склад и выходить из него, однако более высокая температура котла будет
преобладают по сравнению с прямой установкой (без катушек / вентиляции). На очень большом
В системах вместо змеевика можно использовать пластинчатый теплообменник, чтобы обеспечить
входы / выходы более 50кВт.

Для котлов без конденсации, где используется буфер
преодолеть цикличность, необходимы только нижние два термостата цилиндра, оба
установить на 75 ° C.

Буферные хранилища также полезны при попытке включения
солнечные панели в систему. Катушка в основании магазина позволяет
тепло должно быть передано в самую холодную точку магазина, а затем
используется для теплых полов.

Калибровка склада горячей воды.

При расчете емкости накопителя горячей воды можно воспользоваться нашим
Waterload
Калькулятор. Как правило, мы допускаем хранение 90 литров на
ванна и 60 литров на душ в период максимального спроса.
Если будет использоваться тепловой аккумулятор, то к нему может быть добавлено дополнительное хранилище.
разрешить буферную операцию. Дополнительное хранилище также может потребоваться, если
должны использоваться солнечные батареи.

Особое внимание следует уделять устройствам с электрическим подогревом.
системы, поскольку чем меньше размер магазина, тем меньше он способен накапливать тепло
предоставляется по дешевому тарифу на электроэнергию.

Особую осторожность следует проявлять при обнаружении трупов.
форсунки, большие душевые розы или общее желание провести много времени
в душе.

DPS Thermal накопители доступны в базовых диаметрах
40см, 45см, 50см и 60см, с высотой от 85см до 2м, что делает
диапазон емкостей от 90 литров до 500 литров.


Герметичная или вентилируемая основная система.

Как правило, лучше всего выбирать герметичную первичную систему —
другими словами, тот, который находится под давлением, а не из резервуара.
Герметичные системы обладают следующими основными преимуществами:

Если у вас котел герметичной системы или некоторых других производителей
котла, то вентилируемая система не вариант.Однако вентилируемые системы
имеют некоторые преимущества, если вы можете жить с 12 галлонами (12x12x20 дюймов)
кормовой и расширительный бак на чердаке.

  • Автоматически наполняется повторно при проведении обслуживания, или
    воздух удаляется.

  • Разрешить использование «прямых» аккумуляторов тепла там, где вода
    в первичной системе такая же, как и в тепловом накопителе (нет
    катушки),
    позволяя создать очень простую, экономичную систему с высокой степенью извлечения.Такой
    магазины также могут более эффективно использовать солнечную энергию для полов.


ПОЛ
ДИЗАЙН:

Стяжка полов

Ослепляющий слой песка добавляется для заполнения пустот и обеспечения гладкости.
прочная поверхность без острых частиц, этого необходимо избегать
прокалывание DPM.

DPM расшифровывается как «влагонепроницаемая мембрана».Требуется при укладке
деревянные полы или ламинат на цементные основания, например,
бетонные, керамические, мраморные, асфальтовые / битумные поверхности. ДПМ предотвратит
потливость и попадание влаги с пола.

Изоляция пола, как правило, из жесткого пенопласта
изоляционная плита со светоотражающей пленкой
(Целотекс).
Доступны доски различной толщины и размеров (50 мм x 1200 x 2400 мм,
1200×1000 мм …)

Трубы крепятся к стальной сетке с помощью простых проволочных зажимов.В
сетка снимается с изоляции с помощью распорок перед заполнением
стяжка.

Добавка к цементу / пластификатор добавляется в стяжку для обеспечения
полная изоляция трубы / решетки стяжкой для максимального нагрева
перевод из труб в стяжку получается, а для придания
дополнительная прочность на сжатие и изгиб.

Подвесные перекрытия

В описанных ниже методах подвесного пола используется цементная смесь Sand 1: 8.
как тепловая масса, и распределить тепловую нагрузку.Это дешевле
альтернатива использованию алюминиевых распорных пластин.

ВЫШЕ СУСТАВА:


МЕЖДУ ШКАФОМ:


Некоторые ссылки на компании по производству полов:

Borders Underfloor
Отопление
Консервационный инжиниринг
Continental UFH

Экватор
Hepworth Hep2O
Hilton-Croft UFH
Невидимое отопление
Nu-Heat
OSMA / Термодоска

Пексатерм
UFH
Под полом
ООО «Тепловые системы»
Вирсбо

Путаница — Системы с одной зоной

Однозонные системы предназначены для управления площадями различного размера от 10 до 100 м2.В нашем магазине вы увидите 2 разных типа однозонной системы: стандартная комната и высокая производительность, единственная разница между этими двумя вариантами — это количество трубы, которое вы получаете с комплектом.

  • Что нужно учитывать
    • Размер заказанного вами комплекта определяет тип насоса / смесительного клапана, который вы получите в комплекте.
    • Обратите внимание, что расстояние между трубами определяет количество квадратных метров, которые вы можете покрыть.
    • Самый длинный отрезок трубы, который у вас может быть, составляет 100 м.
    • Стандартный комплект с шагом 250 мм между трубами покрывает площадь 30 м2.
    • Комплект с высокой производительностью с шагом 200 мм между трубами покрыл бы площадь 24 м2.

Насос может управляться 2 способами — опция 1

Самый простой способ — подключить подающую и обратную линии от существующего контура радиатора (т.е.е. Это означает, что, когда ваши существующие радиаторы запрограммированы на включение (обычно это часы вашего времени рядом с котлом), также включается насос теплого пола, при условии, что и ваш радиаторный термостат, и термостат теплого пола вызов тепла (обратите внимание — насос теплого пола не будет работать, пока температура воды в трубах не достигнет 40 градусов).

Любой стандартный комплект помещения площадью до 30 м2 будет поставляться с предварительно собранным насосом Grundfoss для одной зоны и смесительным клапаном.

Комплект 30 м2 содержит 120 м трубопроводов, что является максимальным количеством труб, разрешенным для любого однозонного насоса, более того, это приведет к понижению температуры воды в трубе, прежде чем она потечет обратно в насос.

Любой стандартный комплект помещения площадью более 30 м2 будет поставляться с предварительно собранным насосом коллектора и смесительным клапаном Grundfoss.

Разница между этими двумя системами заключается в том, что коллектор, присоединенный к насосу, может обрабатывать больше зон. Преимущество коллектора означает, что вы можете добавить больше зон в систему и обогреть большие площади (каждый порт коллектора может контролировать до 100 м трубы). Каждая зона включается одновременно, когда система требует тепла (т.е. когда ваш термостат включен).

Например

Стандартный комплект 50 м2 будет поставляться с 3-х канальным коллектором. Это означает, что у вас может быть либо 1 большая площадь 50м2, снабженная 3 зонами труб, либо у вас может быть 3 разных помещения 20м2 + 20м2 + 10м2, снабжаемых одним и тем же комплектом.

Что нужно учитывать
  • Три разные комнаты будут управляться одним и тем же термостатом.
  • Ни одна зона не может использовать более 100 м трубы.
  • Длина участка трубопровода от коллектора до помещения.

Вариант 1 (системный котел не комбинированный)

Всегда уточняйте у установщика, поскольку конфигурация котла может отличаться от показанной, это стандартное руководство по установке для типичных настроек.

Если вы хотите иметь возможность включать полы с подогревом независимо от радиаторной системы, вам нужно будет отключить отопительный контур на котле, это означает установку нового 2-ходового клапана в системе типа S, чтобы самостоятельно контролировать новую зону теплых полов.

Клапан управляется термостатом из прилагаемого набора, мы рекомендуем использовать цифровой термостат, а не ручной термостат со шкалой, поскольку цифровые термостаты могут программировать время его включения и выключения.

Преимущество такой установки в том, что у вас есть независимое управление системой теплого пола.

Однокомнатная двухконтурная система

(электропроводка не показана) Не для использования в системе Y-планировки

Неисправности клапана с электроприводом Honeywell — Бесплатная консультация по отоплению

Обычные типы клапанов с электроприводом Honeywell

Honeywell производит широкий ассортимент клапанов с электроприводом, используемых в бытовых системах центрального отопления.Наиболее распространенными на сегодняшний день являются 22-миллиметровый трехходовой 5-проводной клапан среднего положения и 22-миллиметровый двухходовой 5-проводный зонный клапан. Эти 22-миллиметровые клапаны (3-х портовый V4073A1039 и 2-х портовый V4043h2056) используются на объектах малого и среднего размера.

В более крупных объектах можно использовать 28-миллиметровые клапаны (5-проводный 3-портовый V4073A1088 и 6-проводный 2-портовый V4043h2106). 2-ходовой зонный клапан 28 мм V4043h2106 имеет 6 проводов th , белого цвета. Этот белый провод нельзя использовать. В этом случае он должен быть электрически безопасным.
Эти клапаны имеют соединения компрессионных труб, хотя Honeywell производит клапаны с электроприводом и с резьбовыми соединениями.

Как используются клапаны с электроприводом

Как правило, в собственности небольшого или среднего размера будет либо один 3-ходовой клапан (который разделяет поток воды центрального отопления между цилиндром и радиаторами), либо два 2-ходовых клапана (один регулирующий поток к цилиндру и один регулирующий поток к радиаторам). ).

При использовании 3-ходового клапана система управления может быть известна как система Y-плана солнечных часов или система Y-плана Honeywell.
При использовании двух 2-ходовых клапанов система управления может быть известна как система Sundial S Plan или система Honeywell S Plan.
Имена Y Plan и S Plan чаще используются, когда также используются другие элементы управления Honeywell (программатор, комнатный термостат, термостат цилиндра и центр коммутации).

Если в собственности используется комбинированный котел (а не котел, работающий только на тепло), котел обычно будет иметь переключающий клапан. В малогабаритных объектах может не быть других моторизованных клапанов.
В домах среднего или большего размера, при использовании комбинированного котла, может быть дополнительный зональный клапан снаружи котла, который позволяет разделить отопление на две зоны.Котлы системы
могут также иметь встроенный переключающий клапан или зональный клапан и могут не иметь никаких внешних зональных клапанов.

Согласно Части L Строительных норм и правил, во многих новых домах радиаторы отопления (или полы с подогревом) должны быть разделены на две зоны. Это создает жилую зону и спальную зону, которые имеют отдельные временные и температурные регуляторы для повышения энергоэффективности.

Honeywell V4073A1039 3-х канальный переключающий клапан среднего положения, 22 мм. Это 5-проводные клапаны.При использовании с другими элементами управления Honeywell настройка называется Y Plan.

В нормальном режиме работы с котлом, работающим только на тепло, вода центрального отопления нагревается в котле, а затем перекачивается по системе с помощью циркуляционного насоса. Клапаны с электроприводом используются для разделения или отвода потока. Нагретая вода может быть направлена ​​либо в радиаторы (или полы с подогревом), либо в змеевик водонагревателя для нагрева горячей воды из-под крана. Затем охлажденная циркуляционная вода возвращается в котел для повторного нагрева.

Программатор и комнатный термостат (стат) используются для управления временем нагрева и температурой воздуха в помещении.Программатор и статистика комнаты могут быть объединены в одну программируемую статистику комнаты.
Программатор и термостат водонагревателя (stat) используются для управления временем нагрева горячей воды и для управления максимальной температурой хранящейся горячей воды.

В небольших помещениях обычно используется один программатор с двумя каналами. Один канал программатора управляет отоплением (радиаторы или пол), а другой канал программатора управляет горячей водой. Если используются дополнительные зонные клапаны, обычно используется другой программатор или таймер.

Конструкция клапана с электроприводом Honeywell

Почти все клапаны Honeywell имеют силовую головку (также называемую приводом), которую можно отделить от корпуса клапана. Корпус клапана выполнен из латуни, которая ввинчивается в трубопровод.

Силовая головка или привод — это электрическая секция. Он состоит из двигателя и некоторых электронных компонентов и обычно имеет один или несколько микропереключателей.
Они находятся в металлической коробке серебристого цвета, которая соединена с латунным корпусом.

Силовая головка приводит в движение шпиндель (или вал привода), который является частью корпуса клапана.

На современных клапанах Honeywell, если силовая головка выходит из строя, ее можно снять с корпуса клапана, не сливая воду. Однако будьте осторожны! На очень старых моторизованных клапанах Honeywell нельзя было снять силовую головку, предварительно не слив воду.

Мы думаем, что эти старые клапаны были выпущены до 1985 года, и это, кажется, подтверждается этой примечанием в Honeywell Flow Solutions pdf:
«На старых клапанах до 1985 года, которые не имеют функции сменной головки, пластина адаптера сборку можно использовать для модернизации клапанов, чтобы можно было использовать заменяемую силовую головку.”

Мы также думаем, что все съемные силовые головки имели выступ (или выступ) на верхней части металлического корпуса силовой головки, но мы не уверены в этом.

Выпуклый выступ или выступ на металлической крышке силовой головки или привода клапана с электроприводом Honeywell.

Снятие моторной головки клапана Honeywell

Убедитесь, что клапан не настолько старый, что необходимо слить воду из системы, прежде чем снимать его. Насколько нам известно, клапаны с электроприводом Honeywell, которые были изготовлены с 1985 года и которые имеют приподнятый выступ (небольшой выступ) на верхней части металлической крышки, позволяют снимать силовую головку без дренажа (см. Выше).

Изолируйте всю электрическую сеть от системы центрального отопления и проверьте ее электрическую безопасность. Мы используем бесконтактный вольтметр, чтобы убедиться, что это безопасно. Бесконтактные тестеры напряжения намного безопаснее в использовании, чем традиционные неоновые тестеры. Те, которые мы используем, произведены Fluke.

Бесконтактный тестер напряжения производства Fluke. Корпус полностью пластиковый, нет открытых металлических частей.

Переведите ручной рычаг клапана в открытое вручную положение. (Надавите на MAN OPEN конец паза и поднимите, отпуская его, чтобы он вошел в крючок в верхней части паза.)

При выключенном питании ослабьте винт крепления крышки силовой головки и снимите металлическую крышку. Не нужно полностью выкручивать заглушку. У последних клапанов есть внутренний заземляющий провод, который соединяет крышку с силовой головкой. Как только крышка будет поднята, ее можно повесить в сторону. У более ранних клапанов крышка была полностью свободной.

Винт освобождения крышки силовой головки клапана Honeywell. Силовую головку также можно назвать исполнительным механизмом.

Когда крышка снята, у вас есть доступ к двум винтам, которыми крепится силовая головка.
Эти винты расположены по диагонали напротив друг друга и проходят через стальную пластину основания силовой головки (привода) в верхнюю часть корпуса клапана с латунным фланцем.

Выкрутите оба этих винта. Обычно они не выходят прямо из стальной пластины, но удерживаются ею, когда силовая головка снимается с корпуса клапана.

Один из двух винтов, которыми силовая головка крепится к корпусу клапана. Они по диагонали друг напротив друга

Клапаны с электроприводом часто устанавливаются в ограниченном пространстве с ограниченной видимостью, поэтому обратите внимание на ориентацию силовой головки.

Это упростит повторную установку (просто запомните, к какому концу был подключен шлейф, или сделайте снимок на свой телефон). Силовая головка может устанавливаться на корпус клапана только с одной стороны, но если пространство ограничено, это может быть неочевидно.

При снятой крышке силовой головки у вас также есть доступ к винту, удерживающему двигатель. При необходимости мотор можно снять, не отсоединяя силовую головку от корпуса клапана.

Однако, если вам нужно заменить двигатель, может быть проще снять силовую головку, чтобы вы могли работать с ней на открытом воздухе.Помните, что на ранних версиях клапанов с электроприводом Honeywell (до 1985 г.) вы не можете снять силовую головку, предварительно не слив ее!

Самая распространенная неисправность клапанов с электроприводом Honeywell — отказ двигателя.

Неисправность электродвигателя клапана Honeywell? Тестирование двигателя синхронного клапана

Электроника в моторизованных клапанах Honeywell обычно довольно стабильна и выявляет относительно мало неисправностей, но двигатель может выйти из строя после многих лет эксплуатации. Honeywell использует синхронные двигатели, и они находятся в свободном доступе, но есть много дешевых клонированных двигателей.Они выглядят одинаково, но вместо имени SYNCHRON они используют слово Synchronous.

Это все синхронные двигатели (синхронный — это общий термин для типа электродвигателя). Однако только Synchron имеет право называть свои синхронные двигатели «SYNCHRON». Обычно ключ к разгадке есть в цене. Стоимость большинства клонов составляет примерно половину стоимости настоящего двигателя SYNCHRON. Мы никогда не используем клонированные двигатели. Мы пробовали в прошлом, и, по нашему опыту, они очень быстро терпят неудачу.

Насколько нам известно, оригинальные двигатели SYNCHRON, изготовленные для Honeywell, имеют два синих провода, тогда как большинство оригинальных двигателей SYNCHRON имеют оранжевые провода.В прошлом компания Honeywell сообщала нам, что двигатели, созданные для них, производили более высокий крутящий момент, чем стандартный двигатель SYNCHRON.

Оба этих оригинальных двигателя SYNCHRON работают с моторизованными клапанами Honeywell. Двигатели SYNCHRON, изготовленные специально для Honeywell, имеют два синих провода.

Запасные двигатели Honeywell SYNCHRON доступны, но они немного дороже. В течение долгого времени мы использовали стандартные двигатели SYNCHRON в качестве замены, с очень небольшими проблемами.

Двигатели с синхронным клапаном могут оставаться под напряжением и оставаться горячими в течение многих часов в день в течение всей зимы.В конечном итоге они могут потерпеть неудачу. Неисправный двигатель синхронного клапана препятствует работе двухходового клапана с электроприводом. Клапан не откроется, а концевой выключатель не будет включен (подключен), поэтому мощность не будет подаваться на котел или насос.

Если вы знаете, как безопасно работать с электричеством сетевого напряжения, мотор клапана можно проверить с помощью мультиметра. При отключенном и изолированном питании от сети можно проверить сопротивление между двумя проводами двигателя (синими или обоими оранжевыми).Для правильной проверки по крайней мере один из двух проводов двигателя должен быть отключен от цепи нагревательной проводки.

Мы находим, что обычно оно составляет около 2,1 кОм (2100 Ом), если двигатель холодный, и до 2,4 кОм (2400 Ом), если двигатель достаточно теплый. Я думаю, что значение между 2,0 кОм (2000 Ом) и 2,5 кОм (2500 Ом) предполагает, что обмотки двигателя, вероятно, в порядке. Если показание во много раз выше этого значения или цепь разомкнута, двигатель вышел из строя.

Есть много синхронных двигателей низкого качества.Если на крышке двигателя написано «Синхронный», а не «SYNCHRON ®», это может стоить меньше половины, но вы, вероятно, скоро снова его замените!
Трэвис Перкинс в прошлом продавал оригинальные моторы SYNCHRON марки BOSS, но на их веб-странице теперь видно то, что мне кажется клонированным мотором. Двигатели ACL Drayton, кажется, по-прежнему являются подлинными SYNCHRON, и будем надеяться, что так и будет. Тебе придется проверить.

Замена электродвигателя клапана Honeywell

Заменить вышедший из строя синхронный двигатель в моторизованном клапане Honeywell довольно просто, если вы знаете, как безопасно работать с электросетью.Убедитесь, что вы прочитали весь процесс, прежде чем начинать!

Во-первых, отключите все электрическое питание от органов управления системой центрального отопления. Затем с помощью бесконтактного тестера напряжения, такого как указанная выше ручка Fluke, убедитесь, что система надежно изолирована.

Может быть проще установить клапан в открытое вручную положение с помощью ручного рычага. (См. «Рычаг ручного управления клапаном с электроприводом Honeywell» ниже.)

Снимите металлическую крышку силовой головки, открутив винт крепления крышки, затем снимите крышку.Снимите крепежный винт двигателя, который находится сбоку от синхронного двигателя.

Фиксирующий винт синхронного двигателя в трехходовом клапане с электроприводом Honeywell

С другой стороны двигателя есть еще один фланец, расположенный под металлическим выступом. Этот фланец на двигателе клапана Honeywell не имеет винта.

Фланец электродвигателя синхронного клапана Honeywell закреплен под металлическим язычком

Сдвиньте тупой конец мотора в сторону, пока фланец не выйдет из фиксирующего выступа. Это может быть немного забавно.Затем двигатель выходит из клапана и удерживается только двумя проводами, которые соединяют его электрически. Эти два провода могут быть синими (в оригинальном синхронном двигателе Honeywell) или оранжевым (в большинстве сменных синхронных двигателей).

Отсоединяемые провода — это два провода, идущие от двигателя. На более ранних клапанах с электроприводом они оба соединялись с другими проводами с помощью металлических зажимов, заключенных в пластик. На более поздних клапанах один провод соединяется с обжимом, а другой подключается непосредственно к электрическим компонентам клапана.

Обжимные кольца — это металлические трубки с пластиковой изоляцией, которые сглаживаются плоскогубцами для захвата двух проводов и их электрического соединения. Эти загибы иногда можно снова открыть, используя плоскогубцы, чтобы сжать края сплющенной трубки. Это можно сделать с установленным пластиком. В случае успеха он освобождает два провода. Пластиковая изоляция может сломаться, в этом случае обжим выбрасывают.

Если один провод двигателя постоянно прикреплен к силовой головке, вам необходимо его обрезать.Обрежьте его ближе к вышедшему из строя двигателю, оставив более длинный кусок провода подключенным к силовой головке. На обрезанном конце этого провода должна быть снята изоляция. На фото видно, сколько утеплителя нужно снимать.

Это должно было оставить у вас неисправный двигатель, который теперь отсоединен от силовой головки и может быть утилизирован. Это также должно было оставить вас с двумя проводами, все еще подключенными к силовой головке.

Запасной двигатель синхронного клапана, который поставляется с двумя типами разъемов.Оранжевые разъемы не используются в клапанах Honeywell. Два белых разъема — обжимные.

Один из проводов от силовой головки необходимо подсоединить (обжать) к одному из проводов нового двигателя. Другой свободный провод от силовой головки необходимо подключить к другому проводу нового двигателя. Не имеет значения, какой из двух проводов двигателя подключен к какому из двух свободных проводов силовой головки, поскольку они не имеют полярности.

Теперь новый двигатель должен быть снова вставлен в силовую головку. Маленькая металлическая шестерня в нижней части двигателя проходит через отверстие в опорной плите силовой головки.На нашей фотографии это отверстие покрыто черной смазкой.

Затем двигатель необходимо повернуть обратно на место так, чтобы один из фланцев двигателя скользнул обратно под угловой металлический язычок на силовой головке.

Маленькая шестерня синхронного двигателя входит в круглое отверстие, вокруг которого на этой картинке нанесена черная смазка. Один фланец двигателя скользит под длинным металлическим выступом в правой части рисунка.

Другой фланец двигателя должен быть выровнен так, чтобы единственный фиксирующий винт можно было снова установить и затянуть.После установки нового мотора провода необходимо заправить так, чтобы они не защемлялись в металлической крышке. Провода должны проходить вокруг двигателя, а не через его верхнюю часть.

Когда новый двигатель снова встанет на место, фланец на другой стороне двигателя, как и прежде, должен находиться ниже металлического выступа. Фланец на этой стороне должен быть совмещен с гайкой, как показано. Затем одиночный винт можно снова установить и затянуть.

Если силовая головка была снята с клапана, чтобы упростить замену двигателя, теперь ее необходимо снова прикрепить к клапану.После этого крышку силовой головки можно установить на место и закрепить одним винтом. Убедитесь, что он сидит прямо на силовой головке, и никакие провода не выходят с боков.

После установки крышки на место можно восстановить питание и проверить работу клапана с электроприводом.

Электропривод клапанов Honeywell, электрическое управление

Двухходовые зонные клапаны Honeywell с электроприводом (V4043H) электрически довольно просты. Силовая головка содержит двигатель, который используется для открытия клапана, и вспомогательный выключатель или концевой выключатель.

Honeywell работа зонного клапана 22 мм (V4043h2056)

Honeywell V4043h2056 22-миллиметровые двухходовые зонные клапаны имеют пять проводов: зеленый / желтый — заземление, синий — нейтраль, коричневый — фаза (или линия) к двигателю, серый и оранжевый подключены к концевому выключателю и образуют часть отдельной цепи .

Когда от программатора поступает запрос (через термостат), на двигатель подается питание, и клапан открывается, чтобы пропустить воду. Когда клапан полностью открыт, в силовой головке срабатывает микровыключатель, соединяющий серый провод с оранжевым проводом.Это называется замыканием переключателя. Это звучит несколько нелогично, но когда переключатель замкнут, он замыкает цепь и позволяет току пройти; когда переключатель разомкнут, он размыкает цепь и останавливает прохождение тока.

Вспомогательный контур (серый и оранжевый провода) обычно используется для управления котлом и / или циркуляционным насосом. Вспомогательная цепь может быть настроена на работу при более низком напряжении, чем сеть, но обычно она несет сетевое напряжение. Это работает следующим образом: один из двух проводов, обычно серый, подключен к постоянному источнику питания под напряжением (около 230 В переменного тока в Великобритании).Другой провод, обычно оранжевый, подключен к питающей сети котла.

Когда программатор и стат отправляют прямую подачу на коричневый провод с 2-мя моторизованными портами, двигатель открывает клапан, чтобы пропустить воду. Когда клапан полностью открыт, концевой выключатель замыкается, позволяя электрическому току проходить от серого провода к оранжевому проводу, а оттуда к котлу с переключением под напряжением. Если термостат котла уже не достиг нужной температуры, котел будет гореть.

В современных котлах котел подает прямую подачу на циркуляционный насос, который затем прокачивает нагретую котловую воду через клапан.Он уйдет на радиаторы или на змеевик цилиндра, в зависимости от того, какой клапан был открыт. В старых котлах напряжение питания от концевого выключателя вспомогательного контура поступает непосредственно на насос одновременно с переключением на котел.

Использование вспомогательной цепи и концевого выключателя является разумным решением по двум причинам:

Если двигатель клапана выходит из строя, клапан с электроприводом не открывается. В этом случае клапан не закроет концевой выключатель и, следовательно, не замкнет вспомогательный контур. Котел не сработает (без разомкнутого контура трубы для отвода тепла), если другой клапан с электроприводом не откроет другой контур трубы и не вызовет бойлер.Это предотвращает розжиг котла и работу насоса при отсутствии разомкнутого водяного контура.

Вспомогательный контур позволяет использовать несколько двухходовых клапанов с электроприводом для управления отдельными зонами без электрического взаимодействия. В противном случае, если бы несколько зональных клапанов использовались без вспомогательных контуров, и все они были бы подключены к одному насосу, так что провод под напряжением, который открывал каждый клапан, также питал насос Live, возникли бы проблемы.
Как только сигнал реального времени поступает на один из зонных клапанов, чтобы открыть его и запустить насос, он будет возвращаться на провод под напряжением на всех клапанах зоны, заставляя их все открываться.Все клапаны зон будут открываться и закрываться вместе, нарушая назначение отдельных зон.

Honeywell работа зонного клапана 28 мм (V4043h2106)

Двухходовой зонный клапан Honeywell V4043h2106 28 мм имеет 6 проводов. Пять из этих проводов такие же, как у 22-миллиметрового 2-ходового клапана. Зеленый / желтый — это земля, синий — нейтраль, коричневый — фаза (или линия) двигателя, серый и оранжевый подключены к концевому выключателю и образуют часть отдельной цепи.

Однако в 28-миллиметровом 2-ходовом клапане есть провод 6 , окрашенный в белый цвет.Во многих случаях этот белый провод не используется, и его нужно просто сделать электрически безопасным (изолированным, чтобы он не касался металлических компонентов). Если белый провод не используется, 28-миллиметровый зонный клапан подключается так же, как 5-проводный зонный клапан 22 мм, и работает таким же образом.

В настоящее время использование белого провода (6 ) двухходового зонного клапана Honeywell является относительно необычным. Он используется для обеспечения независимого регулирования температуры как в отопительном контуре, так и в контуре горячего водоснабжения, если в установке используется насос для отопления, а горячая вода — самотеком.Компания Honeywell публикует брошюру по плану солнечных часов C и Справочное руководство по плану солнечных часов C, в которых объясняется, как в этом случае следует устанавливать и подключать элементы управления.

3-х ходовой клапан Honeywell для работы в среднем положении (V4073A1039 и V4073A1088)

Honeywell V4073A1039 22-миллиметровый трехходовой моторный клапан среднего положения, показывающий входной порт AB и выходные порты A и B. Этот клапан может быть открыт либо для порта A, либо для порта B, либо для обоих портов одновременно

Моторизованный клапан среднего положения Honeywell имеет три порта в Т-образной конфигурации.Вода поступает через порт AB. Вода уходит либо через порт A, либо через порт B, либо через оба порта одновременно. Порт A обычно подключается к контуру радиатора, а порт B — к змеевику цилиндра (для нагрева горячей воды). Циркуляционный насос обычно подключается для подачи воды из котла в порт AB.

В пояснении ниже предполагается, что клапан подсоединен к трубопроводу таким образом.

Трехходовой клапан Honeywell V4073A имеет пять проводов. Это синий, зеленый / желтый, белый, серый и оранжевый.Обратите внимание, что серый и оранжевый провода используются иначе, чем серый и оранжевый провода двухходового клапана!

Синий провод — это нейтраль, N. Зелено-желтый провод — это заземляющий провод, E. Белый провод подключается к проводу от комнатного термостата, который требует обогрева (радиаторы или пол). Серый провод используется для перевода клапана в положение отключения воды, в котором открыт только канал нагрева A; он закрывает порт B. Оранжевый провод обеспечивает подачу под напряжением (переключаемая линия) для запуска котла и насоса.

В то время как внутренняя электрическая часть 2-ходового клапана довольно проста, внутреннее электрическое управление клапана среднего положения V4073A является более сложным.

Если вам нужно четкое объяснение внутренней электрической работы, посмотрите видео Джона Варда на YouTube. Он действительно хорош!

Внутри трехходового моторизованного клапана Honeywell V4073A с резиновым шариком, закрывающим порты.

Honeywell V4073A — это клапан с пружинным возвратом. Порт A или порт B могут быть закрыты резиновым шариком, но не оба одновременно.Резиновый шарик перемещается между портами A и B с помощью приводного вала или шпинделя, который приводится в движение силовой головкой. Впускной порт AB никогда не может быть закрыт; мяч перемещается только между портом A и портом B.

Трехходовой клапан V4073A никогда не перекрывает поток воды через клапан полностью. Всегда существует открытый путь от порта AB к порту A или от порта AB к порту B или от порта AB к обоим портам A и B одновременно.

Резиновый шарик прилегает к круглому отверстию (правая сторона на фото), закрывая его.Нам говорят, что мяч сначала касается одного края круглого отверстия, в результате чего он немного вращается на своем шпинделе. Это регулярное легкое вращение выравнивает искажения мяча. Маленький кусочек элегантного дизайна от Honeywell!

Когда все электрическое питание регуляторов нагрева отключено, пружина тянет шар, чтобы закрыть порт A, оставляя порт B открытым. Это расслабленное состояние или обесточенное состояние клапана. Его также иногда называют нормальным состоянием.

Когда клапан среднего положения V4073A настроен в конфигурации Y-Plan и требуется горячая вода, питание котла подается непосредственно от термостата водонагревателя.Клапан не запитан.

Когда также требуется нагрев, на белый провод подается напряжение, и клапан приводится в среднее положение и останавливается в нем. Электроэнергия на котел по-прежнему подается напрямую от термостата водонагревателя. Оранжевый провод клапана может иметь потенциал 230 В, но он исходит от статора цилиндра (к которому также подключен оранжевый провод), а не от схемы клапана.

Если количество горячей воды удовлетворяется (либо программатором, либо статом цилиндра), на серый провод подается напряжение.Поскольку все еще есть потребность в обогреве, клапан перейдет в положение «только обогрев» (порт A открыт; порт B закрыт) и переключит подачу 230 В на оранжевый провод, чтобы запитать котел.

Только когда и белый, и серый провода находятся под напряжением (и клапан переходит в положение «Только нагрев»), оранжевый провод может получать питание 230 В через сам клапан. (Помните, что оранжевый провод также может получать 230 В от статора цилиндра, если он звонит и включена программа горячего водоснабжения.)

Когда включен только обогрев, а затем он выключен или удовлетворяется потребность в статистике помещения, на оранжевом проводе остается более низкое напряжение от 50 до 150 В.Двигатель будет продолжать находиться под напряжением (хотя и на меньшей мощности) и останется теплым. Клапан останется в положении «Только нагрев» (порт A открыт; порт B закрыт). Если горячая вода будет снова включена или все сетевое питание отключено, двигатель будет обесточен, и пружина вернет клапан в положение «только горячая вода» (порт A закрыт; порт B открыт).

Ручной рычаг моторизованного клапана Honeywell

Ручной рычаг на моторизованном клапане Honeywell

Honeywell сообщает, что ручной рычаг, расположенный на конце силовой головки, не является индикатором положения и должен использоваться только для заполнения системы и слива.

Вы устанавливаете клапан в положение, открытое вручную, выключая питание, а затем нажимая рычаг в направлении конца паза, открываемого вручную. Вы будете давить на возвратную пружину. Затем вы можете слегка приподнять рычаг и ослабить давление, чтобы пружина толкнула рычаг назад, оставив его зажатым за крючком в верхней части паза.

Однако рычаг может дать нам больше информации, если мы знаем, что ищем. Рычаг толкает клапан против возвратной пружины.Клапан не тянет рычаг к открытому концу, когда клапан открывается.

В трехходовом клапане порт A закрыт, а порт B открыт, когда клапан обесточен. Это состояние либо когда все питание отключено, либо когда выбрана только горячая вода. В этом положении клапана рычаг провисает в прорези только примерно на четверть хода прорези (начиная с конца «Авто»).

Если рычаг перемещается дальше вправо, вы можете почувствовать сильное сопротивление возвратной пружины, когда вы открываете клапан.Если после принудительного открытия вы отпустите рычаг, он отодвинется назад в сторону конца Auto. Таким образом, если рычаг ослаблен только на первые паза, клапан находится в положении «Только горячая вода».

Когда выбраны и Отопление, и Горячая вода, клапан открывается в среднее положение и остается там. При этом рычаг становится слабым почти на весь ход паза.
Вы должны почувствовать небольшое сопротивление пружины прямо на дальнем конце (конец Man Open) прорези.
Поначалу может быть трудно это почувствовать.Это наиболее очевидно, когда клапан находится в положении «Только нагрев» и возвращается в среднее положение.

Итак, если вы настроили систему только на обогрев (горячая вода должна быть отключена или ее уровень должен быть достаточным для состояния водонагревателя), мотор клапана приводит в действие клапан, чтобы закрыть порт B, в то время как порт A отопления остается открытым. Рычаг будет провисать по всей длине паза без какого-либо торцевого сопротивления. Это связано с тем, что рычаг может перемещать клапан только немного дальше среднего положения, но двигатель перемещает его намного дальше.

Зная это, мы можем теперь нащупать среднее положение (отопление и горячая вода открыты).

Начиная с регулятора, настроенного только на обогрев, плотно прижмите рычаг к правой стороне паза. Теперь попросите кого-нибудь выбрать горячую воду, так что вы получите Отопление и горячую воду вместе. Возможно, вам придется поднять показатель цилиндра, чтобы он заработал. Как только будет вызвана горячая вода, вы услышите , как клапан начинает раскручиваться под действием пружины, затем вы почувствуете, как рычаг «толкнет» ваш палец.

Этот шум и неровность являются диагностическими. Они говорят нам, что клапан переместился в среднее положение, при котором открыты отверстия для отопления и горячей воды. Если вы можете заставить трехходовой средний клапан Honeywell переместиться во все три положения, клапан и органы управления будут подключены правильно, а клапан работает нормально.

Ручной рычаг на 2-ходовом клапане говорит нам меньше. Если клапан закрыт, рычаг будет провисать примерно на ⅓ хода паза.Когда клапан открыт, рычаг должен быть свободен по всей прорези.

Другие неисправности клапана с электроприводом Honeywell

Шпиндель клапана Honeywell заклинивает

Приводной шпиндель клапана с электроприводом Honeywell. Доступ к нему осуществляется путем снятия силовой головки клапана. Имейте в виду, что с моторизованными клапанами Honeywell, выпущенными до 1985 года, сначала необходимо слить воду, чтобы снять силовую головку!

Этот раздел также относится и к большинству других марок клапанов с электроприводом, а не только к клапанам Honeywell.

Неисправный двигатель препятствует открытию клапана с электроприводом, но это не единственная причина того, что клапан не открывается правильно.После многих лет эксплуатации уплотнительные кольца, уплотняющие шпиндель клапана (или вал привода), могут выйти из строя. Когда это происходит, вода центрального отопления просачивается и разъедает металл.

Это может привести к заклиниванию шпинделя клапана. Часто сначала становится трудно вращаться, и клапан может периодически вызывать проблемы. В конце концов, шпиндель может стать настолько жестким, что мотор клапана вообще не сможет его повернуть.

Если силовую головку (привод) можно безопасно снять с корпуса клапана (см. Предупреждение выше о клапанах Honeywell до 1985 года), вы можете попытаться повернуть шпиндель.Вам может понадобиться инструмент, если у вас нет сильных пальцев. Вы также должны отключить электропитание перед снятием силовой головки клапана с электроприводом Honeywell.

Старый корпус клапанов Satchwell Sunvic, как и корпуса клапанов Switchmaster Midi, совершал полный оборот. Корпуса клапанов с электроприводом Honeywell и Drayton — нет.

Заклинивает шток клапана с электроприводом в старом 2-ходовом клапане с электроприводом Satchwell Sunvic. Утечка воды привела к образованию белых оксидов вокруг латунного шпинделя, что сделало его слишком жестким, чтобы его можно было повернуть.
Корпуса клапанов с электроприводом

Honeywell и Drayton поворачиваются только по ограниченной дуге, и вы должны «чувствовать» точки, в которых движение останавливается.Шпиндель в корпусах 2-ходовых клапанов Drayton поворачивается только на 30º (на циферблате этот угол составляет около 5 минут).

В 2-ходовых клапанах Honeywell V4043H он поворачивается примерно на 70º (около 11½ минут на циферблате). В трехходовых клапанах Honeywell V4073A он поворачивается примерно на 45º (около 7½ минут на циферблате). Это все маленькие углы!

Если вам нужен инструмент для поворота шпинделя, потому что он очень жесткий, клапан может выйти из строя. Если он застрял, вы можете временно освободить его, осторожно перемещая его вперед и назад, но, вероятно, вскоре он снова закроется.

Временное высвобождение шпинделя может привести к просачиванию воды через уплотнительные кольца круглого сечения. По нашему опыту, это всегда было очень медленным просачиванием. Мы используем небольшой разводной гаечный ключ на плоских поверхностях на шпинделе клапана.

У клапанов Honeywell верхняя часть шпинделя D-образная, но для этого также можно использовать гаечный ключ. Если вы сделаете это, вы должны использовать очень небольшое усилие, так как очень легко порезать шпиндель или повредить клапан изнутри.

Иногда силовая головка может открыть клапан только частично, но не настолько, чтобы концевой выключатель вспомогательной цепи мог замкнуться.В этом случае этот клапан не сможет дать команду котлу сработать.

Если установлены два 2-ходовых клапана с электроприводом (один для контура отопления и один для контура накопителя горячей воды), неисправность может быть замаскирована. Даже если один клапан открывается только частично и не может запустить котел, клапан другого контура может полностью открыться и запустить котел. Затем насос проталкивает нагретую котловую воду через открытый и частично открытый клапаны.

Если, например, клапан отопления выходит из строя по этой причине, вы будете нагревать радиаторы, в то время как горячая вода в водонагревателе тоже нагревается.Когда водонагреватель нагревается до нужной температуры, клапан с электроприводом для горячей воды закрывается и больше не сообщает котлу о срабатывании огня, поэтому нагрев также прекращается.

Если дело обстоит наоборот, и 2-ходовой клапан, управляющий контуром горячей воды, выходит из строя, это может быть менее очевидным. Клапан отопительного контура может быть открыт в течение длительного времени, сигнализируя о срабатывании котла. Если кран горячей воды открыт частично, у вас не может закончиться горячая вода.

Летом, конечно, при выключенном отоплении эта неисправность клапана горячей воды проявляется очень быстро, потому что клапан отопления не сообщает котлу о срабатывании.

3-х ходовой корпус клапана Switchmaster Midi с заклинившим шпинделем. Этот клапан с электроприводом также ржавел вокруг винта на картинке.

Застревание силовой головки (привода) Honeywell?

Иногда мы сталкиваемся с клапаном с электроприводом Honeywell, где блокируется силовая головка, но шпиндель (вал привода) все еще свободен. Это обычно происходит при открытом заклинивании клапана. Если все питание системы центрального отопления отключено, а рычаг ручного управления по-прежнему болтается по всей прорези, механизм может заклинивать.

Если клапан не очень старый (до 1985 года), должна быть возможность снимать силовую головку с корпуса клапана без дренажа. Перед снятием силовой головки необходимо отключить электропитание. Когда силовая головка снимается с корпуса клапана, заклинивший механизм может освободиться и вернуться в исходное положение. Если это так, клапан может нормально работать после замены силовой головки. Если та же неисправность повторяется, это говорит о том, что шестерня в силовой головке может быть изношена. Затем мы заменили бы силовую головку или, если шпиндель клапана кажется тугим, заменили бы клапан целиком.

Список типов клапанов с электроприводом Honeywell

Как мы уже говорили выше, Honeywell производит широкий ассортимент клапанов с электроприводом. Нормальное состояние клапана — это обесточенное состояние. Это состояние, когда электродвигатель клапана не использует электроэнергию.
Нормально закрытый клапан закрывается, когда на него не подается питание, и для его открытия требуется электроэнергия.
Нормально открытый клапан открыт, когда на него не подается питание, и для его закрытия требуется электроэнергия.

V4073A1039 — это 3-х канальный, 22-миллиметровый, 5-проводный, переключающий клапан среднего положения
V4073A1088 — 3-х канальный, 28-миллиметровый, компрессионный, 5-проводный, переключающий клапан среднего положения
V4073A1054 — 3-х портовый, ”BSP с внутренней резьбой , 5-проводный, переключающий клапан среднего положения
V4073A1062 — это 3-х канальный, 1-дюймовый BSP с внутренней резьбой, 5-проводный переключающий клапан среднего положения

V4043h2056 — 2-х портовый, 22-миллиметровый, 5-проводной, нормально закрытый зонный клапан с вспомогательным концевым выключателем
V4043h2106 — 2-х портовый, 28-миллиметровый компрессионный, 6-проводный, нормально-закрытый зонный клапан с вспомогательным концевым переключателем
V4043h2007 представляет собой 2-х портовый, 5-проводной, нормально закрытый зональный клапан с внутренней резьбой ¾ «BSP и вспомогательным концевым выключателем.
V4043h2080 представляет собой 2-х портовый, 1-дюймовый внутренний резьбовой клапан BSP, 6-проводной, нормально-закрытый зональный клапан со вспомогательным концевым выключателем. концевой выключатель

V4043C1156 — это 2-х портовый, ½ ”BSP с внутренней резьбой, 3-проводной, нормально закрытый зональный клапан, но без концевого переключателя.
V4043B1257 — 2-х портовый, 22-миллиметровый компрессионный, нормально-открытый зональный клапан, без ручного рычага, без концевого переключателя.
V4043B1265 — 2-х портовый, 28-миллиметровый компрессионный, нормально-открытый зонный клапан, без ручного рычага, без концевого выключателя

Honeywell V4044C1288 3-ходовой переключающий клапан 22 мм.Этот клапан не является клапаном среднего положения. Он открывает либо порт A, либо порт B (обычно отопление и горячая вода). За исключением нескольких моментов переключения между портами, порт A и порт B не открываются вместе. Обратите внимание, что это трехпроводной клапан, а не пятипроводной.

Клапаны V4043B необычны и часто встречаются в твердотопливных системах. Эти клапаны обеспечивают отказоустойчивость в открытом положении в случае сбоя питания или отказа двигателя клапана.

Клапаны с электроприводом V4044C представляют собой трехходовые переключающие клапаны.Они направляют поток либо в порт горячей воды, либо в порт нагрева, но не в оба, за исключением кратковременного во время переключения. Это 3-х проводные вентили.

V4044C1288 — это 22-миллиметровый переключающий клапан сжатия, питающий только один порт за раз.
V4044C1569 — 28-миллиметровый переключающий клапан сжатия, питающий только один порт за раз
V4044C1494 — это переключающий клапан с внутренней резьбой BSP 1 ″, питающий только один порт за раз

Неисправности клапанов с электроприводом Honeywell, описанные выше, вероятно, относятся к большинству отечественных клапанов Honeywell.

Многое из того, что мы описываем, также применимо к моторизованным клапанам ACL Drayton, таким как 2-ходовой зонный клапан Drayton ZA5 / 679-2 22 мм и 3-ходовой клапан среднего положения MA1 / 679 Drayton 22 мм.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *