Содержание
Заземление молниеотводов / Статьи и обзоры / Элек.ру
Количество статей на эту тему трудно подсчитать. Заземляющее устройство — необходимый элемент каждого молниеотвода. Именно оно обеспечивает отвод в землю тока молнии. В любой инструкции по молниезащите написано, что этот процесс должен быть безопасным. Возникает вопрос, о какой безопасности речь? О безопасности людей и животных или о безопасности сложной электронной аппаратуры, которая смонтирована в защищаемом объекте?
На этот счет в нормативных документах нет пояснений. Попытка установить использованный принцип нормирования сопротивления заземления, как правило, кончается ничем. Составители нормативных документов на этот счет не распространяются. Чаще нормируется не сопротивление заземления, а минимально допустимая длина заземляющих шин (стандарт МЭК 62305) и даже полная конструкция заземлителя (отечественная Инструкция по молниезащите РД 34.21.122-87). Неоднозначность подобного “нормирования” достойна удивления. Вот, например, что следует из предписаний МЭК для регионов с различным удельным сопротивлением грунта.
Рис. 1
Зависимость сопротивления заземления от удельного
сопротивления грунта согласно стандарту МЭК 62305
Для второго уровня защиты допускается линейный рост сопротивления заземления молниеотвода по мере увеличения удельного сопротивления грунта ρ до 800 Ом*м, а в еще более высокоомных грунтах этот параметр должен почему-то снижаться, асимптотически приближаясь к величине около 65 Ом (рис. 1). Трудно придумать хоть какое-то физическое обоснование для такой зависимости, тем более, что ни в лаборатории, ни в полевых условиях не удалось обнаружить связи защитного действия молниеотвода с его сопротивлением заземления, по крайней мере вплоть до 100 Ом. Последнее легко объяснимо. Точка удара молнии определяется конкурирующим развитием встречных лидеров от молниеотвода и от защищаемого объекта. В начальной фазе этого процесса ток встречного лидера не превышает 10 А, а потеря напряжения от этого тока на сопротивлении заземления молниеотвода – приблизительно 1000 В – величина несопоставимо малая, по сравнению с тем перепадом напряжения в электрическом поле атмосферы, что питает встречные лидеры.
Если для защитного действия молниеотвода величина его сопротивления мало значима, при его выборе действительно трудно опираться на что-то иное, кроме требования безопасности. Обсуждая безопасность человека и животных, приходится оперировать величинами напряжений шага и прикосновения. Оба этих параметрах мало пригодны для нормирования в молниезащите, поскольку опасность воздействия напряжения на живой организм в очень сильной степени зависит от времени. К сожалению, в существующих отечественных предписаниях оно не опускается ниже 0,01 с, что на 2 порядка больше длительности тока молнии, а следовательно и напряжений, обусловленных его растеканием в земле. Попытка экстраполировать опасные значения на более кратковременные воздействия, исходя из неизменной выделившейся энергии – это первое, что представляется хоть сколько-нибудь логичным. Тогда вместо предельно допустимого значения 600 В для времени воздействия 0,01 с приходится ориентироваться на величину в 6000 В для 100 мкс. Жаль, что основа такого пересчета не обоснована в физиологическом отношении, хотя и альтернативы ему пока тоже не предвидится.
Важно рассмотреть типовые ситуации, связанные с растеканием тока молнии, чтобы оценить хотя бы на качественном уровне, насколько часто грозовые воздействия создают напряжения шага, реально опасные для человека. Логично начинать с типовых заземляющих устройств, что упомянуты в отечественном нормативе РД 34.21.122-87 и в стандарте МЭК 62305. Результаты таких расчетов представлены на следующем графике (рис. 2).
Рис. 2
Расчет напряжений шага при растекании тока молнии
через заземлители типовых конструкций
Они выполнены для горизонтальной шины длиной 10 м, которая предписана стандартом МЭК для грунтов с удельным сопротивлением до 500 Ом*м (при Iуровне защиты), а с тремя вертикальными стержнями длиной от 3 м — Инструкцией РД 34.21.122-87 для любых отдельно стоящих молниеотводов. Расчетные значения напряжения шага на графике нормированы произведением ρIМ и потому пригодны для оценок в любой линейной среде при произвольном токе молнии IM. Картина получается не слишком оптимистичной. Даже при удалении от молниеотвода на 10 м нормированное расчетное значение превышает по абсолютной величине 0,0015 м-1. Это значит, что при токе молнии 100 кА (IIIуровень защиты) напряжение шага превысит 15 кВ в грунте с ρ = 100 Ом*м, и 150 кВ при ρ = 1000 Ом*м. Остается заметить, что на практике приходится иметь дело и с более высокоомными средами. Это означает, что окрестность любого отдельно стоящего молниеотвода с заземлителем, изготовленным по предписаниям ныне действующих нормативных документов, представляет реальную опасность для населения и обслуживающего персонала защищаемого сооружения.
Теперь о молниеотводах, установленных непосредственно на сооружении. Как правило, роль их заземлителя выполняет фундамент здания. Пусть это будет здание с большой площадью основания 50 х 50 м, свайный фундамент которого заглублен на 10 м. Такое исполнение контура заземления скорее всего типично для высотных многоэтажных зданий. Результаты расчета (рис. 3) показывают, что распределение электрического поля на земле в окрестности здания выровнено в значительно большей степени, чем у основания отдельно стоящего молниеотвода, но и здесь напряжение шага рядом с фундаментом может превысить 30 кВ, если здание построено на участке с удельным сопротивлением грунта выше 1000 Ом*м. Печальный опыт сотрудников высоковольтных лабораторий говорит, что микросекундное воздействие такого напряжения надолго остается в памяти. Без организации специальной защиты его вряд ли можно считать безопасным для человека. Как минимум, ее надо предусматривать непосредственно у стен здания, где тротуар следует покрывать сплошным изоляционным материалом (например, асфальтом), но никак не керамической плиткой, у которой зазоры заполнены грунтом и пропитаны влагой во время дождя.
Рис. 3. Расчет напряжений шага в случае молниеотводов,
установленных непосредственно на здании
Снова возвращаясь к отдельно стоящим молниеотводам, стоит отметить, что они наиболее опасны при установке на различного рода высоких мачтах и колоннах, размещенных в черте городской застройки, например, на памятных обелисках, у которых вполне возможно скопление людей. Стремление снизить напряжения шага здесь наиболее значимо. В этом отношении заслуживает внимания система изолированной молниезащиты с использованием изолированных токоотводов с высокопрочной изоляцией, подобных тем, что разработала и производит фирма DEHN+ SÖHNE. Монтаж такой системы позволяет отвести ток молнии в глубинный заземлитель, не загружая им непосредственно арматуру железобетонного фундамента сооружения. В итоге распределение потенциалов по поверхности грунта оказывается существенно выровненным.
Расчетные данные на рис. 4 позволяют оценить эффект в случае использования бетонного основания 30 х 30 м с вмонтированной в него металлической сетки с ячейками 5 х 5 м; стержневой заземлитель длиной 5 м размещен на глубине 30 м. Практически линейный закон изменения потенциала указывает на неизменность напряжения шага в окрестности защищаемого объекта. Значение величины U/(ρIM) ≈ 6×10-5 м-1 означает, что при токе молнии 100 кА и удельном сопротивлении грунта 1000 Ом*м напряжение шага будет лежать в пределах 6 кВ, что примерно на порядок меньше, чем в случае традиционного решения.
Рис. 4 Расчет напряжений шага при использовании изолированной системы молниезащиты
В основе изолированной системы молниезащиты лежат токоотводы HVI® с высоковольтной изоляцией и полупроводниковым покрытием, выравнивающим электрическое поле вдоль наружной поверхности токоотвода и предотвращающим развитие скользящих разрядов. Токоотводы семейства HVI® (рис. 5) выпускаются трех типов в зависимости от электрической прочности их изоляции и рассчитаны на применение в системах молниезащиты различных уровней. Также возможны варианты токоотводов с дополнительным серым покрытием, обеспечивающим защиту от погодных условий и ультрафиолетового излучения. Кроме того, такие токоотводы могут быть выкрашены в цвет фасада здания, визуально сливаясь с ним, что может быть полезно с дизайнерской точки зрения.
Рис. 5 Семейство изолированных токоотводов HVI® компании DEHN + SÖHNE
Более высокая стоимость изолированных молниеотводов по сравнению с традиционными не должна препятствовать их использованию, когда речь идет о массовой защите людей. Дело за уточнением нормативных требований действующих стандартов по молниезащите.
Основные принципы заземления молниеотводов
Зачем нужно заземление молниеотводов? В первую очередь, чтобы отвести опасное напряжение. Однако, причина кроется не только в этом. Оно делается и для того, чтобы обеспечить безопасное растекание тока в земле.
Дело в том, что при ударе ток молнии может превысить 150 кА. Это рискует стать причиной большого напряжения и соприкосновения тока с металлическими конструкциями в земле, например с водопроводными трубами. В результате это приведет к их пробоям и трещинам. Чтобы избежать подобных ситуаций и оборудуется заземление молниеотводов.
Немного о молниеотводах
Не допускаются оголенные молниеотводы. Также главным требованием является неподверженность металла, из которого он сделан, коррозии. Чаше всего для этого используют медь, алюминий, оцинкованную сталь, дюралюминий.
По расчётам специалистов, при установке молниеотводов под защитой оказывается территория, которую можно вписать в конус. Потому, чем выше это устройство, тем бОльшую площадь он может охватить. При этом высота его должна быть равна двум зонам безопасности.
Иными словами, если высота мачты молниеотвода – 20 метров, то в каждую сторону можно считать безопасным расстояние в 20 метров. Мачтой может выступать дерево на вашем участке, либо антенна (неокрашенная, металлическая). Помните, что молниеотвод нельзя прибивать гвоздями или металлическими хомутами. В последнее время все большую популярность приобретет крепление на магнитах, способствующее мобильности системы и сохранению целостности кровли.
Основные принципы
Заземлением называется система, которая надежно обеспечивает контакт земли с токоотводом и равномерное растекание заряда. Конструкция этого устройства достаточно проста и представляет собой три или больше электрода, которые связываются между собой и забиваются в землю. Заземление бытовой техники желательно делать общим с молниезащитным.
Основные правила оборудования заземления молниеотводов:
- Оно должно иметь большое сечение. Для этого можно использовать полосы, профили либо смешанную проволоку. Старайтесь избегать при этом изделий, покрытых лаком.
- Чтобы устроенная система была действенной, ее стоит выполнять вместе с заземлением защитным и рабочим для электрических приборов.
- Сопротивление устройства не может превышать 11 ОМ.
- Помните, что чем больше заземлитель соприкасается с землей, тем больше места для того, чтобы ток перешел с этого заземлителя в землю. Зачастую, чтобы сделать больше эту площадь, достаточно просто увеличить количество электродов – для этого их можно соединить вместе. Или же можно увеличить их длину.
- Для верного расчета необходимо определить особенности земли на вашем участке.
- При оборудовании очень часто используют вертикальные электроды. Это происходит потому, что горизонтальные элементы сложно погрузить на необходимую глубину.
- В качестве заземлителей не редко выбирают специальные штыри либо стальные трубы.
- Заземлитель сам должен располагаться не далее, чем 5 метров от крыльца и дорожек, но не ближе, чем 1 метр от стен
Это может быть интересно:
Видео о заземлении
Пуэ молниезащита и заземление | Слава созидателям
Заземление молниеотвода пуэ
Объединение заземления для молниезащиты с заземлением для электрических установок
Необходимость электрически соединять контур заземления молниезащиты, установленной непосредственно на здании, с контуром заземления для электрических установок, прописана в действующих нормативных документах (ПУЭ). Цитируем дословно: «Заземляющие устройства защитного заземления электроустановок зданий и сооружений и молниезащиты 2-й и 3-й категорий этих зданий и сооружений, как правило, должны быть общими». Как раз 2-я и 3-я категории являются наиболее распространенными, в 1-ю категорию входят взрывоопасные объекты к молниезащите которых предъявляются повышенные требования. Тем не менее, наличие оборота «как правило» подразумевает возможность наличия исключений.
Современные офисные, а теперь и жилые здания содержат множество инженерных систем жизнеобеспечения. Сложно представить отсутствие систем вентиляции, пожаротушения, видеонаблюдения, контроля доступа и т.д. Естественно, у проектировщиков таких систем есть опасения, что в результате действия молнии “нежная” электроника выйдет из строя. При этом некоторые сомнения у специалистов-практиков вызывает целесообразность соединения контуров двух видов заземлений и возникает желание «в рамках закона» запроектировать электрически не связанные заземления. Возможен ли такой подход и повысит ли он на самом деле безопасность эксплуатации электронных устройств?
Зачем нужно объединение контуров заземления?
При попадании молнии в молниеотвод в последнем возникает короткий электрический импульс напряжением до сотен киловольт. При столь высоком напряжении может произойти пробой промежутка между молниеотводом и металлическими конструкциями дома, в том числе и электрическими кабелями. Последствием этого станет возникновение неконтролируемых токов, которые могут привести к пожару, выходу электроники из строя и даже разрушению элементов инфраструктуры (например, пластиковых водопроводных труб). Опытные электрики говорят: «Дайте молнии дорогу, иначе она найдет ее сама». Вот почему электрическое объединение заземлений обязательно.
По этой же причине ПУЭ рекомендует электрически объединять не только заземления, находящиеся в одном здании, но и заземления территориально сближенных объектов. Под данным понятием подразумеваются объекты, заземления которых настолько сближены, что между ними нет зоны нулевого потенциала. Объединение нескольких заземлений в одно осуществляется, согласно нормам ПУЭ-7, п. 1.7.55, путем соединения заземлителей электрическими проводниками в количестве не менее двух штук. Причем проводники могут быть как естественными (например, металлические элементы конструкции здания), так и искусственными (провода, жесткие шины и т.п.).
Одно общее или отдельные заземляющие устройства?
К заземлителям для электрических установок и молниезащиты предъявляются разные требования, и это обстоятельство может стать источником некоторых проблем. Заземлитель для молниезащиты должен отвести в землю за короткое время большой электрический заряд. При этом согласно «Инструкции по молниезащите РД 34.21.122-87» нормируется конструктив заземлителя. Для молниеотвода, согласно этой инструкции, требуется не менее двух вертикальных, или лучевых горизонтальных, заземлителей, за исключением 1 категории молниезащиты, когда таких штырей нужно три. Вот почему наиболее распространенный вариант заземления для молниеотвода — два или три штыря длиной около 3 м каждый, соединенных металлической полосой, заглубленной не менее чем на 50 см в землю. При использовании деталей производства ZANDZ такой заземлитель получается долговечным и простым в монтаже.
Совсем другое дело — заземление для электрических установок. В обычном случае оно не должно превышать 30 Ом, а для ряда применений, описанных в ведомственных инструкциях, например, для аппаратуры сотовой связи — 4 Ом или еще меньше. Такие заземлители представляют собой штыри длиной более 10 м или даже металлические пластины, помещенные на большую глубину (до 40 м), где даже зимой нет промерзания грунта. Создать такой молниеотвод с заглублением двух и более элементов на десятки метров слишком затратно.
Если параметры грунта и предъявляемые к сопротивлению требования позволяют выполнить единое заземление в здании для молниеотвода и заземления электрических установок, нет никаких препятствий его сделать. В остальных случаях делают различные контуры заземления для молниеотвода и электрических установок, но обязательно соединяют их электрически, желательно, в земле. Исключением является использование некоторого специального оборудования особенно чувствительного к помехам. Например, звукозаписывающая аппаратура. Такое оборудование требует отдельного, так называемого, технологического заземляющего устройства, что прямым образом указывается в инструкциях. В таком случае выполняется отдельное заземляющее устройство, которое соединяется с системой уравнивания потенциалов здания через главную заземляющую шину. А, если такое соединение не предусматривается руководством по эксплуатации аппаратуры, то применяются специальные меры по исключению одновременного прикосновения людей к указанной аппаратуре и металлическим частям здания.
Электрическое соединение заземлений
Схема с несколькими заземлениями, соединенными электрически, обеспечивает выполнение разных, подчас противоречивых, требований к заземляющим устройствам. Согласно ПУЭ, заземления, как и многие другие металлические элементы здания, а также аппаратуры, установленной в нем, должны быть соединены системой уравнивания потенциалов. Под уравниванием потенциалов подразумевается электрическое соединение проводящих частей для достижения равенства потенциалов. Различают основную и дополнительную системы уравнивания потенциалов. Заземления подключаются к основной системе уравнивания потенциалов, то есть соединяются между собой через главную заземляющую шину. Провода, соединяющие заземления с этой шиной, должны подключаться по радиальному принципу, то есть одно ответвление от указанной шины идет только к одному заземлению.
Для того, чтобы обеспечивалась безопасная работа всей системы, очень важно использовать максимально надежное соединение между заземлениями и главной заземляющей шиной, которое не разрушится под действием молнии. Для этого нужно соблюдать нормы ПУЭ и ГОСТ Р 50571.5.54-2013 “Электроустановки низковольтные. Часть 5-54. Заземляющие устройства, защитные проводники и защитные проводники уравнивания потенциалов” относительно сечения проводов системы уравнивания потенциалов и их соединения между собой.
Тем не менее, даже очень качественная система уравнивания потенциалов не может гарантировать отсутствие всплесков напряжения в сети при ударе молнии в здание. Поэтому, наряду с грамотно спроектированными контурами заземлений, от проблем спасут устройства защиты от импульсных помех (УЗИП). Такая защита является многоступенчатой и носит селективный характер. То есть на объект должен быть установлен комплект УЗИП, подборка элементов которого — непростая задача даже для опытного специалиста. К счастью, выпускаются готовые комплекты УЗИП для типовых случаев применения.
Молниеотводы. Виды и устройство. Работа и особенности
Если рассматривать статистику погибших людей от ударов молнии, то это количество больше, чем жертв в авиационных катастрофах. Молния каждый год уносит несколько тысяч жизней, а также наносит многомиллионный материальный ущерб. Каждый владелец дачи или собственного дома знает, что защитить свое имущество и родственников можно только самому. Поэтому молниеотводы лучше изготавливать самостоятельно.
Самодельные молниеотводы нормально работают, что подтверждается на практике. Такие устройства имеют и другое название – громоотводы. Гром никакого вреда не наносит, кроме громкого звука. А для защиты от молнии необходимо сооружать некоторую конструкцию.
Удар молнии обычно приходится в конструкцию с максимальной высотой, которая встречается на ее пути. Опасным местом во время грозы является жилой дом или другая постройка из-за наличия в них металлических элементов – крыша, телевизионная антенна и т.д. Жильцы городских квартир могут не беспокоиться, так как большинство многоэтажных домов уже имеют молниеотводы.
Если рядом с домом имеется вышка сотовой связи, то в устройстве молниеотвода нет необходимости. Во всех других случаях целесообразно все-таки обезопасить свой дом. Если вызывать для таких работ специалистов, то это обойдется вам недешево. Но если разобраться с устройством системы молниеотвода, то можно все сделать самостоятельно.
Виды и особенности устройства
На рисунке изображено устройство системы молниеотведения.
Существует несколько видов молниеотвода, но основные их части одни и те же:
- Молниеприемник.
- Токоотводящее устройство.
- Заземление.
Виды молниеприемников
Верхняя часть этой защитной системы называется молниеприемником.
- Стержневой приемник молнии заострен на конце. В него ударяет молния во время грозы. Оптимальным вариантом изготовления приемника молнии является медный штырь диаметром 15 мм. Он должен быть расположен достаточно высоко, однако слишком высокий приемник будет притягивать к себе электрические разряды молнии.Стержневые молниеотводы наиболее эстетичны, в отличие от тросового, но обеспечивают меньший защитный радиус на участке. От высоты металлического штыря зависит величина защищаемого пространства.
- Тросовый приемник способен защитить большую площадь участка, в отличие от стержневого молниеприемника. Тросовые конструкции используются в устройствах линий электропередач. В них вместо металлических штырей применяют трос, который соединяется с другими элементами болтовым соединением.
- Сетчатый приемник молнии изготавливается в виде металлической сетки на крыше дома.
Токоотводы
Следующей частью системы отведения молнии является токоотвод, состоящий из толстых алюминиевых или медных проводов, закрепленных специальными муфтами к приемнику молнии и заземляющему контуру. Для крепления его на стене применяются пластиковые крепежные элементы. Токоотвод необходимо изолировать от воздействия внешней среды. Для этого обычно используют пластиковый кабель-канал.
Заземление
Основные элементы заземления находятся в грунте. Заземлитель состоит из металлических стержней, сваренных между собой, либо скрепленных болтами.
Заземление системы отведения молнии является важной частью всей конструкции. Этот заземляющий контур аналогичен устройству заземления дома. Важным требованием при этом является то, что эти два разных контура заземления ни в коем случае не должны соединяться. Иначе во время грозы бытовые электрические устройства могут выйти из строя, либо возникнет возгорание деревянного дома от разряда молнии.
Требования к заземлению системы отведения молнии:
- Металлические штыри, вставленные в грунт, должны быть длиной не меньше трех метров.
- Сечение металлических штырей – не менее 25 мм2.
- Штыри соединяются между собой треугольником, что является отличием от обычного заземления дома.
- Между вершинами треугольника должно быть расстояние не менее 3 метров.
- В качестве соединительных шин допускается применять металлический пруток диаметром не меньше 12 мм или полосу сечением 50 х 6 мм.
- Длина сварных швов не должна быть меньше 20 см.
- Для заземления молниеотводов устанавливается минимальная глубина над поверхностью земли 50 см.
Место для заземления
К этому вопросу следует подходить с наибольшим вниманием и аккуратностью. Заземляющие электроды не должны устанавливаться в местах нахождения животных, или возле детских площадок. Также нельзя располагать эти элементы возле скамеек или дорожек.
Лучше заземление будет работать во влажном грунте. Чтобы поддерживать работу заземления, можно самостоятельно создавать для этого условия, периодически поливая место заземления водой. Если нет возможности полива этого места, а почва в вашей местности слишком сухая, то рекомендуется при установке в почву электродов заземления посыпать их смесью соли и древесного угля.
Как работают молниеотводы
Чтобы разобраться в принципе действия системы отведения молнии, следует представить большой конденсатор, который постоянно заряжается. Его обкладками будут облака и земля. При наступлении грозы обкладки этого большого конденсатора начинают электризоваться между собой, и накапливать заряд. При достижении разницы напряжения между обкладками, равному напряжению пробоя молнии, возникает сильный разряд молнии, достигающий нескольких миллиардов вольт.
Чтобы заряд не накапливался, необходимо замкнуть этот конденсатор на землю. Таким замыкающим проводником и являются молниеотводы. Поэтому при грозе происходит разряжение конденсатора и обкладки не могут накопить заряд, а напряжение в молниеотводе уменьшается до нуля. Другими словами, система отведения молнии создает условия, в которых не способен возникнуть электрический разряд молнии, так как накапливаемый заряд отводится в землю.
Особенности самостоятельной установки молниеотвода
- Молниеотводы рекомендуется изготавливать из материалов, не подверженных коррозии. Для этого применяется оцинкованный уголок, луженая жесть, профиль из дюралюминия, или сетка из неизолированной медной проволоки. Соединяющие проводники должны иметь необходимое сечение. Молниеприемник нельзя покрывать лакокрасочными материалами или другой изоляцией.
- Для удобного расположения молниеотвода можно использовать высокое дерево, находящееся вблизи дома. Чтобы не причинять вред дереву, приемник молнии можно закрепить на длинном деревянном шесте, который фиксируют на дереве с помощью пластиковых хомутов, и располагают на максимальной высоте.
- Если дерева нет, то можно использовать для крепления молниеприемника телевизионную антенну, которая закреплена на крыше дома.
- Другим способом установки является печная труба, к которой можно закрепить металлический штырь и соединить его с заземлением.
Техническое обслуживание
Чтобы система молниеотвода работала без нареканий, необходимо обслуживать его конструкцию для поддержания в рабочем состоянии. Металлический штырь, играющий роль приемника молнии, необходимо чистить обычными чистящими средствами в виде наждачной бумаги или других аналогичных средств, чтобы предотвратить образование окиси и удалить загрязнения.
В засушливые времена необходимо периодически увлажнять почву в месте закладки контура заземления.
Похожие темы:
Как сделать молниеотвод — монтаж молниеотвода
Лишь только в 18 веке люди смогли понять природу молний и изобрести молниеотвод. Благодаря этому, они научились эффективно бороться с буйством грозы и избегать последующих неприятных последствий. Как сделать молниеотвод и защитить свое жилье, вы можете узнать из данной статьи.
Последствия от удара молнии в строение, которое не обустроено молниеотводом, могут быть значительными. Вот небольшой их перечень:
- пожар в строении;
- разрушение конструкций и строений;
- выход из строя бытовой техники;
- поражение током.
Если у вас есть загородный дом, надо обязательно установить на нем молниезащиту, она обезопасит дом и самое главное всех членов вашей семьи. Для этого вам надо хорошо знать, как сделать молниеотвод и применить эти знания на практике, сделав грамотный монтаж молниеотвода, согласно правилам и рекомендациям.
Из чего сделан
Система защиты от молний
Существует обязательный стандарт, который определяет требования к молниеотводам. Они состоят из следующих обязательных, основных частей:
- молниеприемника, который принимает на себя удар молнии;
- токоотвод, по которому ток перемещается к заземлению;
- заземление, по которому электрический потенциал уходит в землю.
Молниеприемник
Они бывают различной конструкции:
Стержневой молниеприемник
- Стержневой. Состоит из металлического стержня — это может быть труба, уголок, сечением больше 100 квадратных миллиметров и длиной от 0,5 до 2 метров.
Линейный молниеприемник
- Линейный. Изготавливается из троса сечением больше 5 мм, который крепится на деревянных стержнях вдоль конька дома на полуметровой высоте. Обычно, такие молниеотводы устанавливаются на строениях с деревянной или шиферной крышей.
Сетчатый молниеприемник
- Сетчатый, изготавливается из проволоки или арматуры толщиной 12 мм. Крепится такой молниеприемник на высоте 50 см от кровли. Очень важно соединить сетку со всеми металлическими предметами, которые присутствуют на крыше.
Токоотвод
Соединение с токоотводом схема
Токоотвод — это часть молниеотвода, которая отводит заряд молнии к заземлению. Обычно это стальная проволока в 6 мм, ее прикрепляют к молниеприемнику при помощи сварки.
Обратите внимание!
Это соединение должно быть очень надежным и выдерживать нагрузку в 200000 ампер.
Токоотвод монтируют на стене, закрепляя скобами, и направляют в почву, где находится контур заземления. Помните, что токоотвод нельзя изгибать.
Заземление
Схема заземления
Заземлители изготавливаются из стержней гладкой арматуры, которые соединяются между собой сваркой.
Обратите внимание!
В качестве соединения надо использовать прутья, сделанные из того же материала, что и заземлители, которые затем вбиваются в почву на глубину в 2 метра и пяти метрах от дома.
Токоотвод и заземление соединяются между собой при помощи сварки или болтового соединения.
Обслуживание
Контроль состояния заземления
При наступлении сезона, когда возможны грозы, надо обязательно произвести профилактический осмотр молниеотводов. Проверьте места соединений, а также постоянно контролируйте влажность почвы в месте, где расположено заземление. Оно должно быть влажным, так как сухая почва хуже проводит электрический ток. Если надо, то увлажните грунт. Для этого хорошо использовать соляной раствор.
Внешняя молниезащита
Раз в три года проверяйте контакты токоотвода и заземления. Убирайте с мест соединения ржавчину и грязь. Места, где вы использовали не сварные соединения, изолируйте гидроизоляционным материалом или специальной лентой.
Обратите внимание!
Необходимо контролировать состояние заземлителей, под действием ржавчины они могут выйти из строя. Если надо замените их на новые.
Хорошо и грамотно сделанный и установленный молниеотвод будет надежной защитой вашим членам семьи и загородному дому.
Видео
Как осуществляется монтаж молниезащиты, наглядно представлено ниже:
Расчёт зоны молниезащиты одиночного стержневого молниеотвода
Расчет основан на Инструкциии по устройству молниезащиты зданий, сооружений и промышленных коммуникаций Министерства энергетики Российской Федерации СО 153-34.21.122-2003.
Для специальных объектов минимально допустимый уровень надежности защиты от ПУМ (прямого удара молнии) устанавливается в пределах 0,9-0,999 в зависимости от степени его общественной значимости и тяжести ожидаемых последствий от ПУМ по согласованию с органами государственного контроля.
Пояснения к расчёту
Стандартной зоной защиты одиночного стержневого молниеотвода высотой h является круговой конус высотой h0<h, вершина которого совпадает с вертикальной осью молниеотвода. Габариты зоны определяются двумя параметрами: высотой конуса h0 и радиусом конуса на уровне земли r0.
Приведенные ниже расчетные формулы пригодны для молниеотводов высотой до 150 м. Полуширина rx зоны защиты требуемой надежности на высоте hx от поверхности земли определяется выражением: |
Надежность защиты | Высота молниеотвода h, м | Высота конуса h0, м | Радиус конуса r0, м |
---|---|---|---|
0.9 | От 0 до 100 | 0,85h | 1,2h |
От 100 до 150 | 0,85h | (1,2-10-3(h-100))h | |
0,99 | От 0 до 30 | 0,8h | 0,8h |
От 30 до 100 | 0,8h | (0,8-1,43·10-3(h-30))h | |
От 100 до 150 | (0,8-10-3(h-100))h | 0,7h | |
0,999 | От 0 до 30 | 0,7h | 0,6h |
От 30 до 100 | (0,7-7,14·10-4(h-30))h | (0,6-1,43·10-3(h-30))h | |
От 100 до 150 | (0,65-10-3(h-100))h | (0,5-2·10-3(h-100))h |
Пожелания, замечания, рекомендации по улучшению раздела расчётов на нашем сайте просьба присылать по электронной почте [email protected]
Разрешается копирование java-скриптов при условии ссылки на источник.
|
ВСЕ РАСЧЁТЫ
Монтаж молниеотвода цена, заземление молниеотводов, заземлители
Молниеотводы и заземление обеспечивают безопасную эксплуатацию резервуаров, трубопроводов и технологического оборудования. Исправный и технически грамотно установленный молниеотвод надежно защищает объект от прямого поражения молниями, воздействия статического электричества и электромагнитной индукции, а также заноса высоких электрических потенциалов по коммуникациям. Молниеприемник принимает удар молнии, направляет его на токоотвод, по которому ток молнии передается к заземлителю, предназначенному для рассеивания тока в земле.
Заземлители молниеотводов устанавливаются в толще земли и поэтому должны изготавливаться из стойких материалов, эффективно работающих в различных условиях влажности, кислотности и засоленности грунтов.
Металлические молниеотводы защищаются от коррозии, вызванной воздействием окружающей среды, гальваническим или лакокрасочным покрытием.
Цена молниеотвода, входящего в систему молниезащиты, незначительна, при этом его роль в обеспечении пожаробезопасности объектов является ключевой. Правильно выполненные работы по молниезащите еще на стадии проектирования и монтажа технологических установок и резервуаров гарантируют безопасную работу оборудования в течение всего срока эксплуатации.
В нормативной документации СО 153-34.21.122-2003 и РД 34.21.122-87 изложены требования и рекомендации по устройству, монтажу и эксплуатации молниеотводов, заземления и других элементов устройств защиты от молнии.
В зависимости от уровня молниезащиты объекта монтаж молниеотвода выполняется непосредственно на самом резервуаре или применяются отдельностоящие молниеотводы. Чаще всего такая схема расположения молниеприемника используется для группы резервуаров.
Для поддержания работоспособности и надежности заземления и устройств молниезащиты необходимо проводить ежегодный контроль и периодические внеочередные осмотры.
Проверка молниеотводов и заземления дает возможность своевременно выявить и ликвидировать опасные факторы, оказывающие разрушительное действие на конструкцию устройств – коррозию металла, нарушение целостности мест соединений токоведущих частей, повреждений отдельных элементов и пр.
Для объектов первой категории периодический осмотр, проверка и контроль коррозионной стойкости проводится один раз в 6 лет путем вскрытия всех заземлителей и токоотводов.
Осмотр, проверка молниеотвода, заземлителей и других устройств защиты от молнии, а также все ремонтные работы проводятся ежегодно до апреля месяца – вероятного срока наступления грозового периода. Внесение любых изменений в систему молниезащиты, а также ураганы и интенсивные грозы являются основанием для проведения внеочередных осмотров и проверки заземления молниеотводов.
Определение уровня сопротивления заземления резервуаров, коммуникаций, а также заземлителей молниеотводов позволяет проверить их работоспособность. Для получения объективных данных замеры производятся в период минимальной проводимости грунта.
После проведения ревизии состояния устройств молниезащиты составляется акт проверки и осмотра, в котором отражаются все обнаруженные неисправности и несоответствия.
Специалисты компании Эвита-Стайл на высоком профессиональном уровне выполнят проверку, техническое обслуживание и ремонт молниеотводов и других устройств молниезащиты, а также замеры сопротивления заземления молниеотводов и в случае необходимости, примут меры по устранению несоответствия полученных данных требованиям нормативов.
Как работает громоотвод?
Что такое громоотвод?
Стержень освещения — это внешний терминал, установленный в здании или сооружении, который предназначен для привлечения молнии, чтобы иметь контролируемую точку удара и предотвратить ее попадание в нежелательную зону или людей.
Существует несколько типов осветительных стержней типа с разными характеристиками. Но они состоят из металлических материалов, и их морфология основана на одной или нескольких выступающих точках, куда попадает разряд.
Вся установка называется системой молниезащиты, в основном она состоит из:
- Системы захвата (молниеотводы)
- Токоотвод.
- Системы заземления.
- Ограничители перенапряжения.
Прежде чем объяснять, как работает молниеотвод , мы хотели бы связать его с историей и познакомить вас с возможными эффектами ударов молнии.
История громоотвода
15 июня 1752 года, в штормовой день в Филадельфии, ученый-изобретатель по имени г-н.Бенджамин Франклин взорвал воздушного змея с металлическим каркасом, привязанным шелковым шнуром, к которому он ранее вставил металлический ключ, и поднес его к руке. Благодаря этому эксперименту он смог наблюдать, как через шелковую нить электричество достигает ключа, и летят электрические искры.
Он мог подтвердить, что металлический ключ был заряжен электростатическим зарядом, и он продемонстрировал, что облака были электрически заряжены и что удары молнии были сильными электростатическими разрядами.
Франклин обнаружил, что если удар молнии или электрический огонь, как он это называл, когда он выйдет из облаков и найдет металлический канал на пути к Земле, чтобы попасть в него, он останется там и рассеется.В результате этого безумного эксперимента год спустя, в 1753 году, он обнаружил громоотвод под названием типа Франклина, и этот змей стал самым известным в истории.
Эффекты ударов молнии
Среди различных эффектов, которые могут вызывать удары молнии, мы можем упомянуть такие, как термические, физиологические, электродинамические, электрохимические эффекты и т. Д. Из-за их важности мы подчеркнем тепловые и физиологические эффекты.
Тепловые эффекты возникают из-за высокой температуры, достигаемой в канале, по которому протекает ток молнии, она может достигать 20000 ° C, что вызывает большие повреждения, когда электрический ток достигает, например, дерева или ударяет по конструкции.
С другой стороны, физиологические эффекты, они в основном затрагивают живые существа и возникают из-за ступенчатых и контактных напряжений, возникающих при разряде молнии на землю. Для борьбы с этими эффектами и смягчения их последствий в правилах защиты от молний устанавливаются меры безопасности для людей и животных, такие как те, которые сформулированы в Приложении D стандарта UNE 21186: 2011.
Существуют также международные правила, регулирующие воздействие тока молнии на организм человека и домашний скот (IEC TR 60479-4: 2011).И другие правила, которые устанавливают процедуры безопасности для снижения риска, когда мы находимся вне строения или здания (IEC / TR 62713).
Удар молнии также имеет два очень характерных связанных эффекта: молния, которая представляет собой световой эффект из-за сильной циркуляции тока (до 200 кА), и гром, который представляет собой звуковой эффект из-за обширной волны воздуха, который нагревается. за несколько микросекунд до очень высоких температур.
Эксплуатация
Когда нас спрашивают Как работает громоотвод ? Мы указываем, что это воздушный терминал, обеспечивающий внешнюю защиту здания или сооружения от прямых ударов молнии.Таким образом, молниеотвод должен всегда устанавливаться над самой высокой точкой здания или сооружения, которое мы должны защитить, он будет отвечать за улавливание и безопасное проведение разряда молнии на землю.
Для улавливания этого разряда молниеотвод имеет наконечник и металлический корпус, которые соединены проводящей сетью с системой заземления с низким импедансом (менее 10 Ом), где происходит рассеяние грозового разряда.
В условиях шторма между системой облако — земля возникает высокое напряжение из-за большого количества электрических зарядов, которые присутствуют как в основании облака, так и на земле.Это высокое напряжение является спусковым крючком для запуска лидера, спускающегося с луча, который пробурит диэлектрический воздух между облаком и землей. Очень сильное электрическое поле E (кВ / м), которое появляется в этой зоне, вызывает циркуляцию восходящих электрических зарядов через тело молниеотвода противоположного знака, инициируя восходящий индикатор, который встретится и рекомбинирует с нисходящим лидером. , захватив его и сбросив на землю.
Внешние системы молниезащиты
В настоящее время существует 4 системы внешней защиты, утвержденные нормативными документами:
Благодаря своим преимуществам по сравнению с другими системами внешней защиты, молниеотвод ESE (Early Streamer Emission) в настоящее время наиболее широко используется, он обеспечивает больший радиус защиты, чем другие системы (до 80 м в радиусе защиты уровня I).), и его установка очень проста, потому что в некоторых случаях требуется только токоотвод для подачи тока молнии и заземление для рассеивания всей ее энергии. Вследствие всех этих факторов установка системы молниеотвода ESE проста, легка, быстра и имеет очень низкую стоимость по сравнению с другими системами.
Проектирование и установка
Чтобы правильно спроектировать систему молниезащиты в конструкции, мы должны сначала провести анализ ее риска, чтобы определить, необходима ли ее защита.В случае подтверждения необходимости молниезащиты мы должны рассчитать, какой уровень защиты или фактор безопасности следует применять в данной конструкции (I, II, III или IV). На веб-сайте INGESCO есть бесплатное онлайн-программное обеспечение для расчета и оценки этого риска.
После расчета уровня защиты конструкции мы выберем внешнюю систему молниезащиты, которая наилучшим образом соответствует вашим потребностям в каждом проекте из этих 4 систем защиты.
Если выбранной внешней системой молниезащиты является молниеотвод ESE, мы будем следовать всем рекомендациям, установленным международными стандартами (UNE 21186: 2011, NFC 17.102: 2011, НП 4426: 2013)
В статье установка громоотводов вы найдете более подробную информацию о том, как установить громоотвод ESE в соответствии с указанными правилами.
Как узнать, требуется ли установка внешней системы молниезащиты
Решение о том, устанавливать ли внешнюю систему защиты от поражения электрическим током, зависит от нормативных требований, действующих в каждой стране. Купить громоотвод — выбор хозяев постройки или дома.
Мы должны помнить о риске, создаваемом молнией для людей или инфраструктуры, а также о важности соблюдения нормативных требований, поскольку экономия на отсутствии адекватной системы защиты может обойтись очень дорого в очень неожиданный момент. Качество водосборной системы имеет решающее значение.
Вы можете напрямую проконсультироваться с инженерным отделом INGESCO для проведения бесплатного исследования в соответствии с действующими правилами и подробностями в техническом отчете, если требуется установка внешней системы молниезащиты, или вы можете провести исследование самостоятельно с помощью программного обеспечения INGESCO. .
Заземление и молниезащита
Введение
Это дополнение к Руководству по установке на крыше, где мы обсуждаем установку антенны на крыше. Конечно, когда вы устанавливаете на крышу металлический столб, вы создаете громоотвод! Молния может быть очень опасной, поэтому мы должны быть уверены, что защищаемся от нее. Важно отметить, что если ваш дом или здание не является самым высоким в этом районе — например, если рядом есть высокие деревья или есть другие более высокие здания вокруг, — ваш риск действительно быть пораженным молнией составляет чрезвычайно малый .Помните об этом и не паникуйте по поводу установки антенной мачты! Если вы выполните несколько из этих шагов, вы сможете защитить себя от повреждения дома или электроники. Хотя молния опасна, в нее вряд ли удастся поразить. Более распространенной проблемой является накопление статического электричества из-за электрического заряда в воздухе во время грозы. Этот статический заряд может привести к стеканию заряда по кабелям с крыши и повреждению оборудования в вашем доме. Мы хотим направить этот заряд на землю, а не на вашу электронику!
К чему заземлить?
Прежде чем говорить о том, что устанавливать, мы должны поговорить о том, что считается заземлением.Вариантов много, но есть три безопасных:
- Существующий заземляющий стержень, привязанный к вашей электрической панели.
- Водопроводная труба, которая входит в здание.
- Новый стержень заземления, которым вы управляете самостоятельно.
Использование существующего заземляющего стержня
У вас уже должен быть заземляющий стержень внутри или снаружи вашего дома. Он будет очень близко к вашей электрической панели — либо под ним в полу подвала, либо за пределами дома, где электрический кабель входит от сети.Вы можете использовать этот заземляющий стержень, если он находится относительно близко к антенной мачте, которую вы устанавливаете. Если мачта находится на другой стороне дома или на расстоянии более 20 футов или около того от земли, другая точка заземления может быть лучше.
Использование трубы холодной воды
Если водопроводная труба в вашем доме сделана из меди или другого металла, вы можете использовать ее в качестве заземления. Скорее всего, единственный способ получить доступ к этой трубе — это в подвале или в подвале вашего дома.Обычно они не входят в дом над землей, чтобы предотвратить замерзание ваших труб. Обычно счетчик воды устанавливается сразу после того, как эта труба входит в дом — на ближайшей к улице стороне дома. Ваша электрическая панель может быть уже заземлена на эту трубу — вы можете проследить за медным проводом, выходящим из нижней части панели. Опять же, вы можете использовать эту трубу в качестве заземляющего проводника, если он находится рядом с антенной мачтой на крыше.Если он находится на другой стороне дома, это может не сработать.
Установка нового стержня заземления
(Примечание: для этого вам понадобятся два человека, небольшая лестница с А-образной рамой и небольшая кувалда.) Если у вас нет других вариантов, вам нужно будет забить новый стержень заземления. Выберите место на земле прямо под антенной мачтой. Чтобы вам было легче, это должна быть более мягкая почва, а не каменистая, и, конечно же, не бетон или асфальт. Убедитесь, что вы начали, по крайней мере, на фут или 18 дюймов от края дома — бетонный или кирпичный нижний колонтитул дома иногда может простираться почти так далеко.Если вы хотите, чтобы новый стержень заземления был скрыт от глаз, выкопайте небольшую яму, куда вы собираетесь положить стержень. Когда вы закончите, вы можете насыпать землю поверх стержня. Выберите место на земле, куда вы хотите поставить удочку, и попросите напарника держать удочку в вертикальном положении. Поскольку заземляющие стержни обычно имеют длину 8 футов, вам понадобится небольшая лестница, чтобы добраться до вершины стержня. Затем осторожно (чтобы не ударить партнера!) Забейте верхнюю часть удилища пятифунтовым молотком или небольшой кувалдой. Поскольку штанга опущена вниз, вам может потребоваться спуститься по лестнице под наилучшим углом для ее движения.Как только удочка окажется на расстоянии нескольких дюймов от земли, вы можете остановиться.
На что НЕ заземляться?
Есть несколько вещей, к которым нельзя приставать дома:
- Газовая труба, или счетчик газа.
Газопровод от электросети плохой грунт, верить нельзя.
Даже если к счетчику идет медный провод, не используйте его — этот провод предназначен только для соединения с реальной землей в другом месте здания.
- Металлические балки или открытая металлическая арматура.
Обычно они сделаны из железа или стали, и очень сложно определить, обеспечивают ли они основу, поэтому им нельзя доверять.
Так что мне действительно нужно?
Существует несколько вариантов установки молниезащиты: провод от крепления антенны к источнику заземления (описан ниже) или разрядник для защиты от перенапряжений.
Как решить? Как правило, если у вас есть металлическое крепление для антенны на крыше высотой более 5 футов, вам нужно заземлить его с помощью длинного медного провода.Если крепление короче или не поднимается над линией крыши, можно просто использовать разрядник. Даже если вы не заземляете оборудование на крыше, а просто используете разрядник для защиты от перенапряжений, этот разрядник необходимо заземлить. Обычно это проще, так как это можно сделать на уровне земли и рядом с существующей землей, чтобы упростить электромонтаж.
Установка ограничителя перенапряжения
Вероятно, вы уже использовали разрядник для защиты от перенапряжения — иногда он встраивается в несколько разветвителей питания.Они работают, предотвращая скачок (быстрое накопление) электрической энергии от попадания в ваши приборы. Вместо этого этот скачок напряжения шунтируется или направляется на землю — либо через большой круглый штифт на сетевой вилке (в случае удлинителя), либо с помощью медного или алюминиевого провода, если вы заземляете наружное оборудование. Вы захотите установить разрядник на кабель Ethernet, который соединяет беспроводной маршрутизатор на крыше с вашей внутренней точкой доступа или компьютером. Для этого нам на самом деле потребуется создать два кабеля Ethernet: один, который проходит от маршрутизатора на крыше к разряднику для защиты от перенапряжений, а другой — от разрядника к внутреннему блоку.Разрядник для защиты от перенапряжения заземляется путем пропуска медного или алюминиевого провода # 10 AWG от металлического наконечника внутри ОПН к одному из заземляющих соединений, упомянутых выше. Доступно множество моделей разрядников для защиты от перенапряжений, но, к сожалению, их вряд ли можно будет найти в местных магазинах бытовой техники. Нам нужны специальные ограничители перенапряжения, которые устанавливаются на открытом воздухе и позволяют питанию от адаптера Power over Ethernet достигать маршрутизатора. L-Com — хороший источник для их покупки в Интернете:
- http: //www.l-com.com — Найдите номер детали AL-CAT5EJW24 или AL-CAT6JW
Внешний разрядник должен быть установлен непосредственно под маршрутизатором на крыше, как можно ближе к земле. Это необходимо для минимизации длины провода между разрядником и заземляющим стержнем или заземляющим проводом, поскольку они должны быть установлены в земле или в подвале. Он должен крепиться двумя короткими винтами к деревянному, бетонному или кирпичному основанию здания.
Обзор молниезащиты
— Институт молниезащиты
Общая информация по отрасли
Институт молниезащиты — это общенациональная некоммерческая организация, основанная в 1955 году с целью продвижения образования, осведомленности и безопасности в области молниезащиты.Индустрия молниезащиты зародилась в Соединенных Штатах, когда Бенджамин Франклин постулировал, что молния — это электричество, и что можно использовать металлический стержень, чтобы отвести молнию от здания. Молния является прямой причиной более 50 смертей и 400 травм ежегодно, и трудно защитить людей на открытых открытых площадках. Прямые удары молнии причиняют ущерб от пожара, превышающий 200 миллионов долларов в год, и страховые компании прямо или косвенно оплачивают претензии на миллиарды долларов, связанные с молнией.Большая часть этих имущественных потерь может быть минимизирована, если не устранена, путем внедрения надлежащей молниезащиты для конструкций. LPI стремится к тому, чтобы современные системы молниезащиты обеспечивали наилучшее качество как материалов, так и методов установки, обеспечивая максимальную безопасность.
Национальная ассоциация противопожарной защиты . (NFPA) публикует документ № 780 под названием Стандарт для установки систем молниезащиты считается национальным руководством по проектированию полных систем молниезащиты в Соединенных Штатах.NFPA опубликовало свой первый документ по молниезащите в 1904 году. Документы NFPA, такие как Национальный электротехнический кодекс (NEC — NFPA 70), Национальный кодекс по топливному газу (NFPA 54) и Единый пожарный кодекс (NFPA 1), разрабатываются комитетом для проверки. принятие новой информации по безопасности по конкретным вопросам, связанным с пожаром
Стандарт защиты от молний № 780 пересматривается с трехлетним циклом для обновления. NFPA 780 включает молниезащиту для типовых строительных конструкций в четвертой главе как требования к обычным конструкциям.Документ 780 охватывает многие специальные конструкции от хранилищ опасных материалов до лодок и кораблей, а также открытых сооружений для пикников и дает рекомендации по личной безопасности на открытом воздухе. NFPA 780 предоставляет лучшее, что мы знаем сегодня в теории и технологиях, о системах защиты, протестированных опытными профессионалами отрасли в юридически признанном формате.
Испытания компонентов материалов молниезащиты на заводе перед отправкой для включения в список и маркировки проводятся Underwriters Laboratories, Inc.(UL) . Стандарт UL 96 устанавливает минимальные требования к конструкции молниеприемников, кабельных жил, фитингов, соединителей и крепежных деталей, используемых в качественных системах молниезащиты. У UL есть инспекционный персонал, который регулярно посещает производственные объекты, чтобы проверить соответствие требованиям для дальнейшего использования одобренных ими товарных этикеток.
Полевые проверки завершенных установок молниезащиты также могут быть организованы с UL через подрядчиков по установке, перечисленных в их программе.UL выпускает продукт «Master Label» для систем, полностью соответствующих их Стандарту UL 96A в течение многих лет. Стандарт 96A основан на общих требованиях NFPA 780, но UL имеет техническую группу по стандартам (STP) для проверки требований к более удобному для проверки формату, что приводит к некоторым различиям. UL также будет проверять на соответствие некоторым другим национально признанным стандартам (например, NFPA 780) для полностью соответствующих систем. Некоторые частичные конструкции могут быть доступны для полевой инспекции в рамках их программы «Письмо с выводами».
Институт молниезащиты (LPI) использует последнюю редакцию стандарта NFPA 780 в качестве справочного документа для проектирования систем. LPI выступает за использование UL в качестве стороннего органа по проверке компонентов в соответствии с их документами UL 96. LPI публикует этот документ # 175 , основанный на NFPA 780, с дополнительными пояснительными материалами, полезными для установщиков и сотрудников инспекторов.
LPI предоставляет отраслевую программу самоконтроля для сертификации участников подмастерьем, мастером-установщиком и дизайнером-инспектором.Люди сдают экзамены, которые включают требования перечисленных выше Стандартов молниезащиты и применение этих принципов к примерам проектирования. Продление членства требуется каждый год, при этом дополнительные экзамены сдают примерно каждые три года при обновлении национальных стандартов. Заключение контрактов со специалистами, прошедшими квалификацию в рамках процесса LPI, обеспечивает дополнительный уровень гарантии качества для первоначальной установки системы и ресурс для будущих проверок и обслуживания существующих систем.
LPI внедрила программу проверки для завершенных установок под названием LPI-IP . LPI-IP предоставляет услуги по сертификации более тщательно и полно, чем любая предыдущая программа проверки от LPI или других, доступных в настоящее время на рынке. Благодаря использованию контрольно-пропускных пунктов, проверок и проверок на месте сертификация системы LPI-IP обеспечивает безопасность с привлечением квалифицированного монтажного персонала и независимых инспекторов. LPI-IP предлагает «Главный сертификат установки» для полных конструкций, «Восстановленный мастер-сертификат установки» для ранее сертифицированных конструкций и «Осмотр ограниченного объема» для частичных систем в определенных контрактах.Это критически важный элемент для специалиста, владельца и страховщика имущества, обеспечивающего проверку качественных установок молниезащиты сторонним независимым источником.
Системы молниезащиты для сооружений, как правило, не являются требованиями национальных строительных норм и правил, хотя стандарты могут быть приняты органом, имеющим юрисдикцию в отношении общего строительства или определенных помещений. Поскольку молниезащита может рассматриваться как вариант, крайне важно, чтобы разработчик, строительный подрядчик и страховщик имущества были знакомы с национальными стандартами для обеспечения наивысшего уровня безопасности. Системы молниезащиты зарекомендовали себя в плане защиты от физических опасностей для людей, структурных повреждений зданий и отказов внутренних систем и оборудования. Полученная ценность начинается с правильного проектирования, продолжается с помощью методов качественного монтажа и должна включать проверку и сертификацию. Конечная цель — безопасная гавань, безопасность инвестиций и устранение потенциального простоя системы в противовес одному из самых разрушительных природных явлений.
Общая информация о системе
Стандарты США для полных систем молниезащиты включают NFPA 780, UL 96 и 96A и LPI 175 . Эти стандарты основаны на фундаментальном принципе обеспечения разумно прямого металлического пути с низким сопротивлением и низким сопротивлением для прохождения тока молнии, а также принятия мер по предотвращению разрушения, пожара, повреждения, смерти или травмы, когда ток течет с крыши. уровни ниже класса.Стандарты представляют собой консенсус властей в отношении основных требований к конструкции и характеристикам квалифицированных конструкций и продуктов. Ожидается, что полная система защиты, основанная на принципах надежной инженерии, исследованиях, протоколах испытаний и полевом опыте, обеспечит безопасность людей и конструкций от молнии и ее побочных эффектов. Стандарты постоянно пересматриваются в отношении новых продуктов, строительных технологий и подтвержденных научных разработок, направленных на устранение опасности молнии.Хотя материальные компоненты могут казаться очень похожими, конфигурация общей конструкции системы за последние 25 лет кардинально изменилась, чтобы отразить современный образ жизни.
Есть пяти элементов , которые должны быть на месте для обеспечения эффективной системы молниезащиты. Устройства для защиты от ударов должны быть пригодны для прямого подключения молнии и иметь рисунок, чтобы принимать удары до того, как они достигнут изоляционных строительных материалов. Кабельные жилы направляют ток молнии через конструкцию без повреждений между заглушками наверху и системой заземляющих электродов внизу.Система заземляющих электродов класса ниже уровня должна эффективно перемещать молнию к ее конечному пункту назначения вдали от конструкции и ее содержимого. Соединение или соединение системы молниезащиты с другими внутренними заземленными металлическими системами должно быть выполнено таким образом, чтобы исключить возможность попадания молнии в боковую вспышку изнутри. Наконец, устройства защиты от перенапряжения должны быть установлены на каждом служебном входе, чтобы остановить проникновение молнии от инженерных сетей и дополнительно уравнять потенциал между заземленными системами во время грозовых разрядов.Если эти элементы правильно идентифицированы на стадии проектирования, включены в аккуратную рабочую установку и в здании не происходит никаких изменений, система защитит от повреждений молнией. Элементы этой системы пассивного заземления всегда выполняют аналогичную функцию, но общая конструкция индивидуальна для каждой конкретной конструкции.
Компоненты молниезащиты изготовлены из материалов , устойчивых к коррозии, и они должны быть защищены от ускоренного износа.Многие компоненты системы будут подвергаться воздействию атмосферы и климата. Комбинации материалов, образующих электролитические пары в присутствии влаги, не должны использоваться. Компоненты токоведущей системы должны обладать высокой проводимостью. Преобладающие почвенные условия на площадке будут влиять на компоненты подземной системы. Срок службы системы и цикл обслуживания / замены зависят от выбора материала и местных условий. Системные материалы должны быть согласованы с используемыми конструкционными материалами, в том числе облицовками, колпаками, кожухами вентиляторов, различными системами кровли, чтобы поддерживать влагозащитную оболочку в течение предполагаемого срока службы здания.
Медь, медные сплавы (включая латунь и бронзу) и алюминий являются основными материалами компонентов системы. Они служат наилучшим сочетанием функций для переноса тока и защиты от атмосферных воздействий. Поскольку алюминиевые материалы имеют немного меньшую токонесущую способность и механическую прочность, чем изделия из меди аналогичного размера, перечисленные и маркированные материалы для молниезащиты включают детали большего физического размера. Например, чтобы считаться эквивалентным, воздушный терминал минимального размера будет иметь диаметр ½ дюйма в алюминии по сравнению с диаметром 3/8 дюйма в меди.
Вода, вытекающая из меди, окисляет алюминий и гальванизированные поверхности, поэтому при согласовании конструкции системы необходимо учитывать гальванические аспекты для устранения возможных проблем с монтажом. Квалифицированные биметаллические фитинги используются для согласования компонентов системы для необходимых переходов от алюминия к меди. Они могут включать перечисленные продукты для этой цели или, в некоторых случаях, компоненты из нержавеющей стали. Алюминий никогда не контактирует с землей или почвой. Алюминий никогда не должен контактировать с лакокрасочными покрытиями на щелочной основе или встраиваться непосредственно в бетон.
Если какое-либо изделие подвергается необычному механическому повреждению или смещению, оно может быть защищено молдингом или покрытием, но необходимо проявлять осторожность, чтобы заглушки и другие компоненты, устанавливаемые на крыше, могли выполнять свою функцию при приемке навесного оборудования. Компоненты молниезащиты под ударными клеммами могут быть скрытыми внутри здания ниже уровня крыши во время строительства или при доступе. Скорость тока молнии и разделение потока между несколькими путями не позволят компонентам нагреться до любой мгновенной температуры возгорания, опасной для типичных строительных материалов.Включение системы в конструкцию позволяет соединить структурный металлический каркас и внутренние заземленные системы и обеспечивает защиту от проблем смещения и технического обслуживания, которые полезны для продления срока службы системы.
Материалы, подходящие для использования в системах молниезащиты, перечислены в списке , помечены и протестированы в соответствии со стандартом UL 96. Конструкция проводника включает максимальное увеличение площади поверхности для переноса молнии и гибкость конфигурации для выполнения изгибов и поворотов, необходимых при установке.Основания аэровокзала эффективно передают удар от оконечного устройства к проводнику кабеля и надежно крепятся к различным поверхностям здания в суровых погодных условиях. Фитинги для сращивания должны поддерживать контакт с проводниками, длина которых должна быть достаточной для передачи тока и погодных условий в открытой среде. Заземляющие электроды должны обеспечивать надлежащий контакт с землей для рассеивания заряда и удовлетворять требованиям по пригодности для жизненного цикла в различных составах почвы. Размеры скрепляющих устройств позволяют обеспечить надлежащее соединение систем для выравнивания потенциалов по всей конструкции.Устройства защиты от импульсных перенапряжений соответствуют требованиям более высоких уровней тока для удовлетворения потребностей, связанных с молниезащитой.
Прекращение забастовки
Устройства защиты от ударов выполняют системную функцию по подключению прямых молниеотводов. Они представляют собой зонтик от проникновения молнии в непроводящие строительные материалы для защиты от пожара или взрыва. Любое металлическое тело толщиной 3/16 дюйма или более, выступающее над конструкцией, выдержит удар молнии, не прожигая.Поэтому в некоторых случаях строительные элементы могут быть включены в качестве прекращения забастовки. Высокие мачты или подвесные заземляющие провода, аналогичные средствам защиты линий электропередач, могут служить в качестве защиты от ударов. В большинстве случаев, однако, малые специальные молниеотводы составляют большинство систем защиты от ударов. Эти ненавязчивые компоненты предпочтительны из-за простоты монтажа и эстетических соображений, и их можно скоординировать в наиболее эффективную конфигурацию для всех типичных строительных конструкций.
Окружающая нас атмосфера электрически заряжена, но свободный воздух поддерживает относительно сбалансированное распределение ионов. Когда мы поднимаем в воздух здание, дерево или даже человека, в меньшей степени, мы меняем этот электрический баланс. Электрическое поле накапливается для изменения точек в геометрии наземных объектов. Такие элементы, как гребни и особенно концы гребней, края зданий с плоской крышей и даже больше, углы становятся точками накопления ионов, которые повышают восприимчивость к ударам молнии.Надлежащая система устройств защиты от ударов учитывает эти реалии за счет использования молний в настроенной схеме, разработанной для использования точек естественного накопления ионов в здании для втягивания молнии в систему защиты. Чем выше конструкция и чем серьезнее плоские изменения (например, от вертикальной стены до горизонтальной плоской крыши), тем больше возможностей для крепления на этих критических стыках. Проектирование системы воздушных терминалов , выступающих всего на 10 дюймов над этими структурными точками упора и вдоль гребней и краев, было доказано более чем столетней практикой для обеспечения перехвата примерно 95% зарегистрированных вспышек молний, включая большинство жестокий.Некоторые удары молнии с меньшим потенциалом теоретически могут возникать на плоских плоскостях вдали от устройств защиты от ударов, разработанных в соответствии со стандартами, но последствия находятся в допустимых пределах для обычного строительства. Учитывая более низкий уровень энергии, необходимый для байпаса, другие компоненты структурного заземления, включенные в полную систему молниезащиты, и случайную вероятность соединения с компонентом системы в любом случае, этот метод защиты здания считается наиболее эффективным.
Защита самых высоких и наиболее выступающих элементов здания с помощью устройств защиты от удара, в зависимости от геометрии здания, также обеспечивает некоторый уровень защиты для нижних пристроек конструкции или элементов, находящихся в «тени» более высоких полностью защищенных областей. Зона защиты существует от любого устройства для защиты от вертикальных ударов и больше от вертикального полностью защищенного уровня здания. Зона защиты описана в Стандартах молниезащиты с использованием сферической модели с радиусом 150 футов (46 метров) для определения объектов, находящихся под защитой более высоких элементов системы, или расширения зданий на расстояния, требующие дополнительной защиты с помощью дополнительных ударных клемм.Это похоже на катание мяча диаметром 300 футов (92 метра) с высоты по зданию, а затем по зданию на противоположный уровень во всех мыслимых направлениях. Если мяч касается изолированного строительного материала, то добавляется дополнительная ударная клемма. Зоны, поддерживаемые ударными клеммами, ударными клеммами и уклонами, а также вертикальные стены, тогда находятся под защитой правильно спроектированных элементов системы. Эта геометрическая модель для защиты конструкций в целом основана на последнем этапе процесса присоединения молнии и снова покрывает более 90% возможных ударов.На более ответственных конструкциях, таких как те, которые содержат взрывчатые вещества или легковоспламеняющиеся жидкости и пары, модель уменьшается до сферы радиусом 100 футов (30 метров), которая покрывает более 98% зарегистрированных ударов молний.
Система защиты от ударов защищает конструкцию от ударов молнии, обеспечивая предпочтительные точки крепления. В большинстве случаев предпочтительнее использовать медные или алюминиевые молниеотводы из-за их проводимости и устойчивости к погодным условиям.Квалифицированные выступающие металлические строительные элементы также могут выполнять эту функцию. В особых обстоятельствах, когда нельзя допустить проникновения молнии, использование высоких мачт и воздушных заземляющих проводов, используемых в модели с уменьшенной зоной, может обеспечить дополнительную защиту. Защита таких вещей, как стандарты освещения или деревья, может обеспечить некоторую защиту области на основе модели зоны. Конструктивная конфигурация ударной нагрузки — это первый ключевой элемент в обеспечении полной системы молниезащиты.
Проводники
Система проводов — это компонент полной молниезащиты, включающий в себя кабели основных размеров, конструкционную сталь здания, а также соединительные или соединительные провода с внутренними заземленными системами здания.Основные проводники выполняют токопроводящую функцию от устройств защиты от удара до системы заземления. Основные кабели изготовлены из меди или алюминия с высокой проводимостью, которые хорошо работают во внешних условиях. Молния ищет путь к земле, поэтому даже при использовании очень проводящих материалов кабели должны прокладываться горизонтально или вниз. Это похоже на концепцию самотечного потока воды на наклонных плоских участках в водосточные желоба или в водосточных желобах в водосточные системы.Кабели необходимо прокладывать, используя длинные плавные изгибы не менее 90 градусов. Молния создает значительную механическую нагрузку на кабели, в результате чего могут быть повреждены острые изгибы или углы, а в худшем случае молния может перекинуться через дугу. Эту механическую силу можно сравнить с отправкой воды под давлением через пожарный шланг — проводник будет пытаться выпрямиться, вызывая опасность повреждения стыковых фитингов, креплений или самого проводника.
Медные и алюминиевые жилы для основных кабелей для молниезащиты спроектированы по стандарту гладкого переплетения или укладки каната с использованием отдельных проводов меньшего сечения.Такая конструкция обеспечивает максимальную площадь поверхности на единицу веса проводника для размещения молнии, которая быстро распространяется по поверхности. Эта конструкция также позволяет упростить изгиб и формирование системы проводников вдоль, вокруг и над элементами конструкции здания. Открытые проводники крепятся с максимальным интервалом в три фута для удержания системы на месте от ветра и непогоды. Все устройства защиты от удара должны быть подключены к проводникам с минимальным количеством проводов или к системе заземления.Устройства защиты от ударов, покрывающие различные области конструкции, должны быть соединены между собой для образования единой системы либо посредством проводников на крыше, либо через токоотводы, либо путем соединения элементов системы заземления для разных уровней или выступов крыши. Жилы молниеотводов могут быть скрыты под или внутри конструкции — на чердаках и в стенах, или в бетонных насыпях — потому что скорость молнии снижает возможность нагрева проводников до температуры искрового воспламенения строительных материалов, намного ниже опасного уровня.
Нисходящие или токоотводы — это элементы системы основных проводов, которые обычно переносят молнию от системы уровня крыши в систему заземления. Это может быть кабельный провод или сплошной стальной каркас , соответствующий требованиям , толщиной 3/16 дюйма или больше, или их комбинация. Арматурная сталь или арматура неприемлемы в качестве замены проводника кабеля, но каждый нисходящий вывод кабеля должен быть прикреплен к несущему каркасу вверху и внизу каждого вертикального участка.Все устройства защиты от ударов должны иметь как минимум два пути к земле, чтобы разделить молнию по нескольким путям, поэтому в самом маленьком здании должно быть минимум два нисходящих вывода. Нисходящие провода для больших зданий могут быть рассчитаны со средними интервалами 100 футов для периметра здания, хотя системные компоненты для специальных элементов конструкции здания могут потребовать дополнительных токоотводов для удовлетворения требований к нескольким путям. Важно рассчитать площадь защищаемого периметра, чтобы получить правильное распределение нисходящих водопроводов для коньковых крыш, которые включают в себя заделки от ударов только вдоль вершины.
Обеспечение множественных путей для тока молнии имеет большое преимущество в снижении общей энергии на любом проводнике. Это влияет не только на размер проводника, но и удерживает молнию на указанных путях, чтобы свести к минимуму боковую миграцию внутренних систем и уменьшить потенциальные проблемы внутренней индукции. Стандарты молниезащиты требуют минимального количества по периметру, но большее количество путей может быть очень полезным для обеспечения клетки защиты для оборудования и людей внутри.Тот факт, что конструкция стального каркаса создает наибольшее количество квалифицированных вертикальных путей, соединенных горизонтально на многоуровневых структурах, делает его использование в качестве нисходящих проводов предпочтительным для обеспечения улучшенной защиты от проникновения побочного эффекта молнии. Несмотря на то, что кабельные жилы необходимы для нисходящих водопроводов в бетонных конструкциях, необходимое соединение арматуры помогает создать аналогичную сеть защиты в проектах высотного строительства.
Заземление
Правильно выполненные заземляющие соединения необходимы для эффективного функционирования системы молниезащиты, так как они служат для распределения молнии по земле.Это не означает, что сопротивление заземляющего соединения должно быть низким, а скорее, что распределение металла в земле или на ее поверхности в крайних случаях должно быть таким, чтобы обеспечить рассеивание разряда молнии без причинения ущерба.
Низкое сопротивление желательно, но не обязательно, о чем могут свидетельствовать крайние случаи, с одной стороны, когда здание находится во влажной глинистой почве, а с другой стороны, здание стоит на голом камне. В первом случае, если грунт имеет нормальное удельное сопротивление, ожидается, что сопротивление надлежащего заземляющего электрода будет меньше 50 Ом, и два таких соединения с землей на небольшом прямоугольном здании опытным путем были признаны достаточными.В этих благоприятных условиях просто обеспечить адекватные средства для рассеивания энергии вспышки без возможности серьезного повреждения. Во втором случае было бы невозможно выполнить хорошее заземление в обычном смысле этого слова, потому что большинство видов горных пород изолируют или, по крайней мере, обладают высоким удельным сопротивлением; следовательно, чтобы получить эффективную основу, необходимы более сложные средства. Наиболее эффективные системы представляют собой разветвленную сеть проводов , проложенную на поверхности скалы, окружающей здание, к которой подключены токоотводы.Сопротивление между таким устройством и землей может быть высоким, но в то же время распределение потенциала вокруг здания по существу такое же, как если бы оно покоилось на проводящей почве, и результирующий защитный эффект также по существу такой же. Система заземляющих электродов для защиты от молний служит для отвода молнии в любые существующие слои почвы и отвода ее от конструкции.
Сеть заземляющих электродов будет определяться в основном опытом и суждением лица, планирующего установку, с должным учетом минимальных требований Стандартов, которые предназначены для охвата обычных случаев, которые могут возникнуть, соблюдая Имейте в виду, что, как правило, чем шире доступный металл под землей, тем эффективнее система заземления.Схема заземления зависит от характера почвы: от одиночных заземляющих стержней, когда почва глубокая, до использования нескольких электродов, заземляющих пластин, радиальных проводов или подземных проводных сетей, где почва неглубокая, сухая или с плохой проводимостью. Каждый нисходящий кабель должен заканчиваться соединением заземляющего электрода, предназначенным для системы молниезащиты. Электроды или электроды системы связи не должны использоваться вместо электродов заземления молнии. Конечный продукт должен включать соединение отдельных заземляющих электродов разных систем.
По возможности, заземляющие электроды должны быть подключены снаружи к фундаментной стене или достаточно далеко, чтобы избежать заглубленных опор, заглушек труб и т. Д. Заземляющие электроды следует устанавливать ниже линии замерзания, где это возможно. Материалы, используемые для заземляющих электродов, должны подходить к любому щелочному или кислотному составу почв для длительного срока службы.
Во время разряда молнии по системе проводников заземляющие электроды следует рассматривать как точки, через которые протекает сильный ток между системой защиты от удара молнии и землей вокруг конструкции.Следовательно, размещение с целью отвода потока тока от конструкции наиболее выгодным образом является важным. Это будет реализовано путем размещения заземляющих устройств на внешних оконечностях, таких как углы и внешние стены конструкции, и избегая, насколько это возможно, протекания тока под зданием. В некоторых случаях, особенно когда речь идет о пристройках к существующему зданию, может возникнуть необходимость разместить отводы и заземление внутри и под конструкцией.
Контур заземления , окружающий конструкцию, соединяющую все нисходящие кабели у их основания и / или устройства заземляющих электродов, является лучшим способом уравнять потенциал для всей системы молниезащиты. Всегда можно иметь разные значения сопротивления заземляющих электродов даже на одной и той же конструкции.
Поскольку разделение молнии по нескольким путям начинается в точке завершения удара и проходит через систему проводников к земле, разные значения сопротивления электродов могут нарушить эту функцию.Контур заземления решает эту потенциальную проблему и обеспечивает разветвленную сеть проводов для улучшения системы заземления. Контур заземления требуется для каждой конструкции , превышающей 60 футов в высоту. Если соединительный контур нельзя установить в земле, его можно разместить внутри конструкции, чтобы выполнить это требование. Этот контур уровня земли также обеспечивает соединение с другими заземленными системами здания.
Все заземляющие средства в конструкции или на ней должны быть соединены между собой для обеспечения общего потенциала земли с использованием молниеотвода основного размера.Сюда входит система заземляющих электродов молниезащиты, заземление системы электрических, коммуникационных и антенн , а также металлические трубопроводы. Системы , входящие в конструкцию, такие как линии воды, газа и сжиженного нефтяного газа, металлические трубопроводы и т. Д. Подключение к газовым линиям должно производиться заказчиком сторона счетчика, чтобы избежать выхода из строя катодной защиты линий обслуживания. Если все эти системы подключены к непрерывной металлической системе водопровода, требуется только одно соединение между заземлением молниезащиты и водопроводом.Системное соединение может быть выполнено в нескольких точках возле входов в конструкции для систем, или может использоваться одно жесткое соединение на шине заземления. Приведение всех заземленных систем здания к одному и тому же потенциалу на определенном уровне — это первый шаг к защите внутренних компонентов и людей от молнии. Он начинает процесс склеивания против боковых ударов от компонентов системы к внутренним системам здания.
Выравнивание потенциалов (соединение)
Основные токоведущие компоненты системы молниезащиты были описаны в их самой ранней форме Бенджамином Франклином.Современные методы изготовления компонентов и конструкции, включающие систему в конструкции и внутри нее, изменили внешний вид системы, но философия, лежащая в основе прекращения удара, проводимости и заземления, остается аналогичной — принять молнию и отправить ее на землю. Наиболее существенные изменения в конструкции системы молниезащиты происходят из-за адаптации того, как мы строим и оснащаем современное здание, или того, что мы могли бы назвать «фактором внутренней сантехники». Современное здание включает в себя металлические трубопроводы, такие как водопровод, канализация и газовые системы, а также схемы для электрических и коммуникационных систем, которые обеспечивают внутренние пути для молнии, чтобы повредить компоненты и приблизить людей к опасности.
В начале удара молнии в систему может произойти немедленное повышение до 1 000 000 вольт на основных компонентах, переходящее к 0 вольт на земле. Любая другая независимо заземленная система здания в непосредственной близости от компонентов молниезащиты будет иметь напряжение 0 вольт, поэтому естественная тенденция заключается в том, что некоторые или все молнии покидают нашу токоведущую систему и вспыхивают на альтернативный путь заземления. Если расстояние между потенциальными путями достаточно мало, дуга или боковая вспышка могут возникать через воздух или строительные материалы, что создает опасность возгорания или взрыва.
Поскольку внутренние заземленные системы здания пронизывают конструкцию, этот потенциал существует на уровне крыши, на стенах здания или в них и даже потенциально ниже уровня земли. Молния распространяется от заземляющих электродов системы у поверхности земли и может возвращаться по металлическим трубам или другим основаниям обратно в здание. Альтернативные пути от внутренней заземленной схемы не предназначены для проведения тока молнии (опасность возгорания), а соединения в металлических трубах не предназначены для использования в качестве токонесущих устройств, приводящих к тепловой деформации или ударам.Оборудование внутри сооружений, от раковины, подключенной как к водопроводной, так и к канализационной линиям, до персонального компьютера, подключенного как к электросети, так и к телефонным или антенным цепям, становится дополнительными точками для дугового разряда молнии между независимо заземленными системами , создавая значительные разрушения.
Полная система молниезащиты решает эту проблему посредством соединения или соединения металлических систем здания с системой молниезащиты для создания общего потенциала общего заземления .Когда заземленные системы соединены вместе, у молнии нет причин покинуть наш проектный путь прохождения тока, потому что не существует произвольной дуги по точкам. Требуется соединить каждую заземленную систему здания и систему непрерывных металлических трубопроводов с системой заземляющих электродов молниезащиты вблизи уровня земли. Низкопрофильные конструкции могут нуждаться во взаимном соединении систем только около уровня крыши, когда они находятся в непосредственной близости от компонентов системы молниезащиты.По мере того, как конструкции становятся выше, возникает потребность в соединении верхней части вертикального расширения каждой внутренней заземленной системы с системой крыши с молниезащитой. Наконец, в многоэтажном строительстве системы заземления здания соединяются между собой на уровне земли, на уровне крыши и на промежуточных уровнях, чтобы обеспечить достаточное выравнивание потенциалов между длинными проводниками во избежание возникновения дуги.
Внутренняя дуга между заземленными системами также зависит от количества путей от системы молниезащиты на крыше до системы заземления.Чем больше путей, тем больше мы разделяем молнию на сегменты с более низким напряжением, тем меньше вероятность возникновения дуги через любую среду и альтернативные системы. Включение стальной надстройки в систему молниезащиты обеспечивает колонны, балки и промежуточные соединения для максимального разделения молнии и, таким образом, минимизации разницы потенциальных проблем внутри. Стандарты требуют, чтобы кабельные нисходящие провода соединялись с арматурной сталью (арматурой) в литых колоннах вверху и внизу каждого участка, создавая аналогичный эффект, хотя эта механическая структурная система не считается подходящей для проведения тока молнии сама по себе.Арматурная сталь, заземленные внутренние системы и молниезащита также должны быть соединены между собой с интервалом в 200 футов по вертикали для поддержания выравнивания потенциалов.
Соединение вместе заземленных систем обычно выполняется с помощью более мелких фитингов и кабелей или проводов , проложенных на крышах конструкций. Соединение для выравнивания потенциалов — это не то же самое, что обеспечение пропускной способности по току. Однако во многих случаях проще использовать полноразмерные компоненты системы, потому что в конструкции они размещаются близко к желаемым точкам соединения.Когда мы склеиваем внутри конструкции или ниже уровня, более типичным является использование полноразмерных компонентов, главным образом для большей механической прочности в соответствии с реалиями строительства.
Расширение системы молниезащиты за счет включения системы заземления соединение для любой конструкции является критическим элементом, основанным на индивидуальном проектировании здания для проживания и процессов, характерных для его предполагаемого использования.
Защита от перенапряжения
Системы молниезащиты спроектированы в первую очередь как системы противопожарной защиты — чтобы предотвратить возгорание здания и потерю людей и оборудования внутри.Включение металлических услуг в конструкцию обеспечивает пути, по которым молнии могут следовать из внешней среды и создавать опасности внутри. Мы связываем или соединяем заземления и трубы с системой молниезащиты, чтобы частично избежать этой проблемы. Следующим шагом является обеспечение защиты цепей, связанных с электрическими линиями, линиями связи и / или данных, которые могут передавать молнию в конструкцию. Самые серьезные проблемы связаны с инженерными коммуникациями , которые представляют собой разветвленные системы, установленные на столбах или заглубленные, которые могут передавать дополнительные непрямые удары в здание.Полная система молниезащиты в соответствии со стандартами включает устройства защиты от перенапряжения на каждом входе служебных проводов здания, независимо от того, являются ли они коммунальными или, возможно, монтируются в конструкции, например, антенная система.
Устройства защиты от перенапряжения для входов в здание предназначены для «плавания» по линии, обнаружения проблем с перенапряжением и передачи избыточной энергии непосредственно на землю. УЗИП, предназначенные для грозовых перенапряжений, должны быстро реагировать на появление резко возрастающей формы волны и быть в состоянии поддерживать соединение с землей во время сильного перенапряжения, а затем возвращаться к своей роли мониторинга.Большинство устройств имеют два или более внутренних элемента для выполнения этой задачи и реагируют примерно на 150% от стандартного рабочего напряжения системы. Элементы SPD можно рассматривать как самопожертвованные и они могут со временем сгореть, защищая от множества небольших скачков (например, стандартных коммутационных скачков при передаче энергии) или нескольких массивных скачков, таких как прямые молнии. Поэтому важно, чтобы SPD был доступен для просмотра или имел световые индикаторы или другие идентификаторы, чтобы знать, что ваша защита работает, как задумано.Поскольку служебные входы для различных систем работают при разном напряжении, компоненты SPD должны иметь индивидуальный размер для каждой системы и обычно упаковываются индивидуально для выполнения определенных функций, но если службы входят в подсобное помещение для распределения по всему зданию в общей зоне, одно SPD может спроектирован так, чтобы выполнять несколько функций в одном корпусе. Поскольку добавление длины пути заземления служит только для замедления времени реакции компонентов SPD, устройство SPD следует подключать как можно напрямую к системе заземления всегда с минимальной длиной провода.
Правильно установленные устройства защиты от перенапряжения на всех входах на фидерах проводников цепи защищают массивный вход молнии в конструкцию, сохраняя проводку от возгорания и в целом защищая такие объекты, как большие двигатели, осветительные приборы и другое надежное оборудование. Это конкретное требование Стандартов — защищать здание от разрушения. Внутри каждой современной структуры у нас есть множество устройств, которые работают при низком напряжении, включая печатные платы, действительно не предназначенные для работы на уровне пропускания 150%, только для SPD.
Также возможны индукционные эффекты для внутренней проводки и оборудования даже с хорошо спроектированной системой молниезащиты. Ток мощного прямого удара молнии в конструкцию создает магнитное поле, исходящее от проводников, поэтому в любой ближайшей альтернативной цепи может возникать некоторое добавленное напряжение за счет индукции. Хотя только в Стандартах по молниезащите и Национальном электротехническом кодексе защита от перенапряжения внутреннего оборудования рассматривается как дополнительная, это может быть критически важной потребностью в защите для владельца.Защита аудио / видео компонентов, систем связи, компьютерного оборудования и / или технологического оборудования может иметь большое значение для качества предприятия, непрерывности бизнеса без перерывов и физической защиты пользователей оборудования. УЗИП, установленные на используемом оборудовании, должны обеспечивать защиту всех цепей, питающих устройство, чтобы обеспечить общую точку заземления. Поскольку системы утилизационного оборудования, как правило, специфичны для объекта, обычно требуется индивидуальная оценка для определения рентабельных решений.
Когда устройства защиты от перенапряжения посылают энергию в систему заземления, это мгновенное соединение всех систем электропроводки обеспечивает выравнивание потенциалов для этих металлических систем, так же как соединение между компонентами системы молниезащиты и альтернативными заземлениями систем здания обеспечивает общее соединение. Достижения в области технологий продолжают изменять среду структур, в которых мы живем, работаем и развлекаемся. Применение SPD вместе с токоведущими компонентами и соединением заземленных систем здания обеспечивает полный пакет для полной системы молниезащиты для защиты конструкции, людей и оборудования внутри.
Осмотр и обслуживание
Открытые компоненты для системы молниезащиты — это медь, алюминий или другой металл, предназначенный для проведения тока, обеспечения контактных соединений и сохранения работоспособности в открытой погодной среде. Как и в случае с любым другим строительным элементом, изготовленным из аналогичных материалов, окисление или коррозия компонентов не ожидается при нормальных условиях в течение продолжительного периода времени или обычного «срока службы» конструкции .Компоненты системы, скрытые внутри конструкции между крышей и перекрытием, защищены от атмосферных воздействий и неправильного обращения. Система заземляющих электродов может быть защищена от атмосферных воздействий погодных условий, но подвержена потенциальной деградации из-за состава почвы и влаги. Можно ожидать, что правильная первоначальная установка обеспечит защиту навсегда или, по крайней мере, в течение разумного срока службы конкретного здания.
Существуют дополнительные реалии строительства, использования нами зданий и даже неизвестные в местных условиях, которые требуют рассмотрения технического обслуживания для системы молниезащиты.Пассивную систему заземления, такую как молниезащита, нелегко оценить неспециалистам — вы не можете щелкнуть выключателем или включить кран, чтобы проверить, находится ли он в рабочем состоянии.
Бывают очевидные моменты, когда изменения в структуре вызывают потребность в обслуживании или расширении исходной системы. Замена кровли здания, внесение дополнений в конструкцию здания или добавление вентиляционных труб или антенн для новых внутренних процессов — очевидные области, требующие пересмотра и обработки.Не так очевидно, но, как сообщается, главной причиной для обязательного пересмотра систем является привычка рабочих из других профессий удалять и не переустанавливать компоненты системы, потому что они не понимают важности общей конструкции системы молниезащиты . Также возможно, что соседний технологический стек будет выделять вещество, переносимое ветром к компонентам вашей системы, которое разрушает материалы намного быстрее, чем ожидалось. Все эти элементы требуют периодических проверок и технического обслуживания, чтобы гарантировать работоспособность системы в условиях удара молнии, но, безусловно, это может быть проигнорировано с серьезными непредвиденными последствиями.
Программа проверки и возможного технического обслуживания должна быть реализована для обеспечения постоянной эффективности системы на конструкции. Визуальный осмотр может выполняться ежегодно с использованием контрольного списка и умеренного обучения вашего поставщика молниезащиты, чтобы учесть любой мелкий ремонт, такой как незакрепленная арматура, неправильное крепление, повреждение оголенных кабелей, замена снятого оборудования или повреждение устройств защиты от перенапряжения. Это может сделать обычный специалист по обслуживанию здания или даже владелец здания под руководством.Если специалист по молниезащите не привлекается для каждой ежегодной проверки, то с интервалом в пять лет будет важно проводить «тестовую» проверку с привлечением знающего человека — инспектора или установщика — для более тщательной проверки.
Полная испытательная проверка будет включать визуальные проверки вместе с проверкой целостности для проверки эффективности системы от крыши до уровня и наземные испытания для проверки функции скрытых подземных электродов.Программа обеспечения качества, разработанная для обслуживания вашей системы молниезащиты, устранит неожиданности, которые могут привести к катастрофическим последствиям.
Реализация системы молниезащиты включает в себя искусство, науку, мастерство и технологическую интуицию. Это специализированная отрасль со своими собственными стандартами, разработанными специально для борьбы с великим случайным разрушителем природы. Как и в любом другом начинании, подготовка, обучение и сертификация лиц, участвующих в проектировании, установке и проверке полной системы молниезащиты, определяют высшее качество.Институт молниезащиты фокусирует наши усилия на обучении профессионалов, владельцев, пользователей и широкой общественности безопасной и эффективной молниезащите и предоставляет качественные ресурсы через наше членство для выполнения этой важной услуги для всей строительной отрасли.
Системы молниезащиты — это современное развитие инновации, впервые предложенной Бенджамином Франклином: громоотвод.Сегодня системы молниезащиты используются в тысячах зданий, домов, фабрик, башен и даже на стартовой площадке космического корабля «Шаттл». В этой статье будет рассмотрено, зачем нужна молниезащита и что системы могут и что нельзя делать. В этой статье: Компоненты системы молниезащитыМолниеотводы или молниеотводы — это лишь небольшая часть полной системы молниезащиты.Фактически, стержни могут играть наименее важную роль в установке системы. Система молниезащиты состоит из трех основных компонентов:
Токопроводящие кабели и заземляющие стержни являются наиболее важными компонентами системы молниезащиты, выполняя главную задачу по безопасному отведению тока молнии через конструкцию. Сами по себе «громоотводы», то есть заостренные вертикально ориентированные выводы по краям крыш, не играют большой роли в функциональности системы. Полная защита, при условии хорошего покрытия кабеля и хорошего заземления, все равно будет достаточно работать без молниеотводов. Системы молниезащиты — что они делают и чего не делаютЕдинственная цель системы молниезащиты — обеспечить безопасность здания и его жителей, если молния попадает прямо в него. — задача, решаемая путем обеспечения хорошего и безопасного пути к земле, по которому молния будет следовать. Вопреки мифам, системы молниезащиты:
Создание этого веб-сайта стало возможным благодаря поддержке CIS Internet . Как работает система молниезащитыНезащищенная конструкция [перезапустить анимацию] Без обозначенного пути для достижения земли при ударе молнии вместо этого можно использовать любой проводник, доступный внутри дома или здания. Это может быть телефон, кабель или электрические линии, водопроводные или газовые трубы или (в случае здания со стальным каркасом) сама конструкция. Молния обычно будет следовать по одному или нескольким из этих путей к земле, иногда прыгая по воздуху через боковую вспышку , чтобы достичь более заземленного проводника (см. Анимацию выше).В результате молния представляет несколько опасностей для любого дома или здания:
Добавление системы защиты не предотвращает удара, но обеспечивает лучший и безопасный путь к земле. Молниеприемники, кабели и заземляющие стержни работают вместе, чтобы отводить огромные токи от конструкции, предотвращая возгорание и большинство повреждений оборудования: Защищенная структура [перезапустить анимацию] Устройства защиты от молнии и перенапряжения / устройства ИБПУстройства защиты от перенапряжения и ИБП не подходят для защиты от молний.Эти устройства обеспечивают некоторую степень защиты от скачков напряжения при ежедневных скачках напряжения и удаленных ударах молнии. Но когда молния поражает конструкцию прямо или очень близко к ней, независимо от системы молниезащиты, все ставки не принимаются. Обычный сетевой фильтр просто не может повлиять на резкий, катастрофический всплеск тока от очень близкого или прямого удара молнии. Постоянный ток молнии слишком велик, чтобы его можно было защитить с помощью небольшого электронного устройства внутри удлинителя или даже здоровенного ИБП.Если ваш ИБП или устройство защиты от перенапряжения мешает прохождению молнии, вся или часть молнии просто вспыхнет над устройством или через него — независимо от количества задействованных конденсаторов и батарейных батарей. Даже «разъединения» или устройства, которые физически отключают питание устройства путем активации набора контактов, не гарантируют защиты. Небольшой воздушный зазор не остановит удар молнии, который уже прыгнул через много миль в воздухе. Он не будет дважды думать о том, чтобы прыгнуть еще на несколько дюймов или даже на несколько футов, особенно если «путь наименьшего сопротивления» к земле проходит через контакты выключателя. Более того, даже не полноценная система молниезащиты со стержнями, кабелями и заземлением не гарантирует от повреждения электроники и компьютеров. Чтобы любая система обеспечивала 100% защиту, она должна отводить почти 100% тока молнии от прямого удара, что практически невозможно физически: закон Ома гласит, что для набора сопротивлений, соединенных параллельно, ток будет распределяться. по ВСЕМ сопротивлениям на уровнях, обратно пропорциональных различным значениям сопротивления.Дом или здание — это не что иное, как набор резисторов, «соединенных» параллельно — электропроводка, водопровод, телефонные линии, стальной каркас и т. Д. (Даже если водопровод и электропроводка, например, не могут быть физически соединены, молнии будет использовать боковые вспышки через воздушные зазоры для их эффективного соединения). При прямом ударе молнии ток не будет идти только по одному пути — он будет распространяться по всем путям к земле в зависимости от сопротивления каждого пути. Ток молнии часто достигает максимума в 100 000 и более ампер. Имея это в виду, подумайте, установлена ли у вас система молниезащиты, и в ваш дом напрямую попадает молния. Если система защиты забирает даже 99,9% тока, то ваша электропроводка может забрать оставшиеся 0,1%. 0,1% от 100 000 ампер — это скачок тока в 100 ампер через ваши линии, которого может быть достаточно, чтобы вывести ваш компьютер из строя. Нередко «боковые вспышки» возникают внутри дома или здания, когда вся или часть молнии прыгает через всю комнату, достигая земли, например, от системы электропроводки к хорошо заземленным водопроводным трубам.Если ваш компьютер мешает, пришло время купить новый, даже если у вас установлена самая дорогая система защиты. Гарантии на упаковке ИБП / устройств защиты от перенапряжения несколько вводят в заблуждение, когда речь идет о молниезащите, подразумевая, что устройства могут предотвратить любые последствия удара. В некоторых случаях они будут — если они не находятся на прямой линии огня или рядом с ней. Но на самом деле ничто не может гарантировать абсолютную защиту от прямого или очень близкого удара. Все это не означает, что вы не должны использовать сетевой фильтр, ИБП, разъединитель или полноценную систему громоотвода. Любое устройство обеспечит или степень защиты от каждодневных скачков напряжения в линии электропередач и удаленных ударов молнии. Но когда молния попадает рядом или прямо, все ставки отменяются. Лучший и самый дешевый способ защитить вашу стереосистему, телевизор, компьютер или любое электронное устройство — это отключить все соединения питания, телефона, кабеля (модема) и антенны во время грозы. Некоторые могут возразить, что риск прямого удара по любому конкретному дому слишком низок, чтобы оправдать отключение всего от сети при каждом шторме, который проходит над головой. В этом есть доля правды. В таком случае разумно убедиться, что страховка вашего домовладельца или арендатора покрывает ущерб от молнии, а все ваши устройства инвентаризированы и покрываются полисом. В конце концов, застрахованную дорогую электронику можно заменить. Однако считайте незаменимыми такие, как данные, сохраненные на вашем компьютере (фотографии, видео, рабочие файлы и т. Д.).Вы можете снизить этот риск, выполняя частое резервное копирование вне офиса и / или сохраняя данные на внешнем жестком диске, который вы можете отключить при необходимости. Мифы об рассеивании / устранении молнииПродукты, называемые устройствами для устранения молний или устройств для рассеивания молний, возникли в результате двух мифов: во-первых, заряд грозы может истощить или иным образом повлиять на объекты на земле, а во-вторых, начинаются разряды молнии между облаками и землей. с земли.Эти продукты, которые продаются до сих пор, утверждают, что способны предотвратить прямой удар молнии в любой объект, на котором они установлены. Устройства имеют очень разный внешний вид, но обычно характеризуются металлическим корпусом с сотнями заостренных щетинок, игл или тонких стержней. Конструкция оправы варьируется от гребенчатой до зонтичной. Утверждается, что устройства предотвращают или уменьшают прямые удары молнии по объектам, на которых они установлены, с помощью коронного разряда для выполнения одного или нескольких из следующих действий: 1.) для истощения его заряда до того, как может произойти молния, 2) для создания локализованного «пространственного заряда» над защищаемой зоной, который отводит удары молнии, или 3) для затруднения инициирования восходящих лидеров от объекта, тем самым снижение шансов на прямую ступенчатую связь лидер-земля-лидер. Как мы обсуждали в нашей статье о рассеянии грозового заряда, проблема с этими устройствами заключается в том, что, хотя они и создают коронный разряд, скорость утечки заряда совершенно незначительна по сравнению со скоростью генерации заряда на высоте 10 миль. , Над головой гроза диаметром от 15 до 25 миль! Никакой искусственный коронный разряд в таком небольшом масштабе не имеет ни малейшего шанса истощить заряд быстрее, чем его производит гигантское грозовое облако.И хотя мелкомасштабная корона действительно помогает предотвратить возникновение лабораторных искр (например, от генераторов Ван де Граафа), это не может быть экстраполировано для применения к полноразмерным разрядам молнии, которые в несколько тысяч раз больше, чем искусственные аналоги ( нашу статью о сравнении искусственного и естественного освещения). Коронный разряд от небольших «диссипаторов» незначителен для полноразмерной грозы и никак не повлияет на возникновение или поведение молнии в непосредственной близости от нее. Удары молнии между облаками и землей возникают высоко во время грозы, на много миль над поверхностью, где наземные объекты не действуют. Даже после начала разряда движущийся вниз ступенчатый лидер «слеп» к объектам на земле, пока не окажется очень близко к земле, в пределах от 50 до 100 футов. На таком расстоянии молния ударит в очень маленькую область, в которую она уже спускается, независимо от каких-либо устройств поблизости, которые утверждают, что отклоняют или предотвращают удар. Например, существует фотография удара молнии в здание Merchandise Mart в центре Чикаго.Торговый центр находится очень близко к Сирс-Тауэр высотой 1700 футов, но даже Сирс-Тауэр не повлиял на наземное соединение этого близкого удара облака с землей. Помимо очевидных научных недостатков концепции устройств «рассеивания» и «устранения» молний, они оказались неэффективными в реальных установках. Многие устройства «рассеивания молнии» на башнях и зданиях были поражены напрямую. Несмотря на доказательства, они продолжают продаваться, устанавливаться и продвигаться. Факты о молниезащитеЖезлы и системы защиты не притягивают молнии и не влияют на место удара молнии. Стержни или системы защиты не предотвращают и не могут предотвратить молнию, а также не могут «разряжать» грозу. Системы молниезащиты (включая размещение стержней, кабелей и заземлений) проектируются индивидуально для отдельных конструкций и требуют сложной инженерии для правильного функционирования.Их должны устанавливать только квалифицированные подрядчики. Системы молниезащиты не всегда предотвращают повреждение электроники или компьютеров. Вы все равно должны отключать такие устройства во время грозы, чтобы обеспечить достаточную защиту. < Вернуться в библиотеку погоды Связанные темы о молниях:Создание этого веб-сайта стало возможным благодаря поддержке CIS Internet . GO: Home | Штормовые экспедиции | Фотография | Библиотека экстремальных погодных условий | Стоковые видеозаписи | Блог Избранная статья библиотеки погоды: |
Шепчущие грозу: История громоотводов
Но не без сопротивления со стороны некоторых кругов, в том числе духовенства.Фактически, преподобный Томас Принс, пастор Бостонской церкви «Старый юг», утверждал, что землетрясение на мысе Энн 1755 года могло быть связано с повсеместным размещением громоотводов в Новой Англии, особенно в Бостоне. Землетрясение, произошедшее на побережье нынешнего штата Массачусетс, как казалось преподобным Принцем, не было случайностью, учитывая неразумные попытки человека отклонить руку Бога.
Сегодня молниеотводы Франклина известны под множеством названий: молниеотводы, наконечники, молниеотводы или устройства защиты от ударов.На мой взгляд, это звучит так, как если бы удар молнии ударял по стержням, опасность предотвращалась. Вместо этого стержни, обычно диаметром в полдюйма, подключаются к металлическому кабелю, скрытому внутри здания или конструкции. Диаметр стержня и троса зависит от высоты здания и типа металла. Как правило, чем выше здание, тем тяжелее стержни и тросы. Независимо от размера, кабели спускаются на Землю, где они закрепляются.Заземленный, громоотвод рассеивает энергию удара молнии.
Без этой, казалось бы, простой системы повреждение конструкции может варьироваться от незначительного повреждения до полной потери. Паркер М. Уиллард-младший видел именно это. «Мы видим большой ущерб от непрямых ударов, проникающих через инженерные сети», — говорит он. «Средний размер страхового возмещения составляет 7 400 долларов, а я видел, как некоторые из них превышают 700 000 долларов».
Уиллард является совладельцем Boston Lightning Rod Company вместе со своим отцом, Паркером М.Прадед Уилларда-старшего, Генри Уиллард, основал компанию в Дедхэме, штат Массачусетс, 144 года назад. 40-летний Уиллард-младший начал работать в Boston Lightning Rod, когда ему было 16. По словам Уилларда, производство осветительных стержней ориентировано на семью. На самом деле, из нескольких поколений. «Мы одна из старейших [компаний, производящих громоотводы] в Соединенных Штатах, — говорит он мне. «Нет ничего необычного в том, чтобы пойти на торговые семинары и познакомиться со следующим поколением. Есть много семейств молниезащиты.
Когда дело доходит до молнии и ее огромной энергии, главное, говорит Уиллард, заключается в том, что осветительные стержни при правильной установке обеспечивают эффективный путь к земле для получения электроэнергии, тем самым уменьшая или избегая повреждений зданий. Особенно, когда в установку добавлена защита от перенапряжения для входящих телекоммуникаций, электрических линий и Интернета.
«Часто люди ставят молниеотводы на свой дом или офис и думают, что они защищены, но конструкция может нанести непрямой удар по линии электропередачи или трансформатору за пределами здания, и громоотвод беззащитен против такой удар », — говорит Уиллард.Вот почему защита от перенапряжения для телекоммуникаций и кабелей стала все большей и большей частью его бизнеса: «Двадцать лет назад у людей были телефон, телевизор и электрическая линия. Теперь у них есть электроника высокого класса, которая очень восприимчива к любому виду скачков напряжения. Система громоотвода защищает от прямого удара. Защита от перенапряжения защищает от непрямого удара ».
Громоотводы — Громоотвод
Громоотводы были первоначально разработаны Бенджамином Франклином.Громоотвод очень прост — это заостренный металлический стержень, прикрепленный к крыше здания. Стержень может быть дюйм (2 см) в диаметре. Он подключается к огромному куску медного или алюминиевого провода диаметром около дюйма. Провод подключается к проводящей сетке , закопанной в земле поблизости.
Назначение громоотводов часто понимают неправильно. Многие считают, что громоотводы «притягивают» молнию. Лучше сказать, что молниеотводы обеспечивают путь с низким сопротивлением к земле , который может использоваться для проведения огромных электрических токов при возникновении ударов молнии.В случае удара молнии система пытается отвести опасный электрический ток от конструкции и безопасно заземлить. Система способна справляться с огромным электрическим током, связанным с ударом. Если удар коснется материала, который не является хорошим проводником, материал будет сильно поврежден нагреванием. Система громоотвода является отличным проводником и, таким образом, позволяет току течь на землю, не вызывая теплового повреждения.
Молния может « прыгнуть вокруг » при ударе.Этот «прыжок» связан с электрическим потенциалом поражаемой цели по отношению к потенциалу земли. Молния может ударить, а затем «искать» путь наименьшего сопротивления, прыгая к ближайшим объектам, которые обеспечивают лучший путь к земле. Если удар происходит рядом с системой громоотвода, система будет иметь путь с очень низким сопротивлением и затем может совершить «прыжок», отводя ток удара на землю, прежде чем он сможет нанести еще какой-либо ущерб.
Как видите, громоотвод предназначен не для привлечения молнии — он просто обеспечивает безопасный выбор для удара молнии.Это может показаться немного придирчивым, но это не так, если учесть, что громоотводы становятся актуальными только тогда, когда происходит удар или сразу после него. Независимо от того, присутствует ли система громоотвода, удар все равно произойдет.
Если конструкция, которую вы пытаетесь защитить, находится на открытой плоской поверхности, вы часто создаете систему молниезащиты, в которой используется очень высокий громоотвод. Этот стержень должен быть выше конструкции. Если область окажется в сильном электрическом поле, высокий стержень может начать посылать положительные стримеры в попытке рассеять электрическое поле.Хотя не факт, что стержень всегда будет проводить разряд молнии в непосредственной близости, он имеет лучшую возможность, чем конструкция. Опять же, цель состоит в том, чтобы обеспечить путь с низким сопротивлением к земле в области, которая может получить удар. Эта возможность возникает из-за силы электрического поля, создаваемого грозовыми облаками.
Заземление Заземляющий стержень | Система молниезащиты
Заземляющий стержень
Заземление
Заземляющий стержень
Для успешного внедрения системы молниезащиты заземляющие электроды играют значительную роль.Правильное заземление является важной мерой безопасности и обеспечивает бесперебойную работу. Система заземления помогает безопасно отводить электричество от молнии на землю. Заземляющие провода обычно представляют собой медные провода и могут быть неизолированными или изолированными.
Для успешной реализации системы молниезащиты заземляющие электроды играют значительную роль. Правильное заземление является важной мерой безопасности и обеспечивает бесперебойную работу. Система заземления помогает безопасно отводить электричество от молнии на землю.Заземляющие провода обычно представляют собой медные провода и могут быть неизолированными или изолированными.
Назначение заземляющих стержней
Заземляющий стержень предназначен для стабилизации избыточного напряжения и передачи его на землю от сети заземляющих стержней. Мало того, эти стержни также помогают сбрасывать статический заряд (обычно от молнии) на землю. Избыток статического электричества в электронном оборудовании, таком как домашние компьютеры, может вызвать проблемы в работе. Провода заземления также помогают защитить оборудование.
Где заканчивается система заземления?
Основная цель системы заземления — обеспечить подачу электричества на землю. Это достигается путем соединения заземляющего провода заземления с заземляющими электродами в земле. Сделать это можно с помощью металлических водопроводных труб или с помощью металлических стержней, вбитых в землю.
На протяжении более 45 лет команда экспертов Lightning Eliminators помогает корпорациям по всему миру повышать свою безопасность и надежность, используя различные передовые услуги по тестированию и высококачественные заземляющие устройства, разработанные с учетом защиты от молний.Некоторые из этих продуктов включают:
1. Уравнитель потенциала в резервуаре (IPE) создан специально для борьбы с проблемой внутренних электрических разрядов и последующего возгорания паров внутри резервуаров.
2. Выдвижной узел заземления (RGA® 750) для резервуаров с плавающей крышей
3. Электрод заземления с химическим стержнем для достижения заданного сопротивления с использованием меньшего количества электродов и меньшего количества площади.
4. Smart Ground Testing Service — это усовершенствованная система наземного аудита.
5.Заливка для увеличения заземления
Дополнительные компоненты
Помимо стандартного продукта компания также предлагает дополнительные компоненты:
Эти компоненты необходимы для установки или обслуживания многих продуктов заземления.
Компоненты для экзотермической сварки: рекомендуется использовать при установке и обслуживании стержней Chem-Rod и других заземляющих стержней.
Проволока и трубки: необходимы для различного технического обслуживания.
В дополнение к превосходным продуктам и услугам Lightning Eliminators также предлагают стандартные услуги наземных испытаний.Для заказа продуктов или любых вопросов обращайтесь в Lightning Eliminators прямо сейчас!
.