Термопара принцип действия: устройство и принцип работы простым языком, типы

Содержание

Термопара — принцип работы | Сиб Контролс

Принцип работы термопар

Если два провода из разнородных металлов соединены друг с другом на одном конце, на другом конце данной конструкции, за счет контактной разницы потенциалов, появляется напряжение (ЭДС), которое зависит от температуры. Иными словами, соединение двух разных металлов ведет себя как гальванический элемент, чувствительный к изменению температуры. Такой вид температурного сенсора называется термопарой:

 

Данное явление предоставляет нам простой путь для нахождения электрического эквивалента температуры: необходимо просто измерить напряжение и Вы можете определить температуру этого места соединения двух металлов. И это было бы просто, если бы не следующее условие: когда Вы присоедините любой вид измерительного прибора к проводам термопары, то неизбежно сделаете второе место соединения разнородных металлов.

Следующая схема показывает, что железо — медное соединение J1 обязательно дополняется вторым железо — медным соединением J2 противоположной полярности:

Соединение J1 железа и меди (двух разнородных металлов) будет генерировать напряжение, зависящее от измеряемой температуры. Соединение J2, которое фактически необходимо , что мы каким-то образом подключили наши медные входные провода вольтметра к железной проволоке термопары, также соединение разнородных металлов, которое тоже будет генерировать напряжение, зависящее от температуры. Далее необходимо отметить, что полярность соединения J2 противоположна полярности соединения J1 (железный провод положительный; медный — отрицательный). В данное схеме имеется так же третье соединение (J3), но оно не оказавает влияние, потому что это соединение двух идентичных металлов, которое не создает ЭДС. Генерация второго напряжения соединением J2 помогает объяснить, почему вольтметр регистрирует 0 вольт, когда вся система будет при комнатной температуре: любые напряжения созданные точками соединения разнородных металлов будут равны по величине и противоположны по полярности, что и приведет к нулевым показаниям. Только тогда, когда два соединения J1 и J2 находятся при разных температурах, вольтметр зарегистрирует какое-то напряжение.

Мы можем выразить эту связь математически следующим образом:

Vmeter = VJ1 − VJ2

Понятно, что вольтметр «видит» только разницу между этими двумя напряжениями, генерируемыми в точках соединения.

Таким образом, термопары – это исключительно дифференциальные температурные сенсоры. Они формируют электрический сигнал, пропорциональный разнице температур между двумя различными точками. Поэтому, место соединения (спай), которое мы используем,чтобы измерить необходимую температуру, называют «горячим» спаем, в то время как другое место соединения (от которого мы никак не можем избежать) называется «холодным» спаем. Такое название произошло от того, что обычно, измеряемая температура выше температуры, в которой находится измерительный прибор. Большая часть сложностей применения термопар связана с именно напряжением «холодного» спая и необходимости иметь дело с этим (нежелательным) потенциалом. Для большинства применений необходимо измерять температуру в одной определённой точке, а не разницу температур между двумя точками, что делает термопара по определению.

Существует несколько методов, чтобы заставить датчик температуры на базе термопары измерять температуру в нужной точке, и они будут рассмотрены ниже.

Студенты и профессионалы очень часто находят общий принцип влияния «холодного» спая и его эффектов невероятно запутанным. Чтобы разобраться в данном вопросе, необходимо вернуться к простому контуру с железо — медными проводами, показанному ранее как «отправная точка», а затем вывести поведение данного контура, применяя первый закон Кирхгоффа: алгебраическая сумма напряжений в любом контуре должна быть равна нулю. Мы знаем, что соединение разнородных металлов создает напряжение, если его температура выше абсолютного нуля. Мы также знаем, что с тем, чтобы сделать полный контур из железного и медного провода, мы должны сформировать второе соединение железа и меди, полярность напряжения этого второго соединения будет обязательно противоположной полярности первого. Если мы обозначим первое соединение железа и меди как J1, а J2 второе, мы абсолютно уверенны в том, что напряжение, измеренное вольтметром в этой схеме, будет VJ1 − VJ2.

Все контуры термопары – независимо от того, простые они или сложные – демонстрируют эту фундаментальную особенность. Необходимо мысленно представить простой контур из двух разнородных металлических проводов и затем, выполняя «мысленный эксперимент», определить, как этот контур будет вести себя в местах соединения при одинаковой температуре и при различных температурах. Это — лучший способ для любого человека понять, как работают термопары.

Принцип действия термопар

Термопары самое известное средство измерения для многих сфер деятельности, таких как, промышленность, медицинские лаборатории, жилые дома и научные лаборатории. Применяются они для измерения температуры. Это связано с тем, что термопары имеют высоким диапазон измерения(от -270 до + 2500С), отличную точность, высокую надежность, низкую цену и свободную заменяемость. Для корректного применения нужно понимать ее принцип действия и структуру.

Принцип действия и структура термопар

Состоит термопара из двух проводников и трубки, которая служит защитой для термоэлектродов.  Термоэлектроды состоят из неблагородных и благородных металлов, чаще всего из сплавов, закрепленные друг с другом на одном конце(рабочий конец или горячий спай), таким образом они образуют одну из частей устройства. Другие концы термопары (свободные концы или холодный спай) соединены с прибором измерения напряжения. Посередине двух несоединенными выводами возникает ЭДС, величина зависит от температуры рабочего конца.

Одинаковые термопреобразователи объединенные параллельно замыкают цепь, по правилу Зеебека, мы рассмотрим далее это правило, между ними образуется контактная разность потенциалов или термоэлектрический эффект, при соприкосновении на проводниках появляются электрические заряды, между их свободными концами возникает различие потенциалов, и он зависит от разности температур. Только тогда, когда температура между термоэлектродами одинакова, разница потенциалов приравнивается к нулю.

Например: Помещая спай с различными от нуля коэффициентами, в две кипящие кастрюли с жидкостью, температура первой 50, а второй 45, то разность потенциалов будет равна 5.

Разность потенциалов определяется разностью температур источников. Так же зависит материал из которого сделаны электроды термопары. Пример: У термопары Хромель-Алюмель температурный коэффициент равен 41, а у Хромель-Константан коэффициент равен 68.

Явление Зеебека

Состоит в следующем. Если в замкнутом контуре из двух разнородных проводников, а лучше полупроводников так, как эффект сильнее выражен для полупроводников, поддерживать места соединения этих проводников, обще принято называть, спаи, при разных температурах, то в такой цепи пойдет ток. Направление тока зависит от того какая из температур, какого спая выше. При одной разности в одном направлении, при другой разности в другом.

Это устройство, будучи разрезанным в одном из мест используется в качестве термопары, датчика температуры. В схеме 2, далее, будет показано спай 1, мы будем нагревать или охлаждать, а другой спай внутри гальванометра, который находится при комнатной температуре. В зависимости от того какая будет температура спая Т1 выше комнатной или ниже, стрелка гальванометра, будет отклоняться либо в одну, либо в другую сторону.

Если в цепи термопары обе проволоки из одного материала то ничего происходить не будет. Проверить это очень просто, возьмите две медные проволоки с изоляцией, меры безопасности никто не отменял, подсоедините их одними концами к гальванометру, а другими скрутите вместе (но лучше спаять), и начните нагревать, так же можно опустить в воду с кусочками льда. Если вы взяли одинаковые проволоки, то стрелка прибора останется на нуле. Но если вы возьмете разные проволоки и точно так же подсоедините их к прибору, а другие концы скрутите. И после этого будете нагревать или охлаждать, оголенные концы проводов, то вы сможете наблюдать, как и в какую сторону будет отклоняться стрелка гальванометра.

Методы подключения

Есть несколько методов включения преобразователя, но мы рассмотрим самые распространенные: простой и дифференциальный. Простой — измерительный прибор включается напрямую к двум термопарам. Дифференцированный — применяются проводники с разными соотношениями термо-ЭДС, соединённые в двух концах, а измерительный прибор подключается в разрыв одного из проводников.

Во время дистанционного включения, ставятся удлинительные либо компенсационные провода. Удлинительные провода создаются из тех же металлов, что и термоэлектроды, но с разными размерами. Компенсационные — изготовляются из благородных металлов, но их состав, отличается от состава термоэлектродов.

Принцип действия термопар (термоэлектрический преобразователь)

     Термопара (термоэлектрический преобразователь) — устройство, применяемое для измерения температуры в промышленности, научных исследованиях, медицине, в системах автоматики.

 

     Международный стандарт на термопары МЭК 60584 (п.2.2) дает следующее определение термопары: Термопара — пара проводников из различных материалов, соединенных на одном конце и формирующих часть устройства, использующего термоэлектрический эффект для измерения температуры.

 

     Для измерения разности температур зон, ни в одной из которых не находится вторичный преобразователь (измеритель термо-ЭДС), удобно использовать дифференциальную термопару: две одинаковые термопары, соединенные навстречу друг другу. Каждая из них измеряет перепад температур между своим рабочим спаем и условным спаем, образованным концами термопар, подключёнными к клеммам вторичного преобразователя, но вторичный преобразователь измеряет разность их сигналов, таким образом, две термопары вместе измеряют перепад температур между своими рабочими спаями.

 

 

Схема термопары типа К. При температуре спая проволок из хромеля и алюмеля равной 300 °C и температуре свободных концов 0 °C развивает термо-ЭДС 12,2 мВ.

 

Фотография термопары

 

Принцип действия

 

     Принцип действия основан на эффекте Зеебека или, иначе, термоэлектрическом эффекте. Между соединёнными проводниками имеется контактная разность потенциалов; если стыки связанных в кольцо проводников находятся при одинаковой температуре, сумма таких разностей потенциалов равна нулю. Когда же стыки находятся при разных температурах, разность потенциалов между ними зависит от разности температур. Коэффициент пропорциональности в этой зависимости называют коэффициентом термо-ЭДС. У разных металлов коэффициент термо-ЭДС разный и, соответственно, разность потенциалов, возникающая между концами разных проводников, будет различная. Помещая спай из металлов с отличными от нуля коэффициентами термо-ЭДС в среду с температурой Т1, мы получим напряжение между противоположными контактами, находящимися при другой температуре Т2, которое будет пропорционально разности температур Т1 и Т2.

 

Способ подключения (Схема подключения)

 

    Наиболее распространены два способа подключения термопары к измерительным преобразователям: простой и дифференциальный. В первом случае измерительный преобразователь подключается напрямую к двум термоэлектродам. Во втором случае используются два проводника с разными коэффициентами термо-ЭДС, спаянные в двух концах, а измерительный преобразователь включается в разрыв одного из проводников.

 

    Для дистанционного подключения термопар используются удлинительные или компенсационные провода. Удлинительные провода изготавливаются из того же материала, что и термоэлектроды, но могут иметь другой диаметр. Компенсационные провода используются в основном с термопарами из благородных металлов и имеют состав, отличный от состава термоэлектродов. Требования к проводам для подключения термопар установлены в стандарте МЭК 60584-3.

 

Следующие основные рекомендации позволяют повысить точность измерительной системы, включающей термопарный датчик:

 

  • Миниатюрную термопару из очень тонкой проволоки следует подключать только с использованием удлинительных проводов большего диаметра;
  • Не допускать по возможности механических натяжений и вибраций термопарной проволоки;
  • При использовании длинных удлинительных проводов, во избежание наводок, следует соединить экран провода с экраном вольтметра и тщательно перекручивать провода;
  • По возможности избегать резких температурных градиентов по длине термопары;
  • Материал защитного чехла не должен загрязнять электроды термопары во всем рабочем диапазоне температур и должен обеспечить надежную защиту термопарной проволоки при работе во вредных условиях;
  • Использовать удлинительные провода в их рабочем диапазоне и при минимальных градиентах температур;
  • Для дополнительного контроля и диагностики измерений температуры применяют специальные термопары с четырьмя термоэлектродами, которые позволяют проводить дополнительные измерения сопротивления цепи для контроля целостности и надежности термопар.

 

Применение термопар

 

     Для измерения температуры различных типов объектов и сред, а также в автоматизированных системах управления и контроля. Термопары из вольфрам-рениевого сплава являются самыми высокотемпературными контактными датчиками температуры. Такие термопары незаменимы в металлургии для контроля температуры расплавленных металлов.

 

     В 1920-х — 1930-х годах термопары использовались для питания простейших радиоприемников и других слаботочных приборов. Вполне возможно использование термогенераторов для подзарядки АКБ современных слаботочных приборов (телефоны, камеры и т. п.) с использованием открытого огня.

 

Преимущества термопар

 

  • Высокая точность измерения значений температуры (вплоть до ±0,01 °С).
  • Большой температурный диапазон измерения: от −250 °C до +2500 °C.
  • Простота.
  • Дешевизна.
  • Надёжность.

 

Недостатки

 

  • Для получения высокой точности измерения температуры (до ±0,01 °С) требуется индивидуальная градуировка термопары.
  • На показания влияет температура свободных концов, на которую необходимо вносить поправку. В современных конструкциях измерителей на основе термопар используется измерение температуры блока холодных спаев с помощью встроенного термистора или полупроводникового датчика и автоматическое введение поправки к измеренной ТЭДС.
  • Эффект Пельтье (в момент снятия показаний необходимо исключить протекание тока через термопару, так как ток, протекающий через неё, охлаждает горячий спай и разогревает холодный).
  • Зависимость ТЭДС от температуры существенно нелинейна. Это создает трудности при разработке вторичных преобразователей сигнала.
  • Возникновение термоэлектрической неоднородности в результате резких перепадов температур, механических напряжений, коррозии и химических процессов в проводниках приводит к изменению градуировочной характеристики и погрешностям до 5 К.
  • На большой длине термопарных и удлинительных проводов может возникать эффект «антенны» для существующих электромагнитных полей.

 

Типы термопар

 

     Технические требования к термопарам определяются ГОСТ 6616-94.Стандартные таблицы для термоэлектрических термометров (НСХ), классы допуска и диапазоны измерений приведены в стандарте МЭК 60584-1,2 и в ГОСТ Р 8.585-2001.

 

  • платинородий-платиновые
  • платинородий-платиновые
  • платинородий-платинородиевые
  • железо-константановые (железо-медьникелевые)
  • медь-константановые (медь-медьникелевые)
  • нихросил-нисиловые (никельхромникель-никелькремниевые)
  • хромель-алюмелевые
  • хромель-константановые
  • хромель-копелевые
  • медь-копелевые
  • сильх-силиновые
  • вольфрам и рений — вольфрамрениевые

 

     Точный состав сплава термоэлектродов для термопар из неблагородных металлов в МЭК 60584-1 не приводится. НСХ для хромель-копелевых термопар ТХК и вольфрам-рениевых термопар определены только в ГОСТ Р 8.585-2001. В стандарте МЭК данные термопары отсутствуют. По этой причине характеристики импортных датчиков из этих металлов могут существенно отличаться от отечественных, например импортный Тип L и отечественный ТХК не взаимозаменяемы. При этом, как правило, импортное оборудование не рассчитано на отечественный стандарт.

 

     В настоящее время стандарт МЭК 60584 пересматривается. Планируется введение в стандарт вольфрам-рениевых термопар типа А-1, НСХ для которых будет соответствовать российскому стандарту, и типа С по стандарту АСТМ.

 

     В 2008 г. МЭК ввел два новых типа термопар: золото-платиновые и платино-палладиевые. Новый стандарт МЭК 62460 устанавливает стандартные таблицы для этих термопар из чистых металлов. Аналогичный Российский стандарт пока отсутствует.

 

Сравнение термопар

 

     Таблица ниже описывает свойства нескольких различных типов термопары. В пределах колонок точности, T представляет температуру горячего спая, в градусах Цельсия. Например, термопара с точностью В±0.0025Г—T имела бы точность В±2.5 В°C в 1000 В°C.

 










Тип термопары

Темп. коэффициент,


μV/°C

Температурный диапазон °C (длительно)Температурный диапазон °C (кратковременно)Класс точности 1 (°C)Класс точности 2 (°C)
K410 до +1100−180 до +1300±1.5 от −40 °C до 375 °C

±0.004×T от 375 °C до 1000 °C
±2.5 от −40 °C до 333 °C

±0.0075×T от 333 °C до 1200 °C
J55.20 до +700−180 to +800±1.5 от −40 °C до 375 °C

±0.004×T от 375 °C до 750 °C
±2.5 от −40 °C до 333 °C

±0.0075×T от 333 °C до 750 °C
N 0 до +1100−270 to +1300±1.5 от −40 °C до 375 °C

±0.004×T от 375 °C до 1000 °C
±2.5 от −40 °C до 333 °C

±0.0075×T от 333 °C до 1200 °C
R 0 до +1600−50 to +1700±1.0 от 0 °C до 1100 °C

±[1 + 0.003×(T − 1100)] от 1100 °C до 1600 °C
±1.5 от 0 °C до 600 °C

±0.0025×T от 600 °C до 1600 °C
S 0 до 1600−50 до +1750±1.0 от 0 °C до 1100 °C

±[1 + 0.003×(T − 1100)] от 1100 °C до 1600 °C
±1.5 от 0 °C до 600 °C

±0.0025×T от 600 °C до 1600 °C
B +200 до +17000 до +1820 ±0.0025×T от 600 °C до 1700 °C
T −185 до +300−250 до +400±0.5 от −40 °C до 125 °C

±0.004×T от 125 °C до 350 °C
±1.0 от −40 °C до 133 °C

±0.0075×T от 133 °C до 350 °C
E680 до +800−40 до +900±1.5 от −40 °C до 375 °C

±0.004×T от 375 °C до 800 °C
±2.5 от −40 °C до 333 °C

±0.0075×T от 333 °C до 900 °C

 

Источник: wikipedia

 

Термопары. Виды и состав. Устройство и принцип действия

Преобразователь температуры в электрический ток называется термопарой. Такой термоэлемент используется в преобразовательных и измерительных устройствах, а также во многих системах автоматики. Если рассматривать термопары по международным стандартам, то это два проводника из разных материалов.

Устройство

На одном конце эти проводники соединены между собой для создания термоэлектрического эффекта, позволяющего измерять температуру.

Внешне такое устройство выглядит в виде двух тонких проволочек сваренных на одном конце между собой, образуя маленький шарик. Многие китайские мультиметры имеют в комплекте такие термопреобразователи, что дает возможность измерять температуру разных нагретых элементов устройств. Эти два проводника обычно помещены в стекловолоконную прозрачную трубку. С одной стороны находится аккуратный сварной шарик, а с другой специальные разъемы для подключения к измерительному прибору.

Промышленное оборудование имеет более сложную конструкцию, по сравнению с китайскими термопарами. Рабочий элемент термодатчика заключают в металлический корпус в виде зонда, внутри которого он изолирован керамическими изоляторами, способными выдержать высокую температуру и воздействие агрессивной среды. На производстве таким термодатчиком измеряют температуру в технологических процессах.

Термопары являются наиболее популярным старым термоэлементом, который применяется в различных приборах для измерения температуры. Он обладает высокой надежностью, низкой инертностью, универсален и имеет низкую стоимость. Диапазон измерения различными видами термопар очень широк, и находится в пределах -250 +2500°С. Конструктивные особенности термодатчика не позволяют обеспечить высокую точность измерений, и погрешность может составлять до 2 градусов.

В бытовых условиях термопары используются в паяльниках, газовых духовках и других бытовых устройствах.

Принцип действия

Работа рассматриваемого термодатчика заключается в использовании эффекта ученого физика Зеебека, который обнаружил, что при спайке двух разнородных проводов в них образуется термо ЭДС, величина которого возрастает с увеличением нагрева места спайки. Позже это явление назвали термоэлектрическим эффектом Зеебека.

Напряжение, вырабатываемое термопарой, зависит от степени нагревания и вида применяемых металлов. Величина напряжения небольшая, и находится в интервале 1-70 микровольт на один градус.

При подключении такого температурного датчика к измерительному устройству, возникает дополнительный термоэлектрический переход. Поэтому образуется два перехода в разных режимах температуры. Входящий электрический сигнал на измерительном приборе будет зависеть от разности температур двух переходов.

Для измерения абсолютной температуры используют способ, называемый компенсацией холодного спая. Суть этого способа заключается в помещении второго перехода, не находящегося в зоне измерения, в среду образцовой температуры. Раньше для этого применяли обычный способ – размещали второй переход в тающий лед. Сегодня для этого используют вспомогательный температурный датчик, находящийся рядом со вторым переходом. По данным дополнительного термодатчика измерительное устройство корректирует итоги измерения. Это упрощает схему измерения, так как измерительный элемент и термопару совместно с дополнительным компенсатором можно соединить в одно устройство.

Разновидности

Температурные датчики на основе термопары разделяются по типу применяемых металлов.

Термопары из неблагородных металлов

Железо-константановые

  • Достоинством стала низкая стоимость.
  • Нельзя применять при температуре менее ноля градусов, так как на металлическом выводе влага создает коррозию.
  • После термического старения показатели измерений возрастают.
  • Наибольшая допустимая температура использования +500°С, при более высокой температуре выводы очень быстро окисляются и разрушаются.
  • Железо-константановый вид является наиболее подходящим для вакуумной среды.

Хромель-константановые

  • Способны работать при пониженных температурах.
  • Материалы электродов обладают термоэлектрической однородностью.
  • Их достоинство – повышенная чувствительность.

Медно-константановые термопары

  • Оба электрода отожжены для создания термоэлектрической однородности.
  • Не восприимчивы к высокой влажности.
  • Нецелесообразно применять при температурах, превышающих 400°С.
  • Допускается применение в среде с недостатком или избытком кислорода.
  • Допускается применение при температуре ниже 0°С.

Хромель-алюмелевые термопары

  • Серная среда вредно влияет на оба электрода термодатчика.
  • Нецелесообразно применять в среде вакуума, так как из электрода Ni-Cr может выделяться хром. Это явление называют миграцией. При этом термодатчик изменяет ЭДС и выдает температуру ниже истинной.
  • Снижение показаний после термического старения.
  • Применяется в насыщенной кислородом атмосфере или в нейтральной среде.
  • В интервале 200-500°С появляется эффект гистерезиса. Это означает, что при охлаждении и нагревании показания отличаются. Разница может достигать 5°С.
  • Широко применяются в разных сферах в интервале от -100 до +1000 градусов. Этот диапазон зависит от диаметра электродов.

Нихросил-нисиловые

  • Наиболее высокая точность работы из всех термопар, изготовленных из неблагородных металлов.
  • Повышенная стабильность функционирования при температурах 200-500°С. Гистерезис у таких термодатчиков значительно меньше, чем у хромель-алюмелевых датчиков.
  • Допускается работа в течение короткого времени при температуре 1250°С.
  • Рекомендуемая температура эксплуатации не превышает 1200°С, и зависит от диаметра электродов.
  • Этот тип термопары разработан недавно, на основе хромель-алюмелевых термодатчиков, которые могут быстро загрязняться различными примесями при повышенных температурах. Если спаять два электрода с кремнием, то можно заранее искусственно загрязнить датчик. Это позволит уменьшить риск будущего загрязнения при работе.

Термодатчики из благородных металлов

Платинородий-платиновые

  • Наибольшая рекомендуемая температура эксплуатации 1350°С.
  • Допускается кратковременное использование при 1600°С.
  • Нецелесообразно использовать при температуре менее 400°С, так как ЭДС будет нелинейной и незначительной.
  • При температуре более 1000°С термопара склонна к загрязнению кремнием, содержащимся в керамических изоляторах. Поэтому рекомендуется применять керамические трубки из чистого оксида алюминия.
  • Способны работать в окислительной внешней среде.
  • Если температура работы более 900°С, то такие термодатчики загрязняются железом, медью, углеродом и водородом, поэтому их запрещается армировать стальными трубками, либо необходимо изолировать электроды керамикой с газонепроницаемыми свойствами.

Платинородий-платинородиевые

  • Оптимальная наибольшая рабочая температура 1500°С.
  • Нецелесообразно использование при температуре менее 600°С, где ЭДС нелинейная и незначительная.
  • Допускается кратковременное использование при 1750°С.
  • Может применяться в окислительной внешней среде.
  • При температуре 1000 и более градусов термопара загрязняется кремнием, поэтому рекомендуется применять керамические трубки из чистого оксида алюминия.
  • Загрязнение железом, медью и кремнием ниже, по сравнению с предыдущими видами.

Преимущества

  1. Прочность и надежность конструкции.
  2. Простой процесс изготовления.
  3. Спай датчика можно заземлять или соединять с объектом измерения.
  4. Широкий интервал эксплуатационных температур, что позволяет считать термоэлектрические датчики наиболее высокотемпературными из контактных видов.

Недостатки

  • Материал электродов реагирует на химические вещества, и при плохой герметичности корпуса датчика, его работа зависит от атмосферы и агрессивных сред.
  • Градуировочная характеристика изменяется из-за коррозии и появления термоэлектрической неоднородности.
  • Требуется проверять температуру холодных спаев. В новых устройствах измерительных приборов на базе термодатчиков применяется измерение холодных спаев полупроводниковым сенсором или термистором.
  • На большой длине удлинительных и термопарных проводников может появляться эффект «антенны» для имеющихся электромагнитных полей.
  • ЭДС зависит от температуры по нелинейному графику, что затрудняет проектирование вторичных преобразователей сигнала.
  • Если серьезные требования предъявляются к времени термической инерции термодатчика, и требуется заземлять спай, то необходимо изолировать преобразователь сигнала, чтобы не было утечки тока в землю.

Рекомендации по эксплуатации

Точность и целостность системы измерений на основе термопарного датчика может быть увеличена, если соблюдать определенные условия:
  • Не допускать вибраций и механических натяжений термопарных проводников.
  • При применении миниатюрной термопары из тонкой проволоки. Необходимо применять ее только в контролируемом месте, а за этим местом следует применять удлинительные проводники.
  • Рекомендуется применять проволоку большого диаметра, не изменяющую температуру измеряемого объекта.
  • Использовать термодатчик только в интервале рабочих температур.
  • Избегать резких перепадов температуры по длине термодатчика.
  • При работе с длинными термодатчиками и удлинительными проводниками, необходимо соединить экран вольтметра с экраном провода.
  • Для вспомогательного контроля и температурной диагностики используют специальные температурные датчики с 4-мя термоэлектродами, позволяющими выполнять вспомогательные температурные измерения, сопротивления, напряжения, помех для проверки надежности и целостности термопар.
  • Проводить электронную запись событий и постоянно контролировать величину сопротивления термоэлектродов.
  • Применять удлиняющие проводники в рабочем интервале и при наименьших перепадах температур.
  • Применять качественный защитный чехол для защиты термопарных проводников от вредных условий.
Похожие темы:

принцип действия, схемы, таблица типов термопар и т.д.

Термопары — это наиболее распространенное устройство для измерения температуры. Термопары генерируют напряжение при нагревании и возникающий ток позволяет проводить измерения температуры. Отличается своей простотой, невысокой стоимостью, но внушительной долговечностью. Благодаря своим преимуществам, термопара используется повсеместно.

Стандартная термопара

Рекомендуем обратить внимание и на другие приборы для измерения температуры.

Принцип работы термопары

Термопара представляет собой два провода, изготовленных из различных металлов. Эти два провода скреплены или сварены вместе и образуют спай. Когда на этот спай оказывают воздействие изменения температуры, то термопара реагирует на них генерируя напряжение, пропорциональное по величине изменениям температуры.

Если термопара подсоединена к электрической цепи, то величина генерируемого напряжения будет отображаться на шкале измерительного прибора. Затем показания прибора могут быть преобразованы в температурные показания с помощью таблицы. На некоторых приборах шкала откалибрована непосредственно в градусах.

Термопара в электрической цепи

Спай термопары

В конструкции большинства термопар предусмотрен только один спай. Однако, когда термопара подсоединяется к электрической цепи, то в точках ее подсоединения может образовываться еще один спай.

Цепь термопары

Цепь, показанная на рисунке, состоит из трех проводов, помеченных как А, В и С. Провода скручены между собой и помечены как D и Е. Спай представляет собой дополнительный спай, который образуется, когда термопара подсоединяется к цепи. Этот спай называется свободным (холодным) спаем термопары. Спай Е — это рабочий (горячий) спай. В цепи находится измерительный прибор, который измеряет разницу величин напряжения на двух спаях.

Два спая соединены таким образом, что их напряжение противодействует друг другу. Таким образом, на обоих спаях генерируется одна и та же величина напряжения и показания прибора будут равны нулю. Так как существует прямо пропорциональная зависимость между температурой и величиной напряжения, генерируемой спаем термопары, то два спая будут генерировать одни и те же величины напряжения, когда температура на них будет одинаковой.

Воздействие нагрева одного спая термопары

Когда спай термопары нагревается, величина напряжения повышается прямо пропорционально. Поток электронов от нагретого спая протекает через другой спай, через измерительный прибор и возвращается обратно на горячий спай. Прибор показывает разницу напряжения между двумя спаями. Разность напряжения между двумя спаями. Разность напряжения, показываемая прибором, преобразуется в температурные показания либо с помощью таблицы, либо прямо отображается на шкале, которая откалибрована в градусах.

Холодный спай термопары

Холодный спай часто представляет собой точку, где свободные концы проводов термопары подсоединяются к измерительному прибору.

В силу того, что измерительный прибор в цепи термопары в действительности измеряет разность напряжения между двумя спаями, то напряжение холодного спая должно поддерживаться на неизменном уровне, насколько это возможно. Поддерживая напряжение на холодном спае на неизменном уровне мы тем самым гарантируем, что отклонение в показаниях измерительного прибора свидетельствует о изменении температуры на рабочем спае.

Если температура вокруг холодного спая меняется, то величина напряжения на холодном спае также изменится. В результате изменится напряжение на холодном спае. И как следствие разница в напряжении на двух спаях тоже изменится, что в конечном итоге приведет к неточным показаниям температуры.

Для того, чтобы сохранить температуру на холодном спае на неизменном уровне во многих термопарах используются компенсирующие резисторы. Резистор находится в том же месте, что и холодный спай, так что температура воздействует на спай и резистор одновременно.

Цепь термопары с компенсирующим резистором

Рабочий спай термопары (горячий)

Рабочий спай — это спай, который подвержен воздействию технологического процесса, чья температура измеряется. Ввиду того, что напряжение, генерируемое термопарой прямо пропорционально ее температуре, то при нагревании рабочего спая, он генерирует больше напряжения, а при охлаждении — меньше.

Рабочий спай и холодный спай

Типы термопары

Термопары конструируются с учетом диапазона измеряемых температур и могут изготавливаться из комбинаций различных металлов. Комбинация используемых металлов определяет диапазон температур, измеряемых термопарой. По этой причине была разработана маркировка с помощью букв для обозначения различных типов термопар. Каждому типу присвоено соответствующее буквенное обозначение, и это буквенное обозначение указывает на комбинацию используемых металлов в данной термопаре.

Типы термопар и диапазон их температур

Когда термопара подключается к электрической цепи, то она не будет работать нормально пока не будет соблюдена полярность при подключении. Плюсовые провода должны быть соединены вместе и подсоединены к плюсовому выводу цепи, а минусовые к минусовому. Если провода перепутать, то рабочий спай и холодный спай не будут в противофазе и показания температуры будут неточными.
Одним из способов определения полярности проводов термопары -это определение по цвету изоляции на проводах. Помните, что минусовой провод во всех термопарах — красный.

Цвет изоляции проводов термопар

Во многих случаях приходится использовать провода для удлинения протяженности цепи термопары. Цвет изоляции соединительных проводов также несет в себе информацию. Цвет внешней изоляции соединительных проводов — разный, в зависимости от производителя, однако цвет первичной изоляции проводов обычно соответствует кодировке, указанной в таблице выше.

Неисправности термопары

Если термопара выдает неточные показания температуры, и было проверено, что нет ослабленных соединений, то причина может крыться либо в регистрирующем приборе, либо в самой термопаре, первым обычно проверяется регистрирующий прибор, так как приборы чаще выходят из строя, чем термопары.

Более того, если прибор показывает хоть какие-нибудь показания, пусть даже неточные, то, скорей всего, дело не в термопаре. Если термопара неисправна, то обычно она не выдает вообще никакого напряжения, и прибор не будет выдавать никаких показаний. Если показаний на приборе нет совсем, то вероятно дело в термопаре.

Если Вы подозреваете, что термопара вышла из строя, то проверьте ее сигнал на выходе с помощью прибора, который называется милливольтный потенциометр, который используется для измерения малых величин напряжения.

Потенциометр

классификация, как работает, особенности применения

Термопа́ра — устройство основанное на преобразовании электрического сигнала в показатель температуры при изменении физических параметров веществ, из которых состоит прибор. Термопары широко распространены в промышленности, коммунальном хозяйстве, используются в массе бытовых приборов и автомобилях. От самых простых приборов (которые можно встретить в обычных утюгах) до сложных и дорогих (жаростойкие термопластины для измерения температуры на газовых турбинах) их можно встретить везде, где стоит задача измерения температуры.

Как работает термопара?

Термопара состоит из пары проводников из отличающихся материалов, соединенных между собой только с одной стороны.

Регистрирующие приборы (аналоговые, цифровые) измеряют разницу термо-ЭДС возникающих в местах спайки и на концах проводников.

Действие прибора построено на эффекте Зеебека(термоэлектрической эффект). Представьте две проволоки соединенные между собой двумя спайками. Если нагревать/охлаждать одну спайку, то по кольцу потечет ток. Его вызывает термо-ЭДС, которая возникает за счет разности потенциалов между спайками.

Интересное видео о термопарах от НИЯУ МИФИ смотрите ниже:

При одинаковой температуре спаек сума токов в цепи равна нулю – ток не течет. При отличающихся температурах возникает разность потенциалов между спайками. От интенсивности нагревания/охлаждения зависит и разность потенциалов.

Термо-ЭДС можно измерить. Она пропорциональна изменению разности температур на спайках. Самый простой способ измерения параметров тока в таких условиях – гальванометр (применяется для демонстрации эффекта Зеебека).

В современных сложных термопарах применяются электронные средства преобразования сигнала.

Особенности работы с термопарами для точных и высокоточных измерений

  1. Недостаток большинства термопар – это необходимость градуировки каждого прибора в отдельности.

    Для точных измерений на предприятиях-изготовителях каждая термопара проходит отдельные испытания.

  2. Необходимо вносить поправку на температуру среды измерительных устройств.
  3. Термопара должна находиться в одинаковых условиях по всей длине измерительного участка.
  4. Для определения наиболее точного результата можно использовать рядом с основной термопарой контрольные термопары.
  5. Для точных измерений используют провода с экранами, для уменьшения наводок: токи, вызываемые термо-ЭДС, незначительны по своей величине.

Ещё одно интересное видео о термопарах смотрите ниже:

Классификация термопар, их свойства и сферы применения

В российском ГОСТе применяется трехбуквенное обозначение кириллицей групп термопар, в международной классификации (МЭК) приняты латинские однобуквенные обозначения.

В большинстве случаев группы термопар соответствуют обеим системам классификации.

В таблице даны обозначения по ГОСТу, в скобках приведены аналоги по МЭК:

Тип термопарыМатериалСвойства
ТХА (К)Вольфрам + родийДля работы в нещелочных средах. Измеряет в пределах −250…+2500°С
ТНН (N)Никросил+ нисилДиапазон температур — 0…1230°С, относится к группе универсальных термопар
ТЖК (J)Железо + константан-200 до +750°С дешевый и надежный вариант для промышленности.
ТМК (Т)Медь + константан-250…+ 400°Снедорогие термопары
ТХК (L)Хромель+ копельнаибольшая чувствительностью, но ограничены по диапазону измерений – до 600 °С и очень хрупкие.
ТПП (R, S)Платинородий + платинаДля работы в газовых средах, окисленных средах. Недостаток – чувствительны к примесям, нагарам, требуют стерильных условий производства.
ТВР (А-1, А-2, А-3)Вольфрам + ренийДиапазон измерений -22О0°С в нормальных средах. Сложны в производстве и эксплуатации.

В таблице приведены наиболее часто встречаемые в сети интернет термопары.

Также существуют другие виды термопар для редких условий работы. Как правило, это штучные приборы, разрабатываемые только под заказ.

Принцип действия и принцип работы термопары

В рамках данной статьи мы рассмотрим принцип действия, недостатки, преимущества и особенности термопары – температурного датчика, широко используемого в промышленности.

Принцип действия, преимущества и особенности термопары

В основе принципа работы термопары лежит явление, описанное Томасом Зеебеком в далеком 1822 году: при разности температур на измерительных контактах, расположенных на гомогенном материале, обладающем свободными зарядами, возникает разность потенциалов, или же напряжение.

Иными словами, вышеописанные условия приводят к возникновению термоэлектродвижущей силы (ТЭДС). Стоит отметить, что ТЭДС генерируется по всем длине термоэлектрода, а не в месте спая, что дает возможность понять соответствующие ограничения по точности, установленные самой природой процесса.

Как уже был сказано выше, ТЭДС возникает по всей длине электрода, а потому показания термопары определяются состоянием электродов в зоне с максимальным температурным градиентом. Исходя из этого, проверка термопар проводится при том же состоянии среды, как и на рабочем объекте.

Преимущества термопары

  • Простота изготовления, прочность конструкции и надежность.
  • Возможность использования в широком температурном диапазоне. Термопара является наиболее высокотемпературным из всех существующих контактных датчиков.
  • Возможности приведения спая термопары в прямой контакт с объектом измерения и непосредственного заземления.

Недостатки термопары

  • Термоэлектрическая неоднородность в проводниках, приводящая к изменению градуировочной характеристики. Вследствие термоэлектрической неоднородности возникают различные химические процессы (коррозия и т.д.), изменяющие состав сплава термопары.
  • Контроль температуры холодных спаев. Как правило, все современные измерительные конструкции на основе термопар имеют полупроводниковый сенсор или встроенный тиристор для внесения корректировок в измененную ТЭДС в автоматическом режиме.
  • Подверженность электродов воздействию агрессивных сред, в случае если корпус термопары недостаточно герметичен.
  • Вероятность возникновения эффекта «антенны» при большой длине проводов термопары.
  • Нелинейная зависимость ТЭДС от температуры, что усложняет разработку вторичных преобразователей сигнала.
  • Необходимость обеспечения электрической изоляции преобразователя сигнала при повышенных требованиях к времени термической инерции термопары.

Термопары и их особенности

  • Термопары из неблагородных металлов.
  • Термопары из благородных металлов.

— Хромель-алюмель – тип «К». Является наиболее распространенной среди термопар. Позволяет измерять температуры и диапазоне от -200 °С до +1350°С, может использоваться в атмосфере с избытком кислорода, не может использоваться в атмосфере серы.

— Хромель-копаль – тип L. Температурный диапазон: -200 °С до +800 °С.

— Хромель-константан – тип Е (от -40 °С до +900 °С). Главные преимущества – термоэлектрически однородный материал электродов и высокая чувствительность.

— Медь-константан – тип Т (от -250°С до +300 °С). Влагостойкая термопара, которая может использоваться при недостатке или же избытке кислорода.

— Железо-константан – тип J (от -40 °С до +750 °С). Рекомендуется в разряженной атмосфере.

Платинородий-платинородиевая – тип B (до +1500 °С). Может использоваться в окислительной среде.

Платинородий-платиновая – тип S и тип R (до +1350 °С)

Работа термопары предопределяется ее типом и характеристиками. При выборе термопары обязательно учитывайте свои потребности и возможности конкретной модели.

Конструкция

, принцип работы и его применение

В 1821 году физик по имени Томас Зеебек обнаружил, что когда два разных металлических провода были соединены на обоих концах одного соединения в цепи при воздействии температуры на соединение, возникнет быть потоком тока через цепь, известную как электромагнитное поле (ЭМП). Энергия, производимая цепью, называется эффектом Зеебека. Используя эффект Томаса Зеебека в качестве ориентира, оба итальянских физика, а именно Леопольдо Нобили и Македонио Меллони, в 1826 году совместно разработали термоэлектрическую батарею, которая называется тепловым умножителем, она была основана на открытии термоэлектричества Зеебека путем объединения гальванометра как а также термобатарея для расчета излучения.Некоторые люди идентифицировали Нобили как первооткрывателя термопары.

Что такое термопара?

Термопару можно определить как своего рода датчик температуры, который используется для измерения температуры в одной конкретной точке в виде ЭДС или электрического тока. Этот датчик состоит из двух разнородных металлических проводов, соединенных вместе в одном стыке. На этом переходе можно измерить температуру, а изменение температуры металлической проволоки стимулирует напряжения.

Термопара

Величина ЭДС, генерируемая в устройстве, очень мала (милливольт), поэтому для расчета ЭДС, создаваемой в цепи, необходимо использовать очень чувствительные устройства. Обычными устройствами, используемыми для расчета ЭДС, являются потенциометр уравновешивания напряжения и обычный гальванометр. Из этих двух балансировочный потенциометр используется физически или механически.

Принцип работы термопары

Принцип работы термопары в основном зависит от трех эффектов, а именно Зеебека, Пельтье и Томпсона.

См. Эффект Бека

Этот тип эффекта возникает между двумя разнородными металлами. Когда тепло поступает к любому из металлических проводов, поток электронов переходит от горячего металлического провода к холодному. Следовательно, постоянный ток стимулирует цепь.

Эффект Пельтье

Этот эффект Пельтье противоположен эффекту Зеебека. Этот эффект утверждает, что разница температур может быть образована между любыми двумя разнородными проводниками путем применения изменения потенциала между ними.

Эффект Томпсона

Этот эффект заключается в том, что когда два несопоставимых металла соединяются вместе, и если они образуют два соединения, то напряжение вызывает общую длину проводника из-за градиента температуры. Это физическое слово, которое демонстрирует изменение скорости и направления температуры в определенном месте.

Конструкция термопары

Конструкция устройства показана ниже. Он состоит из двух разных металлических проводов, соединенных вместе на конце разветвления.Соединение мыслит как измерительный конец. Конец соединения подразделяется на три типа: незаземленный, заземленный и открытый.

Конструкция термопары

Незаземленный переход

В этом типе спая проводники полностью отделены от защитной крышки. Область применения этого соединения в основном включает работы по установке высокого давления. Основное преимущество использования этой функции — уменьшение эффекта паразитного магнитного поля.

Заземленное соединение

В этом типе соединения металлические провода, а также защитная крышка соединяются вместе.Эта функция используется для измерения температуры в кислой атмосфере и обеспечивает устойчивость к шуму.

Открытый переход

Открытый переход применяется в областях, где требуется быстрое реагирование. Этот тип спая используется для измерения температуры газа. Металл, из которого изготовлен датчик температуры, в основном зависит от расчетного диапазона температуры.

Обычно термопара конструируется с двумя разными металлическими проводами, а именно железом и константаном, которые превращаются в детектирующий элемент путем соединения в одном спайе, который называется горячим спаем.Он состоит из двух спайов, один спай подключается с помощью вольтметра или передатчика, где холодный спай, а второй спай связан в процессе, который называется горячим спаем.

Как работает термопара?

Схема термопары показана на рисунке ниже. Эта схема может быть построена из двух разных металлов, и они соединяются вместе путем образования двух переходов. Два металла соединены сваркой.

На приведенной выше диаграмме соединения обозначены P & Q, а температуры обозначены T1, & T2.Когда температуры спая отличаются друг от друга, в цепи возникает электромагнитная сила.

Цепь термопары

Если температура на конце перехода превращается в эквивалент, то в цепи возникает эквивалент, а также обратная электромагнитная сила, и ток через нее не протекает. Точно так же температура на конце перехода становится несбалансированной, а затем в этой цепи индуцируется изменение потенциала.

Величина индукции электромагнитной силы в цепи зависит от материалов, используемых для изготовления термопар.Полный ток по цепи рассчитывается измерительными приборами.

Электромагнитная сила, индуцированная в цепи, рассчитывается по следующему уравнению:

E = a (∆Ө) + b (∆Ө) 2

Где ∆Ө — это также разница температур между горячим концом спая термопары. в качестве эталонного конца спая термопары a и b являются константами.

Типы термопар

In Прежде чем переходить к обсуждению типов термопар, необходимо учесть, что термопара должна быть защищена защитным кожухом для изоляции от атмосферных температур.Такое покрытие существенно минимизирует коррозионное воздействие на устройство.

Итак, существует множество типов термопар. Давайте рассмотрим их подробнее.

Тип K — также называется термопарой никель-хромового / никель-алюминиевого типа. Это наиболее часто используемый тип. Он отличается повышенной надежностью, точностью и недорого, а также может работать в расширенных диапазонах температур.

K Тип

Диапазон температур:

Провода для термопар — от -454F до 2300F (-270 0 C до 1260 0 C)

Удлинительный провод (от 0 0 C до 200 0 C)

Этот тип K имеет уровень точности

Standard +/- 2.2C или +/- 0,75%, а специальные пределы составляют +/- 1,1C или 0,4%

Тип J — это смесь железа / константана. Это также наиболее часто используемый тип термопар. Он отличается повышенной надежностью, точностью и недорого. Это устройство может работать только в меньших диапазонах температур и имеет короткий срок службы при работе в высоком диапазоне температур.

J Тип

Диапазон температур:

Провода для термопар — от -346F до 1400F (-210 0 C до 760 0 C)

Удлинительный провод (от 0 0 C до 200 0 C)

Этот тип J имеет уровень точности

Standard +/- 2.2C или +/- 0,75%, а специальные пределы составляют +/- 1,1C или 0,4%

Тип T — это смесь меди / константана. Термопара Т-типа сохраняет повышенную стабильность и обычно применяется для приложений с меньшими температурами, таких как морозильные камеры со сверхнизкими температурами и криогенная техника.

T Тип Термопара

Диапазон температур:

Провода для термопар — от -454F до 700F (-270 0 C до 370 0 C)

Удлинительный провод (от 0 0 C до 200 0 C )

Этот тип T имеет уровень точности

Standard +/- 1.0C или +/- 0,75%, а специальные пределы составляют +/- 0,5C или 0,4%

Тип E — это смесь никель-хрома / константана. По сравнению с термопарами типов K и J, он обладает большей сигнальной способностью и повышенной точностью при работе при ≤ 1000F.

E Тип

Диапазон температур:

Провода для термопар — от -454F до 1600F (-270 0 C до 870 0 C)

Удлинительный провод (от 0 0 C до 200 0 C)

Этот тип T имеет уровень точности

Standard +/- 1.7C или +/- 0,5%, а специальные пределы составляют +/- 1,0C или 0,4%.

Тип N — считается термопарой Nicrosil или Nisil. Уровни температуры и точности типа N аналогичны типу K. Но этот тип более дорогой, чем тип K.

N Тип

Диапазон температур:

Провода для термопар — от -454F до 2300F (-270 0 C). до 392 0 C)

Удлинительный провод (от 0 0 C до 200 0 C)

Этот T-образный тип имеет уровень точности

Standard +/- 2.2C или +/- 0,75%, а специальные пределы составляют +/- 1,1C или 0,4%.

Тип S — считается термопарой платина / родий или 10% / платина. Термопары типа S используются в высокотемпературных приложениях, например, в биотехнологических и фармацевтических организациях. Он даже используется для приложений с меньшим температурным диапазоном из-за его повышенной точности и стабильности.

S Тип

Диапазон температур:

Провода для термопар — от -58F до 2700F (-50 0 C до 1480 0 C)

Удлинительный провод (0 0 C до 200 0 C)

Этот тип T имеет уровень точности

Standard +/- 1.5C или +/- 0,25%, а специальные пределы составляют +/- 0,6C или 0,1%.

Тип R — считается термопарой платина / родий или 13% / платина. Термопары типа S используются в высокотемпературных приложениях. Этот тип включает большее количество родия, чем тип S, что делает устройство более дорогим. Характеристики и производительность типов R и S почти одинаковы. Он даже используется для приложений с меньшим температурным диапазоном из-за его повышенной точности и стабильности.

R Тип

Диапазон температур:

Провода для термопар — от -58F до 2700F (-50 0 C до 1480 0 C)

Удлинительный провод (0 0 C до 200 0 C)

Этот T-тип имеет уровень точности

Стандартный +/- 1,5C или +/- 0,25%, а специальные пределы составляют +/- 0,6C или 0,1%

Тип B — Он рассматривается как 30% платино-родиевого или 60% платиново-родиевого термопары. Это широко используется в приложениях с более высокими температурами.Из всех вышеперечисленных типов тип B имеет самый высокий температурный предел. При повышенных температурах термопара типа B будет сохранять повышенную стабильность и точность.

Тип B Термопара

Диапазон температур:

Провода для термопар — от 32F до 3100F (0 0 C до 1700 0 C)

Удлинительный провод (0 0 C до 100 0 C)

Этот T-тип имеет уровень точности

Стандарт +/- 0,5%

Типы S, R и B считаются термопарами из благородных металлов.Они выбраны потому, что они могут работать даже в высокотемпературных диапазонах, обеспечивая высокую точность и длительный срок службы. Но по сравнению с типами из недрагоценных металлов они более дорогие.

При выборе термопары необходимо учитывать множество факторов, которые подходят для их применения.

  • Проверьте, какие диапазоны низких и высоких температур необходимы для вашего применения?
  • Какой бюджет термопары будет использоваться?
  • Какой процент точности использовать?
  • В каких атмосферных условиях работает термопара, например, в инертных газах или окисляющих
  • Каков ожидаемый уровень реакции, что означает, насколько быстро устройство должно реагировать на изменения температуры?
  • Какой срок службы требуется?
  • Проверить перед работой, погружено ли устройство в воду и на какую глубину?
  • Будет ли использование термопары прерывистым или непрерывным?
  • Будет ли термопара подвергаться скручиванию или изгибу в течение всего срока службы устройства?

Как узнать, что у вас плохая термопара?

Чтобы узнать, правильно ли работает термопара, необходимо провести тестирование устройства.Прежде чем приступить к замене устройства, необходимо убедиться, что оно действительно работает или нет. Для этого вполне достаточно мультиметра и базовых знаний электроники. В основном существует три подхода к тестированию термопары с помощью мультиметра, и они описаны ниже:

Тест сопротивления

Для выполнения этого теста устройство должно быть помещено в линию газового прибора, а необходимое оборудование — цифровой мультиметр и крокодил. клипы.

Процедура — Подсоедините зажимы типа «крокодил» к участкам мультиметра.Присоедините зажимы к обоим концам термопары, где один конец будет загнут в газовый клапан. Теперь включите мультиметр и запишите варианты считывания. Если мультиметр показывает малые значения сопротивления, значит, термопара в идеальном рабочем состоянии. Или, если показание составляет 40 Ом или более, значит, оно не в хорошем состоянии.

Тест на разрыв цепи

Используемое оборудование — зажимы «крокодил», зажигалка и цифровой мультиметр. Здесь вместо измерения сопротивления рассчитывается напряжение.Теперь зажигалкой нагрейте один конец термопары. Когда мультиметр показывает напряжение в диапазоне 25-30 мВ, значит, он исправен. Или же, когда напряжение близко к 20мВ, необходимо заменить устройство.

Тест замкнутой цепи

Используемое оборудование — зажимы типа «крокодил», адаптер термопары и цифровой мультиметр. Здесь адаптер помещается внутри газового клапана, а затем термопара помещается на один край адаптера. Теперь включите мультиметр.Когда показание находится в диапазоне 12-15 мВ, устройство находится в исправном состоянии. Или же, когда показание напряжения падает ниже 12 мВ, это указывает на неисправное устройство.

Итак, используя описанные выше методы тестирования, можно узнать, исправна ли термопара.

В чем разница между термостатом и термопарой?

Различия между термостатом и термопарой следующие:

обладает меньшей чувствительностью

Характеристика Термопара Термостат
Диапазон температур от до -13174 от 9095 до 3272 F 302 0 F
Диапазон цен Меньше Высокая
Стабильность Обеспечивает меньшую стабильность Обеспечивает среднюю стабильность
Чувствительность Термопара
Линейность Умеренная Плохая
Стоимость системы Высокая Средняя

Преимущества и недостатки

К преимуществам термопар можно отнести следующие.

  • Высокая точность
  • Он надежен и может использоваться как в суровых, так и в тяжелых условиях вибрации.
  • Тепловая реакция быстрая
  • Рабочий диапазон температур широкий.
  • Широкий диапазон рабочих температур
  • Низкая стоимость и высокая стабильность

К недостаткам термопар можно отнести следующее.

  • Нелинейность
  • Наименьшая стабильность
  • Низкое напряжение
  • Требуется ссылка
  • Наименьшая чувствительность
  • Перекалибровка термопары сложна

Применения

Некоторые из применений термопар включают следующее.

  • Они используются в качестве датчиков температуры в термостатах в офисах, домах, офисах и на предприятиях.
  • Они используются в промышленности для контроля температуры металлов в чугуне, алюминии и других металлах.
  • Они используются в пищевой промышленности для криогенных и низкотемпературных применений. Термопары используются в качестве тепловых насосов для термоэлектрического охлаждения.
  • Используются для измерения температуры на химических заводах, нефтяных заводах.
  • Используются в газовых машинах для обнаружения пилотного пламени.
В чем разница между RTD и термопарой?

Еще одна важная вещь, которую необходимо учитывать в случае термопары, — это то, чем она отличается от устройства RTD. Итак, таблица объясняет различия между RTD и термопарой.

RTD Термопара
RTD широко подходит для измерения меньшего диапазона температур от (-200 0 C до 500 0 C) Термопара подходит для измерения более высокого диапазона температур, который составляет от (-180 0 C до 2320 0 C)
Для минимального диапазона переключений он демонстрирует повышенную стабильность Они имеют минимальную стабильность, а также результаты не точный при многократном испытании
Он имеет большую точность, чем термопара Термопара имеет меньшую точность
Диапазон чувствительности больше и может даже рассчитывать минимальные изменения температуры Диапазон чувствительности меньше, и они не могут быть вычислены минимальными изменения температуры
RTD-устройства имеют хорошее время отклика Therm Ocoules обеспечивают более быстрый отклик, чем RTD
Выходной сигнал имеет линейную форму Выходной сигнал имеет нелинейную форму
Они более дорогие, чем термопары Они экономичны, чем RTD
Какова продолжительность жизни?

Срок службы термопары зависит от области применения, когда она используется.Таким образом, невозможно точно предсказать срок службы термопары. При правильном уходе за устройством он прослужит долго. В то время как при постоянном использовании они могут быть повреждены из-за эффекта старения.

Кроме того, из-за этого будут снижены выходные характеристики и сигналы будут иметь низкую эффективность. Цена термопары тоже невысока. Таким образом, рекомендуется изменять термопару каждые 2-3 года. Это ответ на вопрос . Каков срок службы термопары ?

Итак, это все о термопаре.Наконец, исходя из приведенной выше информации, мы можем сделать вывод, что измерение выхода термопары может быть рассчитано с использованием таких методов, как мультиметр, потенциометр и усилитель с помощью выходных устройств. Основное назначение термопары — обеспечить последовательные и прямые измерения температуры в нескольких различных приложениях.

Что такое термопара? — Определение, принцип работы, конструкция, преимущества и недостатки

Определение: Термопара — это устройство для измерения температуры.Он используется для измерения температуры в одной конкретной точке. Другими словами, это тип датчика, который используется для измерения температуры в виде электрического тока или ЭДС.

Термопара состоит из двух проволок из разных металлов, сваренных на концах. Сваренная часть создавала стык, где обычно измеряли температуру. Изменение температуры провода вызывает появление напряжения.

Принцип работы термопары

Принцип работы термопары зависит от трех эффектов.

Эффект обратной связи — Эффект обратной связи возникает между двумя разными металлами. Когда тепло поступает к любому из металлов, электроны начинают переходить от горячего металла к холодному. Таким образом, в цепи возникает постоянный ток.

Короче говоря, — это явление, при котором разница температур между двумя разными металлами вызывает разность потенциалов между ними . Эффект Зее-Бека производит небольшие напряжения на один градус Кельвина температуры.

Эффект Пельтье — Эффект Пельтье является обратным эффекту Зеебека. Эффект Пельтье утверждает, что разница температур может быть создана между любыми двумя разными проводниками путем приложения разности потенциалов между ними.

Эффект Томпсона — Эффект Томпсона утверждает, что , когда два разнородных металла соединяются вместе и если они создают два соединения, тогда напряжение индуцирует всю длину проводника из-за температурного градиента .Температурный градиент — это физический термин, который показывает направление и скорость изменения температуры в определенном месте.

Конструкция термопары

Термопара состоит из двух разнородных металлов. Эти металлы свариваются в месте соединения. Это соединение считается точкой измерения. Точки соединения подразделяются на три типа.

  1. Незаземленный переход — В незаземленном переходе проводники полностью изолированы от защитной оболочки .Используется для работ с высоким давлением. Основное преимущество использования такого типа перехода заключается в том, что он снижает влияние паразитного магнитного поля.
  2. Заземленный переход — В таком переходе металл и защитная оболочка свариваются друг с другом. Заземленный переход используется для измерения температуры в агрессивной среде. Этот переход обеспечивает устойчивость к шуму.
  3. Открытое соединение — Такой тип соединения используется там, где требуется быстрое срабатывание.Открытый спай используется для измерения температуры газа.

Материал, из которого изготовлена ​​термопара, зависит от диапазона измерения температуры.

Работа термопары

Схема термопары показана на рисунке ниже. Схема состоит из двух разнородных металлов. Эти металлы соединены вместе таким образом, что образуют два соединения. Металлы прикрепляются к стыку посредством сварки.

Пусть P и Q — два спая термопары.T 1 и T 2 — температуры на стыках. Поскольку температуры переходов отличаются друг от друга, в цепи генерируется ЭДС.

Если температура в переходе становится равной, в цепи генерируется равная и противоположная ЭДС, и через нее протекает нулевой ток. Если температуры соединения становятся неравными, в цепи индуцируется разность потенциалов. Величина индукции ЭДС в цепи зависит от типа материала, из которого изготовлена ​​термопара.Полный ток, протекающий по цепи, измеряется измерительными приборами.

ЭДС, наводимая в цепи термопары, определяется уравнением где Δθ — разность температур между горячим спаем термопары и эталонным спаем термопары.
а, б — константы

Измерение выхода термопары

Выходная ЭДС, полученная от термопар, может быть измерена следующими методами.

  1. Мультиметр — это более простой метод измерения выходной ЭДС термопары. Мультиметр подключается к холодным спаям термопары . Отклонение стрелки мультиметра равно току, протекающему через счетчик.
  2. Потенциометр — Выход термопары также можно измерить с помощью потенциометра постоянного тока.
  3. Усилитель с устройствами вывода — Выходной сигнал, получаемый от термопар, усиливается через усилитель и затем подается на регистрирующий или индикаторный прибор.

Преимущества термопары

Ниже приведены преимущества термопар.

  1. Термопара дешевле, чем другие приборы для измерения температуры.
  2. Термопара имеет быстрое время отклика.
  3. Обладает широким температурным диапазоном.

Недостатки термопар

  1. Термопара имеет низкую точность.
  2. Повторная калибровка термопары затруднена.

Никелевый сплав, сплав платина / родий, сплав вольфрама / рения, хромель-золото, сплав железа — это названия сплавов, используемых для изготовления термопары.

Принцип работы термопары

— Inst Tools

ТЕРМОПАРЫ

Термопара состоит из двух разнородных металлов, соединенных вместе на одном конце, которые создают напряжение (выраженное в милливольтах) при изменении температуры. Место соединения двух металлов, называемое чувствительным соединением, соединяется с удлинительными проводами. Любые два разнородных металла могут быть использованы для изготовления термопары.

P Принцип работы

  • Когда два разнородных металла соединяются вместе, на стыке генерируется небольшое напряжение, называемое напряжением термоперехода .Это называется эффектом Пельтье .
  • Если температура соединения изменяется, это вызывает изменение напряжения, что может быть измерено входными цепями электронного контроллера. Выходное напряжение — это напряжение, пропорциональное разнице температур между спаем и свободными концами. Это называется эффектом Томпсона .
  • Оба этих эффекта можно комбинировать для измерения температуры.Удерживая один спай при известной температуре (эталонный спай) и измеряя напряжение, можно определить температуру чувствительного спая. Генерируемое напряжение прямо пропорционально разнице температур. Комбинированный эффект известен как эффект термоспая или эффект Зеебека .

На рисунке справа показана простая схема термопары.

Напряжение измеряется для определения температуры. На практике провода A и B подключаются к цифровому вольтметру (DVM), цифровому мультиметру (DMM), системе сбора цифровых данных или другому устройству измерения напряжения.Если измерительное устройство имеет очень высокий входной импеданс, напряжение, создаваемое термопаром, можно измерить точно.

Однако основная проблема с измерением температуры термопарами заключается в том, что провода A и B должны подключаться к выводам вольтметра, которые обычно сделаны из меди. Если ни провод A, ни провод B сами по себе медные, подключение к DVM создает еще два термоперехода ! (Металлы термопар обычно не такие же, как у проводов цифрового мультиметра.Эти дополнительные термопары также создают напряжение термопары, которое может вызвать ошибку при попытке измерить напряжение с чувствительного спая.

Как решить эту проблему?

Одним из простых решений является добавление четвертого термопреобразователя, называемого эталонным спаем , путем вставки дополнительной длины металлического провода A в схему, как показано ниже. Эталонный спай состоит из металлов A и B, как показано на рисунке.

Эта модифицированная схема анализируется следующим образом:

При таком расположении остаются еще два дополнительных спая термопары, где компенсированная термопара подключается к вольтметру (DVM). Два соединения с DVM теперь находятся между металлом A и медью. Эти два перехода расположены близко друг к другу, , и имеют одинаковую температуру , , , так что их напряжения термопреобразования идентичны и компенсируют друг друга.Между тем, новый эталонный спай помещается в место, где эталонная температура T R известна точно, обычно в водно-ледяной бане с фиксированной температурой T R = 0 ° C. Если чувствительный переход также имеет температуру 0 ° C (T s = 0 o C), напряжение, генерируемое чувствительным переходом, будет равно и противоположно напряжению, генерируемому опорным переходом. Следовательно, V o = 0, когда T s = 0 ° C. Однако, если температура чувствительного перехода не равна T R , V o будет отличным от нуля.

Таким образом, V o является уникальной функцией температуры датчика T s и двух металлов, используемых для термопары . Таким образом, для известной эталонной температуры и известных материалов провода термопары для измерения температуры можно использовать выходное напряжение V o . Это фундаментальная концепция использования термопар.

Материалы термопары

Термопары могут быть изготовлены из нескольких различных комбинаций материалов.Характеристики материала термопары обычно определяются при использовании этого материала с платиной. Наиболее важным фактором, который следует учитывать при выборе пары материалов, является «термоэлектрическая разница» между двумя материалами. Значительная разница между двумя материалами приведет к улучшению характеристик термопары.

На рисунке ниже показаны характеристики наиболее часто используемых материалов при использовании с платиной. Например: хромель-константан отлично подходит для температур до 2000 ° F; Никель / никель-молибден иногда заменяет хромель-алюмель; и вольфрам-рений используется для температур до 5000 ° F.Некоторые комбинации, используемые для специализированных приложений, включают хромель-белое золото, молибден-вольфрам, вольфрам-иридий и иридий / иридий-родий.

На рисунке ниже показаны характеристики материала термопары при использовании с платиной.

Характеристики типов термопар

Из бесконечного числа комбинаций термопар Американское приборостроительное общество (ISA) признает 12. Большинство этих типов термопар имеют однобуквенные обозначения; наиболее распространены J, K, T и E.Состав термопар соответствует международным стандартам, но цветовая кодировка проводов у них другая. Например, в США отрицательный вывод всегда красный, в то время как остальной мир использует красный цвет для обозначения положительного вывода. Часто стандартные типы термопар упоминаются по их торговым наименованиям. Например,

  • Термопара типа K имеет цвет желтый и использует хромель алюмель, , которые являются торговыми наименованиями сплавов проволоки Ni-Cr и Ni-Al.
  • Термопара типа J имеет цвет черный и использует железо и константан в качестве составляющих металлов. (Константан — это сплав никеля и меди.)
  • Термопара типа T имеет цвет синий и использует медь и константан в качестве составляющих металлов.
  • Термопара типа S использует Pt / Rh-Pt
  • Термопара A типа E использует Ni / Cr-Con
  • A , термопара типа N использует Ni / Cr / Si-Ni / Si

Каждая калибровка имеет свой диапазон температур и среду, хотя максимальная температура зависит от диаметра провода, используемого в термопаре.Различия в составе сплава и состоянии стыка между проволоками являются источниками погрешностей в измерениях температуры. Стандартная погрешность провода термопары варьируется от ± 0,8 ° C до ± 4,4 ° C, в зависимости от типа используемой термопары. Термопара типа K рекомендуется для большинства приложений общего назначения. Он предлагает широкий диапазон температур, низкую стандартную ошибку и хорошую коррозионную стойкость. Фактически, многие цифровые мультиметры (DMM) могут измерять температуру путем подключения термопары типа K со стандартными соединениями.

Напряжение, создаваемое термопарой, изменяется почти , но не точно, линейно с температурой. Следовательно, не существует простых уравнений, связывающих напряжение термопары с температурой. Напротив, напряжение представлено в виде таблицы как функция температуры для различных стандартных термопар. Чтобы преобразовать показания в милливольтах в соответствующую температуру, вы должны обратиться к таблицам, подобным приведенной ниже. Эти таблицы можно получить у производителя термопар, и в них указана конкретная температура, соответствующая серии показаний в милливольтах. По соглашению, эталонная температура для таблиц термопар составляет 0ºC.

Выбор типа термопары

Поскольку термопары измеряют в широком диапазоне температур и могут быть относительно прочными, они очень часто используются в промышленности.

При выборе термопары используются следующие критерии:

  1. Диапазон температур.
  2. Химическая стойкость материала термопары или оболочки.
  3. Устойчивость к истиранию и вибрации.
  4. Требования к установке (может потребоваться совместимость с существующим оборудованием; существующие отверстия могут определять диаметр зонда).

Стандартные характеристики

Диаметр: Стандартные диаметры: 0,010 ″, 0,020 ″, 0,032 ″, 0,040 ″, 1/16 ″, 1/8 ″, 3/16 ″ и 1/4 ″ с двумя проводами.

Длина: Стандартные термопары имеют длину погружения 12 дюймов. Другая длина изготавливается на заказ.

Оболочки: Нержавеющая сталь 304 и инконель являются стандартными.

Изоляция: Оксид магния входит в стандартную комплектацию. Минимальное сопротивление изоляции провод к проводу или провод к оболочке составляет 1,5 МОм при 500 В постоянного тока для всех диаметров.

Калибровка: железо-константан (J), хромель алюмель (K), медь-константан (T) и хромель-константан (E) являются стандартными калибровками.

Гибка: Легко изгибается и деформируется. Радиус изгиба должен быть не менее двух диаметров оболочки.

Полярность: В производстве термопар стандартной практикой является окрашивание отрицательного вывода в красный цвет.

Соединения термопар:

Доступны зонды с термопарами в оболочке с одним из трех типов спая: заземленным, незаземленным или незащищенным.

Заземленное соединение — В этом типе провода термопары физически прикреплены к внутренней стороне стенки зонда. Это приводит к хорошей теплопередаче снаружи через стенку зонда к спайу термопары. Заземленный переход рекомендуется для измерения статических или текущих температур агрессивных газов и жидкостей, а также для приложений с высоким давлением.Спай заземленной термопары приварен к защитной оболочке, обеспечивая более быстрый отклик, чем спай незаземленного типа.

Незаземленный переход — В подземном зонде спай термопары отсоединен от стенки зонда. Время отклика уменьшается по сравнению с заземленным типом, но незаземленный обеспечивает электрическую изоляцию 1,5 M1 / ​​2 при 500 В постоянного тока для всех диаметров. Незаземленный спай рекомендуется для измерений в агрессивных средах, где желательно, чтобы термопара была электрически изолирована от оболочки и экранирована ею.Термопара из сварной проволоки физически изолирована от оболочки термопары порошком MgO (мягкий).

Открытый спай- В стиле открытого спая термопара выступает из конца оболочки и подвергается воздействию окружающей среды. Этот тип обеспечивает лучшее время отклика, но его использование ограничено некоррозийными и не находящимися под давлением приложениями. Соединение выходит за пределы защитной металлической оболочки, обеспечивая точный и быстрый отклик.Изоляция оболочки герметизирована там, где простирается переход, чтобы предотвратить проникновение влаги или газа, которое может вызвать ошибки.

Таким образом, открытый переход обеспечивает самое быстрое время отклика, за которым следует заземленный переход. Решения по измерению температуры могут повлиять на ожидаемые результаты процесса или нарушить их. Выбор правильного датчика для приложения может быть сложной задачей, но обработка этого измеренного сигнала также очень важна.

T Законы для гермопар

Первые несколько обозначений :

Пусть T 1 будет температурой ванны 1, а T 2 будет температурой ванны 2.

Пусть V 1-R определяется как напряжение, создаваемое термопарой при температуре T 1 , когда используется надлежащий эталонный спай при температуре T R (T R = эталонная температура = 0 o C ). V 1-R — напряжение, указанное в таблице термопар при температуре T 1 .

Пусть V 1-2 определяется как разница напряжений между V 1-R и V 2-R ,

V1-2 = V1-R — V2-R

Условные обозначения :

Ошибки отрицательного знака могут быть проблематичными при работе с этими уравнениями, если одно из них не согласовано.

По соглашению, таблицы термопар построены так, что на более высокая температура дает на более высокое напряжение термопары .

Другими словами, всегда предполагается, что два провода термопары (назовем их провод A и провод B) подключены к вольтметру таким образом, что напряжение составляет плюс , когда измеряемая температура на больше чем эталонная температура. Аналогично, напряжение составляет отрицательное значение , когда измеряемая температура на меньше, чем на эталонная температура.

Поскольку стандартная эталонная температура для таблиц термопар составляет 0ºC, положительные температуры в единицах ºC дают положительные термопереходные напряжения, а отрицательные температуры в единицах C дают отрицательные термопереходные напряжения.

Обратите внимание, что если провода подключены к вольтметру стороной напротив , напряжения, конечно, будут иметь противоположный знак.

К термопарам применяются три закона или правила:

  • Закон промежуточных металлов

«Третий (промежуточный) металлический провод может быть вставлен последовательно с одним из проводов без изменения показания напряжения (при условии, что два новых соединения имеют одинаковую температуру)».

Рассмотрим схему ниже, где прямоугольник вокруг термопары указывает на баню с постоянной температурой (например, кастрюлю с кипящей водой или баню с ледяной водой).

Закон промежуточных металлов гласит, что показание напряжения V 1-2 не изменится, если добавить третий (промежуточный) провод на одной линии с любым из проводов в цепи, как показано ниже:

На приведенной выше диаграмме предполагается, что оба новых перехода (между металлом B и металлом C) имеют одинаковую температуру, т.е.е. температура окружающей среды, T a .

Легко видеть, что здесь должен соблюдаться закон промежуточных металлов, поскольку любое напряжение, генерируемое на одном из новых переходов, в точности компенсируется равным и противоположным напряжением, генерируемым на другом новом переходе.

Аналогичным образом, металл C можно вставить в любое другое место в цепи без какого-либо влияния на выходное напряжение, при условии, что два новых перехода имеют одинаковую температуру. Например, рассмотрим следующую модифицированную схему:

Опять же, если два новых перехода (на этот раз между металлами A и C) имеют одинаковую температуру, нет никакого общего влияния на выходное напряжение.

  • Закон промежуточных температур

«Если одинаковые термопары измеряют разность температур между T 1 и T 2 , и разность температур между T 2 и T 3 , тогда сумма соответствующих напряжений V 1-2 + V 2-3 должна равняться напряжению V 1-3 , генерируемому идентичной термопарой измерение разницы температур между T 1 и T 3 ”.

Математическая формулировка закона промежуточных температур:

V 1-3 = V 1-2 + V 2-3 для любых трех температур, T 1 , T 2 и T 3 .

Рассмотрим схему ниже, где показаны шесть термоспаев, по два в каждой ванне с постоянной температурой. Примечание. Во избежание путаницы на схеме медные выводы цифрового вольтметра больше не показаны. Кроме того, для краткости буквы A и B обозначают металл A и металл B, два разных типа проводов для термопар.

Согласно принятой здесь системе обозначений,

V1-3 = V1-R — V3-R,

, которое можно записать как

V1-3 = (V1-R — V2-R) + (V2-R — V3-R)

Но поскольку (тоже по определению)

V1-2 = V1-R — V2-R и

V2-3 = V2-R — V3-R,

непосредственно следует, что

V1-3 = V1-2 + V2-3.

«Для данного набора из 3 проводов термопары, A, B и C, все измеряют одинаковую разность температур T 1 — T 2 , напряжение измеряется проводами A и C должно равняться сумме напряжения, измеренного на проводах A и B, и напряжения, измеренного на проводах B и C ”.

Рассмотрим установку ниже, где показаны шесть термоспаев, три в ванне с постоянной температурой T 1 и три в ванне с постоянной температурой T 2 . Как указано выше, буквы A, B и C обозначают различные типы проводов для термопар.

Математически закон аддитивных напряжений можно сформулировать как:

V1-2 (провода A и C) = V1-2 (провода A и B) + V1-2 (провода B и C)

Или, переставив по напряжению разности ,

V1-2 (провода A и B) = V1-2 (провода A и C) — V1-2 (провода B и C).

Термобатарея

Термобатарея определяется как несколько последовательно соединенных термопар. Например, термобатарея с тремя чувствительными элементами показана ниже:

По мере увеличения T 2 выходное напряжение значительно увеличивается. Преимущество термобатареи (по сравнению с одним чувствительным переходом) — повышенная чувствительность .

Здесь выходное напряжение в три раза больше, чем то, которое генерируется только одной термопарой при идентичных условиях, как показано ниже:

При достаточном количестве чувствительных переходов термобатарея действительно может генерировать полезное напряжение.Например, термоэлектрических часто используются для управления запорными вентилями в печах .

Также читайте: Основы термопар и датчиков RTD

Что такое термопара и как она работает? Принцип работы термопары

Термопара состоит как минимум из двух металлов, соединенных вместе, чтобы образовать два спая. Один связан с телом, температуру которого нужно измерить; это горячий или измерительный спай. Другой переход связан с телом известной температуры; это холодный или опорный спай.Поэтому термопара измеряет неизвестную температуру тела относительно известной температуры другого тела.

Принцип работы

Принцип работы термопары основан на трех эффектах, открытых Зеебеком, Пельтье и Томсоном. Они следующие:

1) Эффект Зеебека: Эффект Зеебека утверждает, что, когда два разных или непохожих металла соединяются вместе в двух стыках, на двух стыках создается электродвижущая сила (ЭДС).Количество генерируемой ЭДС различается для разных комбинаций металлов.

2) Эффект Пельтье: В соответствии с эффектом Пельтье, когда два разнородных металла соединяются вместе, образуя два перехода, в цепи генерируется ЭДС из-за разных температур двух переходов цепи.

3) Эффект Томсона: Согласно эффекту Томсона, когда два разнородных металла соединяются вместе, образуя два перехода, в цепи существует потенциал из-за градиента температуры по всей длине проводников в цепи.

В большинстве случаев ЭДС, предполагаемая эффектом Томсона, очень мала, и ею можно пренебречь, правильно подобрав металлы. Эффект Пельтье играет важную роль в принципе работы термопары.

Диаграммы

Как это работает

Общая схема работы термопары показана на рисунке 1 выше. Он состоит из двух разнородных металлов, A и B. Они соединены вместе, образуя два перехода, p и q, которые поддерживаются при температурах T1 и T2 соответственно.Помните, что термопара не может образоваться, если не будет двух спаев. Поскольку два перехода поддерживаются при разных температурах, в цепи генерируется ЭДС Пельтье, которая является функцией температур двух переходов.

Если температура обоих переходов одинакова, на обоих переходах будет генерироваться равная и противоположная ЭДС, а общий ток, протекающий через переход, равен нулю. Если поддерживать разные температуры в переходах, ЭДС не станет равной нулю, и по цепи будет протекать чистый ток.Полная ЭДС, протекающая через этот контур, зависит от металлов, используемых в контуре, а также от температуры двух переходов. Полная ЭДС или ток, протекающий по цепи, можно легко измерить с помощью подходящего устройства.

Устройство для измерения тока или ЭДС включается в цепь термопары. Он измеряет количество ЭДС, протекающей через цепь из-за двух стыков двух разнородных металлов, поддерживаемых при разных температурах.На рисунке 2 показаны два спая термопары и устройство, используемое для измерения ЭДС (потенциометр).

Теперь температура эталонных спаев уже известна, а температура измерительных спаев неизвестна. Выходной сигнал цепи термопары калибруется непосредственно по неизвестной температуре. Таким образом, выходное напряжение или ток, полученные от цепи термопары, напрямую дает значение неизвестной температуры.

Устройства, используемые для измерения ЭДС

Величина ЭДС, развиваемая в цепи термопары, очень мала, обычно в милливольтах, поэтому для измерения ЭДС, генерируемой в цепи термопары, следует использовать высокочувствительные приборы.Обычно используются два устройства: обычный гальванометр и потенциометр для выравнивания напряжения. Из этих двух чаще всего используется балансирующий потенциометр вручную или автоматически.

На рисунке 2 показан потенциометр, подключенный к цепи термопары. Переход p соединен с телом, температуру которого необходимо измерить. Спай q является эталонным спаем, температуру которого можно измерить термометром. В некоторых случаях эталонные спаи также можно поддерживать при температуре льда, подключив их к ледяной бане (см. Рисунок 3).Это устройство может быть откалибровано с точки зрения входной температуры, так что его шкала может давать значение непосредственно с точки зрения температуры.

Ссылка

Книга: Механические измерения Томаса Г. Беквита и Н. Льюиса Бака

Изображения предоставлены

  1. Книга: Механические измерения Томаса Г. Беквита и Н. Льюиса Бака

  2. https: // www .tpub.com / content / doe / h2013v1 / css / h2013v1_24.htm

Этот пост является частью серии: Что такое термопары? Как работают термопары?

Это серия статей, описывающих, что такое термопары, как работают термопары, материалы, используемые для термопар, а также различные формы и формы термопар.

  1. Что такое термопара и как она работает?
  2. Материалы, используемые для термопар и их формы

Датчик термопары: подробный обзор | Принцип работы термопары

Датчик термопары — один из многих типов датчиков температуры, используемых для измерения различных переменных в промышленных приложениях. Они часто используются для измерения и контроля температуры выхлопных газов газовых турбин, дизельных двигателей, высокотемпературных печей и т. Д.Термопары используются не только в промышленности, но и в нескольких домашних и коммерческих целях. В термостатах датчики пламени и дыма, приборы, работающие на газе или жидком топливе, и т. Д. Объединены в пары с датчиками термопар, чтобы контролировать повышение рабочей температуры. Поскольку датчики термопар имеют большое значение и являются широко используемыми типами датчиков температуры, важно знать об этом грамотно. В этом посте обсуждается, что такое термопары и как они работают.

Обзор термопар

Датчик термопары — это чувствительное к температуре устройство, состоящее из двух проводов из разнородного материала.Из-за разного состава эти провода обладают разной электропроводностью. Разница в электропроводности порождает дифференциальное электрическое соединение, между которым дополнительно создается зависящее от температуры напряжение. Эта активность называется термоэлектрическим эффектом. Это измеренное напряжение в дальнейшем используется для интерпретации температуры.

Датчики термопары доступны в различных моделях и сборках. Они изготавливаются в виде зондов термопар, термопар с переходным соединением, термопар с разъемами, термопар с неизолированным проводом и т. Д.Хотя термопарные датчики обеспечивают универсальность, функциональность и принцип работы остаются неизменными.

Обсудим принцип работы термопар.

Знать о принципе работы термопар

Термопара работает согласно эффекту Зеебека.

Эффект Зеебека можно описать как генерацию дифференциального напряжения из-за разницы в электропроводности двух разных материалов.Названный в честь французского ученого Томаса Йохана Зеебека, который подтвердил, что если два разнородных металла соединяются и нагреваются, разница в повышении температуры этих двух металлов приводит к возникновению электродвижущей силы (ЭДС). Та же самая концепция перевернута в применении термопары.

Когда электрический ток проходит через два сваренных разнородных металла, возникает разница напряжений, которая проецируется в обратном направлении для расчета разницы температур. Когда электрический ток проходит через переход, из-за ограничений проводимости и сопротивления металлов происходит повышение температуры.Оба материала нагреваются при разных температурах, и разница в проводимости дает два разных напряжения для двух разных металлов.

Хотя принцип работы датчиков термопары несложен, он все же зависит от нескольких различных факторов. Для точного измерения недостаточно измерения разности напряжений.

Одним из наиболее важных факторов для точного измерения температуры датчиком термопары является эталонная температура на стыке (Tref).Важно знать точное значение Tref, чтобы избежать поправочного коэффициента при вычислении напряжения и температуры. Есть два конкретных метода, используемых для определения и идентификации Tref. Ниже приведены методы, которые способствуют точности показаний датчика термопары.

  • Ледяная баня Метод: В этом методе соединительный блок погружается в ванну с полузамороженной дистиллированной водой, чтобы заморозить температуру соединения. После погружения Tref устанавливается на 0 ° C для справки по расчетам.
  • Метод компенсации холодного спая: В этом методе температура точки стыка будет изменяться, но она постоянно измеряется с помощью второго датчика температуры. Измеряется Tref в точке соединения, а затем точный Tref на момент считывания используется в качестве поправочного коэффициента.

Компенсация показаний температуры выполняется одним из этих двух методов для безошибочной работы датчиков термопар.

Хотя введение и принцип работы термопар убедительны, важно также обратить внимание на качество этого датчика. Качество сборки датчиков термопар обеспечивает точность считывания. Следовательно, необходимо покупать термопары у проверенных производителей или поставщиков, таких как The Transmitter Shop. Компания уже несколько лет поставляет промышленное технологическое оборудование, такое как термопары, преобразователи, датчики и т. Д. Можно найти продукцию премиум-качества от таких ведущих брендов, как Rosemount, Foxboro, Honeywell и т. Д.

Похожие сообщения

Термопары

Одним из наиболее распространенных промышленных термометров является термопара. Он был открыт Томасом Зеебеком в 1822 году. Он заметил, что при нагревании проволоки с одного конца возникает разность напряжений. Независимо от температуры, если оба конца были при одинаковой температуре, разницы напряжений не было. Если цепь была сделана с помощью провода из того же материала, ток не протекал.

Термопара состоит из двух разнородных металлов, соединенных вместе на одном конце и создающих небольшое уникальное напряжение при заданной температуре.Это напряжение измеряется и интерпретируется термометром термопары.

Термоэлектрическое напряжение, возникающее в результате разницы температур от одного конца провода к другому, на самом деле является суммой всех разностей напряжений вдоль провода от конца до конца.

Термопары могут изготавливаться из различных металлов и работать в диапазоне температур от 200 o C до 2600 o C . Сравнение термопар с датчиками других типов следует проводить с учетом допуска, указанного в ASTM E 230.

Термопары из недрагоценных металлов

* Не используется ниже 1250 o C .

Преимущества термопар

  • Возможность прямого измерения температуры до 2600 o C .
  • Спай термопары можно заземлить и привести в прямой контакт с измеряемым материалом.

Недостатки термопар

  • Для измерения температуры с помощью термопары необходимо измерить две температуры: спай на рабочем конце (горячий спай) и спай, где провода встречаются с медными проводами КИП (холодный спай).Во избежание ошибок температура холодного спая обычно компенсируется в электронных приборах путем измерения температуры на клеммной колодке с помощью полупроводника, термистора или RTD.
  • Термопары относительно сложны в эксплуатации с потенциальными источниками ошибок. Материалы, из которых изготовлены провода термопары, не являются инертными, и на термоэлектрическое напряжение, возникающее по длине провода термопары, может влиять коррозия и т. Д.
  • Связь между температурой процесса и сигналом термопары (милливольт) не является линейной.
  • Калибровку термопары следует проводить путем сравнения ее с соседней термопарой. Если термопару снимают и помещают в калибровочную ванну, выходной сигнал, интегрированный по длине, не воспроизводится точно, поскольку разница температур от одного конца провода к другому является суммой всех разностей напряжений вдоль провода от конца до конца.

Типы термопар

Термопары доступны в различных комбинациях металлов или калибровок.Четыре наиболее распространенных калибровки — это J, K, T и E. Каждая калибровка имеет свой диапазон температур и среду, хотя максимальная температура зависит от диаметра провода, используемого в термопаре.

Некоторые типы термопар стандартизированы с помощью калибровочных таблиц, цветовых кодов и присвоенных буквенных обозначений. Стандарт ASTM E230 предоставляет все спецификации для большинства общепромышленных марок, включая буквенные обозначения, цветовые коды (только для США), рекомендуемые пределы использования и полные таблицы зависимости напряжения от температуры для холодных спаев, поддерживаемых при 32 o F и 0 o С.

Существует четыре «класса» термопар:

  • Класс домашнего корпуса (называемый основным металлом),
  • класс верхней корки (называемый редким или драгоценным металлом),
  • класс разреженных (тугоплавкие металлы) и ,
  • экзотический класс (эталоны и опытно-конструкторские разработки).

Домашние тела — это типы E, J, K, N и T. Верхняя кора — это типы B, S и R, платина — все в разном процентном соотношении. Экзотический класс включает несколько термопар из вольфрамового сплава, обычно обозначаемых как тип W (что-то).

Преобразование температуры

  • o F = (1,8 x o C) + 32
  • o C = ( o F — 32) x 0,555
  • Кельвин = o C + 273,2
  • o Rankin = o F + 459,67

Стандарты ASTM, относящиеся к термопарам

  • E 207-00 … Метод испытания материалов отдельных термоэлементов на ЭДС путем сравнения с вторичным эталоном аналогичных характеристик ЭМП-температуры
  • E 220-02 Стандартный метод испытаний для калибровки термопар методами сравнения
  • E 230-98e1..Таблицы температурной электродвижущей силы (ЭДС) для стандартизованных термопар
  • E 235-88 (1996) e1..Технические характеристики термопар в оболочке типа K для ядерных или других высоконадежных применений
  • E 452-02..Метод испытаний для калибровки термопар из тугоплавкого металла с использованием радиационного термометра
  • E 574-00..Технические условия для дуплексного провода термопары из недрагоценных металлов с изоляцией из стекловолокна или кремнеземного волокна
  • E 585 / E 585M-01a ​​.. Стандартные технические условия для уплотненного минерала -Изолированный, в металлической оболочке, кабель термопары из недрагоценных металлов
  • E 601-81 (1997)..Метод испытаний для сравнения стабильности ЭДС материалов одноэлементных термопар из недрагоценных металлов в воздухе
  • E 608 / E 608M-00. Стандартные технические условия на термопары из недрагоценных металлов с минеральной изоляцией и металлической оболочкой
  • E 696-00 Стандартные технические условия на провод для термопар из вольфрам-рениевого сплава
  • E 710-86 (1997) Стандартный метод испытаний для сравнения стабильности ЭДС термопары из недрагоценных металлов элементы в воздухе с использованием двойных, одновременных индикаторов термо-ЭДС
  • E 780-92 (1998) Стандартный метод испытаний для измерения сопротивления изоляции материала термопары с оболочкой при комнатной температуре
  • E 839-96 Стандартный метод испытаний термопар с оболочкой и с оболочкой Материал термопары
  • E 988-96 (2002) Таблицы стандартных температурно-электродвижущих сил (ЭДС) для вольфрам-рениевых термопар
  • E1129 / E1129M-98 Стандартные технические условия для разъемов термопар
  • E 1159-98 Стандартные технические условия для материалов термопар -Родиевые сплавы и платина
  • E 1350-97 (2001) Стандартные методы испытаний для испытания термопар в оболочке до, Во время и после установки
  • E 1652-00 Стандартные спецификации для оксида магния и порошка оксида алюминия и измельчаемых изоляторов, используемых при производстве платиновых термометров сопротивления в металлической оболочке, термопар из недрагоценных металлов и термопар из благородных металлов
  • E 1684-00 Стандартная спецификация для миниатюрных соединителей для термопар
  • E 1751-00 Стандартное руководство по температуре Таблицы электродвижущей силы (ЭДС) для комбинаций термопар без буквенного обозначения
  • E 2181 / E 2181M-01 Стандартные технические условия для благородных металлов с уплотненной минеральной изоляцией и металлической оболочкой Термопары и кабель для термопар

как работают датчики — термопары

1).ТЕРМОПАРЫ


Нажмите, чтобы увидеть …
2). В
Преимущества 2-х, 3-х и 4-х проводных измерений pT100.
3). Вступление
к измерениям Thermocople.
4). Базовый
Измерения RTD

Термопара
часто используется в качестве чувствительного элемента в тепловом датчике
или переключиться. Принцип состоит в том, что два разных металла всегда
имеют контактный потенциал между ними, и этот контактный потенциал
меняется при изменении температуры.

Фиг.
1,1

Контакт
потенциал не измеряется для одиночного соединения (или соединения),
но когда два соединения находятся в цепи с соединениями в
различные температуры, тогда напряжение в несколько милливольт может
быть обнаруженным (рис. 1.1). Это напряжение будет равно нулю
если стыки имеют одинаковую температуру, и увеличится
при изменении температуры одного спая относительно другого
пока не будет достигнут пик.

Фиг.
1,2


Рис. 1.2 Термопара
характеристика, показывающая типичную кривизну и переход
точка, в которой характеристика меняется на противоположную. Несколько комбинаций
металлов (таких как медь / серебро) не имеют перехода, но имеют
очень низкая производительность.

Форма
типичная характеристика представлена ​​на рис.1.2, из которого вы
видно, что термопара полезна только в ограниченном диапазоне
температуры из-за нелинейной формы характеристики
и разворот, который имеет место при температурах выше, чем
точка оборота.

Выход
от термопары мала, порядка милливольт для
разница температур 10 ° C, а на рис. 1.3 показан типичный
чувствительность и полезный диапазон для множества распространенных типов.Из них медь / константановый тип используется в основном для нижних
диапазон температур и платина! родий для
более высокие температуры.

Рис. 1.3

Из-за
малое выходное напряжение, усиление обычно требуется, если
термопара используется для измерения температуры вместе с
чувствительный милливиметр.Если выход термопары
требуется проехать что-нибудь еще
чем движение метра, то потребуется усиление постоянного тока,
с помощью операционного усилителя или усилителя-прерывателя.

Тип
усилитель, который используется, необходимо тщательно выбирать, потому что
необходима хорошая устойчивость к дрейфу до тех пор, пока устройство не будет откалибровано заново
через частые промежутки времени. Это
делает усилитель прерывистого типа предпочтительным для большинства приложений.

Если вкл / выкл
требуется коммутационное действие, термопара должна использоваться вместе
с контроллером, который использует схему типа триггера Шмитта
что также позволяет регулировать смещение так, чтобы температура переключения
можно предварительно установить. Обычная схема включает усиление, потому что
нижние диапазоны выходов термопар сравнимы с
контактные потенциалы (тот же тип эффекта) в усилителе
схемы,
и попытка использовать очень маленькие входы для переключения неизменно
приводит к проблемам гистерезиса и чрезмерной чувствительности.

Одно конкретное
Преимущество термопар в том, что сами чувствительные элементы
очень маленькие, что позволяет вставлять термопары в очень
небольшие помещения и реагировать на быстро меняющиеся температуры.
Электрическая природа процесса
означает, что схема для считывания выхода термопары
может быть удален от самого датчика. Обратите внимание, что термопара
эффекты будут встречаться везде, где встречается один металлический проводник
другой, чтобы разница температур по контуру
платы также могут создавать напряжения, сравнимые с
вывод с термопар.

Форма
поэтому важна конструкция усилителей для термопар,
и необходима некоторая установка нуля.

с
благодарность ‘Sensors & Transducers’,
Руководство для технических специалистов Яна Р. Синклера — ISBN 0-632-02069-5
Заявление о принятии авторских прав.


ПЛАТИНОВЫЙ
ДАТЧИКИ СОПРОТИВЛЕНИЯ Pt100

сопротивление потоку электричества в металлических материалах различается
с температурой.Это может быть полезно для платины.
детекторы сопротивления. Платина особенно стабильна как в электрическом отношении.
и механически, а также стабильно во времени, производя
относительно линейное изменение сопротивления в зависимости от температуры.

Потому что
изменение выходного сопротивления к температуре относительно невелико,
Отсюда следует, что важны длина проводов и сопротивление.
Особенности.Обычно, когда длина выводов короткая или может считаться
в качестве приемлемого содержания добавки двухпроводная конфигурация
достаточный.

Трехпроводной
является наиболее часто используемым и, если не указано иное, поставляется
в стандартной комплектации третий провод является компенсатором длины провода.
и при условии, что все три провода имеют одинаковое сопротивление, компенсирует
для любых ошибок ZERO или SPAN. (Не для всех мостов).

Четыре провода обеспечивают
для высокой точности и рекомендуется для использования с барьерами Зенера.

СОЕДИНЕНИЕ
КОНФИГУРАЦИЯ

Платиновые резисторы обычно имеют сопротивление 100 Ом при 0 ° C и
138,51 Ом при 100 ° C. Доступны разные сорта.
в зависимости от требуемой точности и может поставляться как дуплекс
датчики, два независимых датчика на одном каркасе.

Соответствующий
точность трех основных типов спецификаций, BS.EN 60751
Класс A, BS.EN 60751, класс B и 1/10 класс B. Pt100 Platinum
Датчики сопротивления показаны в таблице допусков ниже.

Сопротивление
при интервале основной гармоники 38,51 Ом
Допуски
для термометров 100 Ом
Температура Класс
A
Класс
B
1/10
Класс B
° С

° F

Номинальный
Значение
±
° С
±
ом
±
° С
±
Ом
±
° С
±
ом
-200 -328 18.52 0,55 0,24

1,3

0,56

0,13

0,06

-100 -148 60.26 0,35

0,14

0,8

0,32 0,08 0,03
0 32 100.00 0,15

0,06

0,3 0,12 0,03

0,01

100

212

138.51 0,35 0,13 0,8 0,30

0,08

0,03
200 392 175.86

0,55

0,20 1,3

0,48

0,13

0,05
300 572 212.05

0,75

0,27

1,8

0,64

0,18

0,06
400 752 247.09

0,95

0,33

2,3

0,79

0,23

0,08

500 932 280.98 1,15

0,38

2,8 0,93 0,28 0,09
600 1112 313.71 1,35 0,43 3,3

1,06

0,33

0,10
700 1292 345.28

3,8 1,17

800 1472 375.70

4,3

1,28

ЗНАЧЕНИЯ ДОПУСКА
КАК ФУНКЦИЯ ТЕМПЕРАТУРЫ ДЛЯ ТЕРМОМЕТРА 100 Ом

ВОДОВ

Pt100
датчики поставляются с 2-х, 3-х или 4-х проводным подключением и, если
в противном случае будет поставляться как 3-проводной тип 7 ​​x 0.2
мм с изоляцией из медного ПТФЭ, с двумя красными проводами, обозначающими один конец
элемент и один белый провод, указывающий на другой. Альтернатива
типы изоляции проводов могут быть поставлены.

Материал Максимальный диапазон Заявка
ПВХ от -10 до +105 ° C Низкий
стоимость, влагостойкие, короткие
ПТФЭ -60
до +250 ° C
Устойчив к истиранию, большая длина
тканый
Асбест
в
+700 ° С
Шамотный пропитанный
тканый
Кремнезем
в
+1000 ° С
глинозем
Фарфор
в
+1400 ° С
Электрооборудование
сопротивление снижается выше 900 ° C
Рекристаллизованный оксид алюминия до +1950 ° C Электрическое сопротивление снижается выше 900 ° C

Датчики «летающего свинца» могут поставляться с дополнительной опцией из нержавеющей стали.
стальная оплетка или гофрированная оболочка для более тяжелых условий эксплуатации.


2).
Преимущества 2-х, 3-х и 4-х проводных
Измерение Pt100 ВВЕДЕНИЕ

Два,
Разработаны трех- и четырехпроводные методы измерения.
для точного измерения сопротивления резистивной температуры
детекторы (RTD). В этой заметке по применению рассматриваются новые методы
внедряются в «умные» инструменты, где с помощью
интеллект микропроцессора, традиционные недостатки
Трехпроводные системы больше не применяются. ТРИ
ИЗМЕРЕНИЕ ПРОВОДОВ

традиционный метод точного измерения сопротивления заключается в
включить сопротивление в схему моста Уитстона (см.
рисунок ниже).

А напряжение
возбуждает мост, и напряжение на мосту пропорционально
к сопротивлению RTD.

Возникла проблема
когда мы вводим сопротивления проводов (см. рисунок ниже).это
очевидно, что любое сопротивление в свинце выглядит так, как если бы
— дополнительное сопротивление в измеряемом элементе.

Для минимизации
эти ошибки был введен трехпроводной мост с компенсацией
(см. рисунок ниже).

Это имеет
эффект устранения ошибки, вызванной сопротивлением выводов
при условии, что сопротивления проводов RL1 и RL3 совпадают.

Однако
влияние сопротивления провода может привести к снижению тока в
поток в ножке детектора и, следовательно, приведет к небольшому, но возможно
значительная ошибка диапазона. Этого можно избежать, возбудив
мост от источника постоянного тока, а не постоянного
напряжение и, следовательно, независимо от сопротивления проводов, одинаковый ток
всегда протекает через детектор. С помощью этого метода есть
ошибки сопротивления выводов отсутствуют, пока сопротивления выводов
одинаковы.На практике они очень близки
при условии, что используемый провод является частью того же многожильного кабеля.

Исключение
к этому, когда датчик используется в опасной зоне и подключен
к мостовой схеме через барьер Зенера. Здесь любое несовпадение
в сопротивлении двух ножек стабилитрона может появиться
как ошибка датчика. Хотя эта ошибка еще невелика, она может иметь вид
почти 0.15 Ом или прибл. 0,3 ° С (барьер MTL 155).

Для аналога
передатчики Status Instruments Ltd. традиционно использовали
вариант этой техники с использованием внутреннего активного моста
схема. Исключение составляет новая серия «Smart».
инструментов, использующих другую технику, которая будет
объяснил позже.

Другой способ
измерения элементов Pt100 — использовать 4-х проводный ток и напряжение
метод (см. рисунок ниже).

Здесь
детектор возбуждается постоянным током, и напряжение на
детектор измеряется усилителем с высокоомным входом.
Если источник тока идеален и входное сопротивление
цепь измерения напряжения бесконечна, значит ошибки нет
что бы ни вносили сопротивления свинца, даже если они
несоответствие.

THE
«УМНЫЙ» ПУТЬ ВПЕРЕД
Это
параграф описывает метод, используемый для измерения Pt100 на новом
Инструменты серии DM3000.

Текущий
тенденция для так называемых инструментов SMART — иметь универсальный
вход, способный поддерживать широкий диапазон входов. Неудобно
(и ненужно) выделить входные контакты и электронику для поддержки
источник постоянного тока и мостовая схема. Вход
схема измеряет напряжения с высокой степенью точности и
микропроцессор выполняет расчет, показанный на рисунке ниже.

Rc используется исключительно для ограничения протекающего тока, а Rs является стабильным
эталонный резистор.

Вычислив
сопротивление, микропроцессор применяет необходимые поправки
и переводит сопротивление в точные показания температуры.

Кроме того,
микропроцессор может определить, какой из входов RTD
отключился и обнаружил другие ошибки, такие как короткое замыкание RTD
схема.Это улучшение по сравнению с обычными тремя
и четырехпроводные схемы, потому что теперь вы можете иметь предсказуемый
режим отказа, не зависящий от того, какой из трех проводов
стал отключенным.

Эта техника
устраняет эффекты сопротивления свинцу, пока они равны. Очередной раз,
у нас есть проблема при использовании барьеров Зенера в том, что если
ножки шлагбаума не точно подогнаны, то небольшой
могла быть внесена ошибка.


С
благодарность Status Instruments Ltd.
Тел. +44 1684 296818 Факс +44 1684 293746
Эл. Почта: [email protected] Веб-сайт: www.status.co.uk


3).
Введение в измерения термопар


Введение

наиболее распространенные устройства, используемые для измерения температуры, включают термопары,
резистивные датчики температуры (RTD) и термисторы.Каждый
обладает уникальными характеристиками и свойствами, которые делают еще один
подходит, чем другой для определенного приложения.

Термопары являются наиболее широко используемым устройством для измерения температуры,
и, вероятно, наименее понятный. Они просты и эффективны,
и обеспечивают небольшой сигнал напряжения, пропорциональный температуре
разница между двумя спаями в замкнутой термоэлектрической цепи.
В самой базовой конфигурации одно соединение поддерживается на постоянном уровне.
эталонная температура, в то время как другой находится в контакте с
измеряемая среда.

Эта среда может быть газовой, жидкой или твердой, но во всех случаях
среда не должна подвергаться химическому, электрическому или физическому
загрязнение или изменение спая термопары. Для специальных приложений
или для защиты от окружающей среды доступны термопары.
с защитными покрытиями и экранами или оболочками. RTD составлены
металлов с высоким положительным температурным коэффициентом сопротивления.Большинство RTD представляют собой просто проволочные или тонкопленочные резисторы, изготовленные из
провод с известной зависимостью сопротивления от температуры. Платина
является одним из наиболее широко используемых материалов для термометров сопротивления. Они приходят
в широком диапазоне точности, и самые точные также
используется как NIST (Национальный институт стандартов и технологий)
температурные нормы.

Термисторы похожи на термометры сопротивления в том, что они также изменяют сопротивление.
между их выводами при изменении температуры.Тем не мение,
они могут быть как с положительной, так и с отрицательной температурой
коэффициент. Кроме того, у них гораздо более высокий коэффициент сопротивления.
изменение на градус Цельсия (несколько%), чем у RTD, что делает их более
чувствительный.

Градиент
Тип термопар
Термопары
сами по себе соединения не генерируют напряжения. Выход или потенциал
разница, возникающая на открытом конце, является функцией обоих
температуры закрытого спая и открытого конца.Принцип
работы зависит от уникального значения генерируемой термоэдс.
между открытыми концами выводов и стыком двух разнородных
металлы выдерживаются при определенной температуре. Принцип называется
Эффект Зеебека, названный в честь первооткрывателя. Количество
напряжение, генерируемое на открытых концах датчика, и диапазон
измеряемых прибором температур зависит от Зеебека.
коэффициент, который, в свою очередь, зависит от химического состава
материалов, из которых состоит провод термопары.

В принципе,
TC может быть изготовлен из любых двух разнородных металлов, таких как никель.
и железо. Однако на практике только несколько типов TC стали
стандартные, потому что их температурные коэффициенты очень повторяемы,
они прочные и генерируют относительно большие выходные напряжения.
Наиболее распространенные типы термопар называются J, K, T и E,
затем следуют N28, N14, S, R и B. Температура перехода может
можно вывести из напряжения Зеебека, сверяясь со стандартными таблицами.Однако это напряжение нельзя использовать напрямую, потому что термопара
подключение провода к медному зажиму на измерительном приборе
сам по себе представляет собой спай термопары (если только провод термопары
тоже медь) и генерирует еще одну ЭДС, которую необходимо компенсировать.

Холодный спай
Компенсация

классический метод компенсации ЭДС на приборе
клеммы — это термопара, погруженная в настоящую ванну с ледяной водой
который, в свою очередь, подключается последовательно с измерительной термопарой.Комбинация льда и воды поддерживает температуру ванны до
постоянный и точный 0 ° C (32 ° F). Термопара NIST
В таблицах ЭДС перечислены выходные ЭДС термопары на основе соответствующего
эталонный спай термопары выдерживается при 0 ° C.

Программное обеспечение
Компенсация
Лед
ванны и множественные эталонные спая в больших испытательных приспособлениях
неудобства, которые нужно создавать и поддерживать, и, к счастью, все они
можно устранить.Ледяную баню можно игнорировать, когда температура
из ведущих проводов и точек спая (изотермические
клеммная колодка на приборе) одинаковы. Коррекция ЭДС
необходимо на клеммах, можно ссылаться и компенсировать
стандарты NIST через компьютерное программное обеспечение. Когда ледяные ванны
устранены, компенсация холодного спая (CJC) по-прежнему необходима
для получения точных измерений термопары.Программное обеспечение
должен считывать изотермическую температуру блока. Одна общая техника
использует термистор, установленный рядом с изотермической клеммной колодкой
который подключается к выводам внешней термопары. Нет температуры
допускаются градиенты в области, содержащей термистор
и терминалы.
Тип используемой термопары предварительно запрограммирован для соответствующего
канал, а динамические входные данные для программного обеспечения включают
температура изотермического блока и измеренная температура окружающей среды
температура.Программа использует изотермическую температуру блока.
и тип термопары, чтобы узнать значение измеряемой
температура, соответствующая его напряжению в таблице, или вычисляет
температура с помощью полиномиального уравнения. Последний метод
позволяет многочисленным каналам термопар различных типов
подключаться одновременно, пока компьютер обрабатывает все
преобразования автоматически.

Аппаратное обеспечение
Компенсация
Хотя
полиномиальный подход быстрее, чем справочная таблица, аппаратное обеспечение
метод еще быстрее, потому что правильное напряжение сразу
доступны для сканирования.Один метод использует батарею в цепи
нулевое значение напряжения смещения от спая таким образом,
чистый эффект равен температуре соединения 0 ° C. Более практичный подход
это «электронный ориентир точки льда», который генерирует
компенсирующее напряжение как функция измерения температуры
цепь с питанием от батареи или аналогичного источника напряжения. Напряжение
тогда соответствует эквивалентному эталонному спайу при 0 ° C.

Тип Смешивание
Термопара
тестовые системы часто измеряют от десятков до сотен точек одновременно.
Для удобной работы с таким большим количеством каналов
без усложнения отдельных уникальных компенсационных ТК
для каждого модуля сканирования термопар имеется несколько входов
каналов и может принимать любые из различных типов термопар
на любом канале одновременно.Они содержат специальные медные
входные клеммные колодки с многочисленными компенсациями холодного спая
датчики для обеспечения точных показаний, независимо от датчика
тип б / у. Кроме того, модуль содержит встроенный автоматический
канал обнуления, а также канал компенсации холодного спая.
Хотя скорость измерения относительно ниже, чем у большинства других
типы модулей сканирования, показания фиксируются в мс, они
содержат меньше шума, они более точные и стабильные.Для
Например, один канал TC может быть измерен за 3 мс, 14 каналов
за 16 мс и 56 каналов за 61 мс. Типичная точность измерения
лучше 0,7 ° C, с изменением от канала к каналу
обычно менее 0,5 ° C.

Линеаризация
После
установка эквивалентной эталонной ЭДС точки льда на любом оборудовании
или программное обеспечение, измеренное напряжение термопары должно быть преобразовано
к показанию температуры.Выходное напряжение термопары пропорционально
до температуры перехода ТС, но не идеально
линейно в очень широком диапазоне.
Стандартный метод получения высокой точности преобразования для
любая температура использует значение измеренного напряжения термопары
включены в характеристическое уравнение для этого конкретного типа
термопара. Уравнение представляет собой полином порядка шести
до десяти.Компьютер автоматически выполняет расчет, но
многочлены высокого порядка требуют значительного времени для обработки. В
Чтобы ускорить расчет, характеристика термопары
кривая разделена на несколько сегментов. Затем каждый сегмент
аппроксимируется полиномом более низкого порядка.
Аналоговые схемы иногда используются для линеаризации
кривые, но когда полиномиальный метод не используется, термопара
выходное напряжение часто подключается ко входу аналогового
к цифровому преобразователю (АЦП), где точное напряжение к температуре
совпадение получается из таблицы, хранящейся в компьютерном
объем памяти.Например, одна карта TC системы сбора данных включает
программный драйвер, содержащий библиотеку преобразования температуры
который изменяет необработанные двоичные каналы TC и информацию CJC на
показания температуры. Некоторые программные пакеты предоставляют информацию о CJC.
и автоматически линеаризуйте термопары, подключенные к
система.

Термопара
Ошибки измерения
Шумная среда
Потому что
термопары генерируют относительно небольшое напряжение, шум всегда
вопрос.Наиболее распространенным источником шума является электросеть.
линии (50 или 60 Гц). Полоса пропускания термопары ниже 50
Гц, поэтому простой фильтр в каждом канале может уменьшить мешающие
шум линии переменного тока. Общие фильтры включают резисторы и конденсаторы.
и активные фильтры, построенные на базе операционных усилителей. Хотя пассивный RC
фильтр недорогой и хорошо подходит для аналоговых схем, он
не рекомендуется для мультиплексированного внешнего интерфейса, потому что мультиплексор
нагрузка может изменить характеристики фильтра.С другой
стороны, активный фильтр, состоящий из операционного усилителя и нескольких пассивных
компоненты работают хорошо, но это дороже и сложнее.
Более того, каждый канал должен быть откалиброван для компенсации усиления.
и погрешности смещения.

Дополнительный
Касается
Термопара
Сборка
Термопары представляют собой скрученные пары разнородных проводов и припаянные
или сварены на стыке.При неправильной сборке
они могут приводить к множеству ошибок. Например, провода должны
не скручиваться вместе, образуя стык; они должны быть спаяны
или сварные. Но припоя хватает только при относительно низких температурах,
обычно менее 200 ° C. И хотя пайка тоже привносит
третий металл, такой как сплав свинец / олово, вряд ли внесет
ошибки, если обе стороны соединения имеют одинаковую температуру.Сварка стыка предпочтительна, но она должна выполняться без
изменение характеристик проводов. Производится серийно
спайки термопар обычно соединяются емкостным разрядом
сварочные аппараты, обеспечивающие однородность и предотвращающие загрязнение. Термопары
может стать некалиброванным и указывать неправильную температуру, когда
изменен физический состав провода. Тогда он не может встретиться
стандарты NIST.Изменение может происходить из разных источников,
включая воздействие перепадов температур, холодную обработку
металл, нагрузка на кабель при установке, вибрация,
или температурные градиенты.

Выход
термопары также может измениться, когда ее сопротивление изоляции
уменьшается при повышении температуры. Изменение экспоненциальное
и может обеспечить настолько низкое сопротивление утечке, что
цепь детектора обрыва провода термопары.В высокотемпературных
применения с использованием тонкого провода термопары, изоляция может
деградировать до образования виртуального соединения. Данные
Затем система сбора данных измеряет выходное напряжение
виртуальное соединение вместо истинного соединения.

Кроме того,
высокие температуры могут выделять загрязнения и химические вещества внутри
изоляция провода термопары, которая диффундирует в термопару
металл и изменить его характеристики.Тогда температура vs.
соотношение напряжений отклоняется от опубликованных значений. Выбирать
защитная изоляция, предназначенная для высокотемпературной эксплуатации
чтобы свести к минимуму эти проблемы.

Изоляция
Термопара
изоляция снижает шум и ошибки, обычно вызываемые землей
петли. Это особенно неприятно, когда большое количество термопар
с длинными выводами крепятся непосредственно между блоком двигателя (или другим
большой металлический предмет) и прибор для измерения термопар.Они могут ссылаться на разные основания и без изоляции,
контур заземления может вносить относительно большие ошибки в
чтения.

Авто-обнуление
Поправка
Вычитание
выход закороченного канала из измерительного канала
показания могут свести к минимуму влияние временного и температурного дрейфа
на аналоговой схеме системы. Хотя очень маленький,
этот дрейф может стать значительной частью напряжения низкого уровня.
питание от термопары.Один эффективный метод вычитания
смещение из-за дрейфа выполняется в два этапа. Во-первых, внутренний
секвенсор каналов переключается на опорный узел и сохраняет
ошибка смещения напряжения на конденсаторе. Далее, как термопара
канал переключается на аналоговый тракт, сохраненное напряжение ошибки
подается на вход коррекции смещения дифференциального усилителя
и автоматически обнуляет смещение. См. Рисунок 9.

Открытая термопара
Обнаружение
Обнаружение
легко и быстро открывать термопары, что особенно важно
в системах с большим количеством каналов. Термопары имеют свойство ломаться
или увеличение сопротивления при воздействии вибрации, плохого обращения,
и долгий срок службы. Простая схема обнаружения обрыва термопары
состоит из небольшого конденсатора, размещенного на выводах термопары.
и управляется током низкого уровня.Низкое сопротивление
неповрежденная термопара представляет собой виртуальное короткое замыкание через
конденсатор, поэтому он не может заряжаться. Но когда термопара открывается
или существенно изменяет сопротивление, конденсатор заряжается и
подключает вход к одной из шин напряжения, что положительно
указывает на неисправную термопару.

Гальванический
Экшен
Некоторые
изоляционные материалы для термопар содержат красители, образующие электролит
в присутствии воды.Электролит создает гальваническое
напряжение между выводами, которое, в свою очередь, создает выходные сигналы
в сотни раз больше, чем чистое напряжение холостого хода.
Таким образом, хорошая практика установки требует экранирования термопары.
провода от повышенной влажности и любых жидкостей, чтобы избежать подобных проблем.

Тепловой
Маневровая
Ан
идеальная термопара не влияет на температуру устройства
измеряется, но настоящая термопара содержит массу, которая
при добавлении к тестируемому устройству может изменить температуру
измерение.Масса термопары может быть минимизирована за счет небольшого диаметра
провода, но провода меньшего размера более подвержены загрязнению,
отжиг, деформация и шунтирование
сопротивление. Одно из решений, которое поможет облегчить эту проблему, — использовать
небольшой провод термопары на стыке, но добавьте специальный, более тяжелый
Удлинительный провод термопары для покрытия больших расстояний. Материал
используемый в этих удлинительных проводах имеет коэффициенты полезного напряжения холостого хода
аналогично определенным типам термопар.Его последовательное сопротивление
относительно низка на больших расстояниях, и ее можно протянуть
кабелепровод легче, чем премиум-класс
провод термопары. Помимо преимущества в практическом размере,
удлинитель дешевле, чем стандартный провод термопары,
особенно платина.
Несмотря на эти преимущества, удлинительный провод обычно работает через
гораздо более узкий температурный диапазон и более вероятно получение
механическое напряжение.По этим причинам температурные градиенты по
длина удлинительного провода должна быть минимальной, чтобы обеспечить точность
измерения температуры.

Улучшение
Точность калибровки проволоки
Термопара
проволока изготавливается в соответствии со спецификациями NIST. Часто эти спецификации
может быть более точно встречен, когда провод калибруется на месте по
известный температурный стандарт.


С благодарностью IPC Systems
ООО
Тел:
+44 (0) 1905 338989


4). Основные измерения RTD
Нажмите
чтобы загрузить файл PDF на «Основные измерения RTD» .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *