Монтажная схема принципиальная схема: Принципиальные и монтажные электрические схемы

Содержание

Страница не найдена — САПР ЦВК

Новости

10.09.2021

Вышла первая версия САПР ЦВК, работающая с отечественным графическим редактором nanoCAD. Подробнее… 

06.08.2021

В журнале «Автоматизация и IT в энергетике» №6 опубликована статья Трофимов А.В., Трофимов В.А. «Конфигуратор систем автоматизации цифровых подстанций» … читать дальше… 

27.03.2021

В конфигуратор SCD файлов САПР ЦВК включены средства документирования, аналогичные требованиям СТО 56947007-29.240.10.299-2020 «Цифровая подстанция. Методические указания по проектированию ЦПС». Учебное видео…

18.03.2021

Система автоматизированного проектирования цепей вторичной коммутации электроустановок (САПР ЦВК) включена в ЕДИНЫЙ РЕЕСТР российских программ для электронных вычислительных машин и баз данных по Приказу Минцифры России от 15. 03.2021 № 151 Приложение № 1, реестровый №9614.

10.01.2021

На сайте размещена обновленная версия программы САПР ЦВК.  Скачать…

19.08.2020

18.08.2020

На сайте размещена обновленная версия САПР ЦВК. Для использование в учебном процессе со схемами до 100 контактов программа работает без ограничения времени. Скачать…

25.03.2020

В журнале «Электрические станции» №3 опубликована статья Гусев Ю.П., Трофимов А.В., Трофимов В.А. «ПРОЕКТНАЯ БАЗА ДАННЫХ САПР КАК ОСНОВА ЦИФРОВОГО ДВОЙНИКА СИСТЕМЫ АВТОМАТИЗАЦИИ ЭЛЕКТРОСТАНЦИЙ И ПОДСТАНЦИЙ» … читать дальше… 

09.01.2020

На сайте размещена обновленная версия САПР ЦВК с учетом замечаний пользователей конфигуратора SCD-файлов цифровой подстанции. Скачать…

10.09.2019

На сайте размещена обновленная версия САПР ЦВК. В дистрибутив включена Бета-версия программы конфигуратора SCD-файлов цифровой подстанции. Учебное видео — первая и вторая части.  Скачать…

16.04.2019

02.10.2018

В журнале «Электрические станции» №9 опубликована статья Алёшин Д.А., Сидняев С.В., Смирнов С.В.,Трофимов А.В.«ОПЫТ ИНТЕГРАЦИИ ЗАВОДСКИХ РЕШЕНИЙ ПРИ АВТОМАТИЗИРОВАННОЙ РАЗРАБОТКЕ РАБОЧЕЙ ДОКУМЕНТАЦИИ НА ВТОРИЧНЫЕ ЦЕПИ ПОДСТАНЦИЙ» … читать дальше… 

26.09.2018

На сайте размещена обновленная версия САПР ЦВКСкачать…

27.11.2017

16.10.2017

На международной конференции «Цифровая подстанция. Стандарт IEC 61850», проходившей 3-5 октября 2017 г. был представлен доклад А.В. Трофимов, В.А. Трофимов, А.Н. Азаров «КОМПЛЕКСНЫЙ ПОДХОД ПРИ АВТОМАТИЗИРОВАННОМ ПРОЕКТИРОВАНИИ ВТОРИЧНЫХ ЦЕПЕЙ ЦИФРОВЫХ ПОДСТАНЦИЙ». Здесь можно найти презентацию и тезисы доклада.

14.09.2017

На сайте компании ООО «Энергоавтоматика» размещена демонстрационная версия и обучающие видеоролики программы САПР ТАИ (САПР тепловой автоматики и измерений) для автоматизированного проектирования АСУ ТП тепломеханическим оборудованием электростанций. Подробнее…

26.06.2017

На сайте размещена обновленная версия САПР ЦВКСкачать…

30.01.2017

На сайте размещена обновленная версия САПР ЦВК, которая может работать также и с графической системой BricsCAD 2016Скачать…

09.12.2016

 Разработка комплексного подхода при автоматизированном проектировании цифровых подстанций отмечена дипломом и медалью выставки «Электрические сети России — 2016».

28.11.2016

С 6 по 9 декабря 2016г., на ВДНХ проводится международная выставка «Электрические сети России — 2016». САПР ЦВК будет представлена на выставке в рамках экспозиции кафедры «Электрические станции» МЭИ. Ждем Вас на стенде А205. Также 7 декабря на конференции «Автоматизация и информационные технологии в энергетике — 2016» будет представлен доклад Трофимов А.В., Трофимов В. А., Азаров А.Н. «Комплексный подход при автоматизированном проектировании цифровых подстанций».

21.11.2016

На сайте размещена обновленная версия САПР ЦВК. Добавлены возможности редактирования схем кабельных связей, новые выходные формы Э5, сервисные функции. Скачать…

02.08.2016

В журнале «Электрические станции» №7 за 2016 год вышла статья Стогний Т.А., Трофимов А.В., Трофимов В.А. «Опыт автоматизированного проектирования подсистемы регистрации аварийных событий» … читать дальше…

13.05.2016

15.04.2016

На сайте размещена обновленная версия САПР ЦВК. Добавлена возможность прорисовки дублирующих цепочек на принципиальных схемах. Скачать…

19.11.2015

В Москве, в период с 1 по 4 декабря 2015г., на ВДНХ проводится Международная специализированная выставка «Электрические сети Россиии — 2015». САПР ЦВК будет представлена на выставке в рамках экспозиции кафедры «Электрические станции» МЭИ. Ждем Вас на стенде B113.

19.10.2015

Вышла новая версия САПР ЦВК, адаптированная для работы с бюджетной графической платформой GstarCAD. САПР GstarCAD аналогична по возможностям известной программе AutoCAD. Скачать…

05.10.2015

28.09.2015

В журнале «Электрические станции» №8 вышла статья Трофимов А.В., Трофимов В.А., Абдухалилов Г.А. «Формирование описания главной схемы электроустановки по МЭК 61850 при автоматизированном проектировании вторичных цепей» … читать дальше…

07.08.2015

В журнале «Электрические станции» №7 вышла статья Трофимов А.В., Поляков А.М., Абдухалилов Г.А., Горбунов Р.А. «Автоматизация формирования алгоритмов оперативной блокировки по информационным моделям однолинейных схем энергоустановок» … читать дальше…

30.06.2015

Добавлен новый раздел «Обучающее видео», где размещены видео примеры работы с программой САПР ЦВК. Также в разделе «Скачать» расширена библиотека готовых примеров проектов.

26.05.2015

В Москве, в период с 8 по 11 июня 2015г., на Красной Пресне проводится Международная выставка «Электро — 2015». САПР ЦВК будет представлена на выставке в рамках экспозиции кафедры «Электрические станции» МЭИ. Ждем Вас на стенде FA005.

25.02.2015

Вышла новая версия САПР ЦВК. Добавлены средства вычерчивания главной схемы электроустановки с возможностью получения файла описания однолинейной схемы в соответствии с МЭК 61850. Описание других дополнительных возможностей можно найти в разделе Скачать…

22.11.2014

В Москве, в период с 2 по 5 декабря 2014г., на ВДНХ проводится Международная специализированная выставка «Электрические сети Россиии — 2014». САПР ЦВК будет представлена на выставке в рамках экспозиции кафедры «Электрические станции» МЭИ. Ждем Вас на стенде А282.

10.09.2014

Вышла новая версия САПР ЦВК. Добавлены возможности конфигурирования ПТК АСУ ТП элекроустановок: формирование состава модулей ввода-выводы микропроцессорных устройств, списков сигналов, таблиц подключения сигналов с учетом схемотехнической информации. Подробнее…

05.05.2014

В Москве, в период с 27 по 29 мая 2014г., во Всероссийском выставочном центре (ВВЦ) в павильоне «Электрификация» проводится Международная выставка «РЗА — 2014». САПР ЦВК будет представлена на выставке в рамках экспозиции кафедры «Электрические станции» МЭИ. Ждем Вас на стенде G4.

08.04.2014

В журнале «Электрооборудование: эксплуатация и ремонт» опубликована статья Горбунова Р.А., Трофимова А.В., Полякова А.М., Абдухалилова Г.А. Автоматизация формирования таблиц сигналов АСУ электроустановок по принципиальным схемам вторичных цепей … читать дальше…

28.01.2014

Вышла новая версия программы САПР ЦВК. Расширены возможности организации файловой системы проекта, проведена оптимизация некоторых алгоритмов. 


26.11.2013
В Москве, в период с 3 по 6 декабря 2013г., во Всероссийском выставочном центре (ВВЦ) проводится Международная специализированная выставка «Электрические сети России — 2013». САПР ЦВК будет представлена на выставке в рамках экспозиции кафедры Электрические станции МЭИ. Ждем Вас на стенде А188

.


07.09.2013
Кафедра Электрические станции МЭИ проводит курсы повышения квалификации для проектировщиков по АСУ ТП электростанций и подстанций. Занятия проводятся на полигоне, оснащенном современным оборудованием в соответствии с МЭК 61850.
Очередные курсы состоятся 7-11 октября 2013г. Подробнее — на сайте кафедры es.mpei.ac.ru


06.08.2013

Вышла новая версия программы САПР ЦВК

. Расширены возможности
построения кабельных связей, работы со спецификацией для НКУ, сервисные
функции.

06.06.2013

САПР ЦВК будет представлена на выставке «Электро-2013» в рамках экспозиции кафедры Электрические станции МЭИ. Ждем Вас на стенде 21С90, Павильон 2 Зал 1 с 18 по 20 июня. …читать дальше…


02.02.2013

В журнале Электро опубликована статья, в которой рассматриваются вопросы повышения эффективности разработки рабочей документации на вторичные цепи электростанций и подстанций за счет использования типовых заводских проектных решений в рамках САПР ЦВК . .. читать дальше…

27.11.2012

В Москве, в период с 27 по 30 ноября 2012г., во Всероссийском выставочном центре (ВВЦ) проводится Международная специализирован-ная выставка «Электрические сети России — 2012». Команда САПР ЦВК приглашает всех участников и гостей выставки посетить стенд МЭИ R23.


08.11.2012

Вышла новая версия программы САПР ЦВК, которая адаптирована для работы с последней версией ZWCAD 2012+: поддержка многопроцессорности, повышенная производительность, высокая скорость открытия файлов и многое другое..


25.10.2012

САПР ЦВК была представлена на Международном электроэнергетическом форуме UPGRID-2012 в рамках экспозиции 

 кафедры Электрические станции Московского энергетического института

18.07.2012

Добавлена статья, в которой рассматриваются вопросы организации обмена информацией между системой автоматизации проектирования (САПР) и системой планирования ресурсов предприятия (ERP) на примере проектов релейных шкафов комплектных распределительных устройств. .. читать дальше…

13.06.2012

САПР ЦВК и ZWCAD представлены на выставке РЗА — 2012.

САПР Цепей Вторичной Коммутации (САПР ЦВК) совместно с программой ZWCAD была представлена на Международной выставке и XXI конференции «РЕЛЕЙНАЯ ЗАЩИТА И АВТОМАТИКА ЭНЕРГОСИСТЕМ», в рамках экспозиции кафедры Электрические станции Московского энергетического института… читать дальше…

Страница не найдена

Не удалось обнаружить запрошенную вами страницу.

Схемы электрические принципиальные | Лаборатория Электронных Средств Обучения (ЛЭСО) СибГУТИ

6.5.1 Схема электрическая принципиальная (код Э3) – схема, определяющая полный состав элементов и связей между ними и дающая детальное представление о принципах работы изделия.

6.5.2 На принципиальной схеме изображают все электрические элементы или устройства, необходимые для осуществления и контроля в изделии заданных электрических процессов, все электрические связи между ними, а также электрические элементы, которыми заканчиваются входные и выходные цепи.

На схеме допускается изображать соединительные и монтажные элементы, устанавливаемые в изделии по конструктивным соображениям.

6.5.3 Схемы выполняют для изделий, находящихся в отключенном состоянии.

В обоснованных случаях допускается отдельные элементы схемы изображать в рабочем положении с указанием на поле схемы режима, для которого изображены эти элементы.

6.5.4 Элементы и устройства, УГО которых установлены в стандартах ЕСКД, изображают на схеме в виде этих УГО.

Элементы или устройства, используемые в изделии частично, допускается изображать неполностью, ограничиваясь изображением только используемых частей или элементов.

6.5.5 Элементы и устройства изображают на схемах совмещенным или разнесенным способом.

При совмещенном способе составные части элементов или устройств изображают в непосредственной близости друг к другу. При разнесенном способе составные части элементов и устройств изображают на схемах в разных местах таким образом, чтобы отдельные цепи изделия были изображены наиболее наглядно. Разнесенным способом допускается изображать все и отдельные элементы или устройства схемы.

Пример выполнения устройств совмещенным и разнесенным способами в соответствии с рисунком 6.16.

совмещенный способ          разнесенный способ

Рисунок 6.16 – Пример изображения элементов совмещенным и разнесенным способом

6.5.6 При оформлении схем, с целью повышения наглядности, рекомендуется использовать строчный способ изображения элементов (устройств), при котором УГО элементов или их составных частей, входящих в одну цепь, изображают последовательно друг за другом по горизонтальной или вертикальной прямой, а отдельные цепи – рядом, образуя параллельные (горизонтальные или вертикальные) строки.

При оформлении схемы строчным способом допускается нумеровать строки арабскими цифрами в соответствии с рисунком 6.17.

Рисунок 6.17 – Пример выполнение схем строчным способом

6.5.7 При изображении элементов (устройств) разнесенным способом допускается на свободном поле схемы помещать УГО элементов (устройств), выполненных совмещенным способом. В данном случае элементы (устройства), используемые в изделии частично, изображают полностью с указанием как использованных, так и неиспользованных частей (элементов).

Выводы (контакты) неиспользованных частей (элементов) изображают короче, чем выводы (контакты) неиспользованных частей (элементов) в соответствии с рисунком 6.18.

Рисунок 6.18 – Изображение выводов (контактов) использованных и неиспользованных частей

6.5.8 Схемы выполняют в многолинейном или однолинейном изображении. При многолинейном изображении каждую цепь изображают отдельной линией, а элементы, содержащиеся в этих цепях, – отдельными УГО в соответствии с рисунком 6.19.

При однолинейном изображении цепи, выполняющие идентичные функции, изображают одной линией, а одинаковые элементы этих цепей – одним УГО в соответствии с рисунком 6.19.

многолинейное изображение      однолинейное изображение

Рисунок 6.19 – Пример выполнения многолинейного и однолинейного изображения цепи

6. 5.9 При необходимости на схеме допускается обозначать электрические цепи по правилам установленным ГОСТ 2.709 – 89 или другим НД, действующим в отрасли.

6.5.10 В случае изображения на схеме различных функциональных цепей, для повышения удобства чтения, допускается эти цепи различать по толщине линий. На одной схеме рекомендуется применять не более трех размеров линий по толщине, при этом на поле схемы при необходимости помещают соответствующие пояснения.

6.5.11 Для упрощения схемы допускается несколько электрически не связанных линий связи сливать в линию групповой связи, но при подходе к контактам (элементам) каждую линию связи изображают отдельной линией.

При слиянии линий связи каждую линию помечают в месте слияния, а при необходимости, и на обоих концах условными обозначениями (цифрами, буквами или их сочетанием) или обозначениями, установленными ГОСТ 2.709 – 89. Линии связи, сливаемые в линию групповой связи, как правило, не должны иметь разветвлений, т. е. всякий условный номер должен встречаться на линии групповой связи два раза. При необходимости разветвлений их количество указывается после порядкового номера линии через дробную черту в соответствии с рисунком 6.20.

Рисунок 6.20 – Пример изображения разветвлений цепей

6.5.12 Каждый элемент и (или) устройство, имеющее самостоятельную принципиальную схему и рассматриваемое как элемент, входящие в изделие и изображенные на схеме, должны иметь позиционное буквенно-цифровое обозначение в соответствии с ГОСТ 2.710 – 81.

Устройствам, не имеющим самостоятельных принципиальных схем, и функциональным группам рекомендуется также присваивать обозначения в соответствии с ГОСТ 2.710 – 81.

6.5.13 Позиционные обозначения элементам следует присваивать в пределах изделия. Порядковые номера элементам следует присваивать, начиная с единицы, в пределах группы элементов, которым на схеме присвоено одинаковое буквенное позиционное обозначение, например, С1, С2, С3 и т. д. Буквенные коды элементов схем электрических приведены в приложении Л.

Порядковые номера должны быть присвоены в соответствии с последовательностью расположения элементов на схеме сверху вниз в направлении слева направо.

В технически обоснованных случаях допускается изменять последовательность присвоения порядковых номеров в зависимости от размещения элементов или функциональной последовательности процесса передачи сигналов (информации).

При внесении изменений в схему (корректировке схемы) последовательность присвоения порядковых номеров может быть нарушена.

6.5.14 Позиционные обозначения проставляются на схеме рядом с УГО элементов с правой стороны или над ними.

При изображении на схеме элемента разнесенным способом позиционное обозначение проставляют около каждой составной части в соответствии с рисунком 6.16.

6.5.15 Если в состав изделия входят устройства, не имеющие самостоятельных принципиальных схем, то на схемах таких изделий допускается позиционные обозначения элементам устройств присваивать в пределах каждого устройства.

Если в состав изделия входит несколько одинаковых устройств, то позиционные обозначения элементам устройств следует присваивать в пределах этих устройств.

Порядковые номера элементам следует присваивать по правилам, установленным в 6.5.13 данного пособия.

6.5.16 На схеме изделия, в состав которого входят функциональные группы, позиционные обозначения элементам присваивают в соответствии с 6.5.13, при этом вначале присваивают позиционные обозначения элементам, не входящим в функциональные группы, а затем элементам, входящим в функциональные группы.

6.5.17 Если в изделии имеется несколько одинаковых функциональных групп, то позиционные обозначения элементов, присвоенные в одной из этих групп, следует повторять во всех последующих группах.

Обозначение функциональной группы, указывают около изображения функциональной группы сверху или справа. Пример выполнения данного правила в соответствии с рисунком 6.21.

Рисунок 6. 21 – Изображение на схеме одинаковых функциональных групп

Допускается одинаковые функциональные группы изображать по правилам приведенным в 6.2.3.8.

6.5.18 Если поле схемы разбито на зоны или схема выполнена строчным способом, то справа от позиционного обозначения или под ним допускается указывать в круглых скобках обозначения зон и номера строк, в которых изображены все составные части данного элемента или устройства в соответствии с рисунком 6.22.

6.5.19 Для повышения удобства чтения схемы допускается раздельно изображенные части элементов соединять линией механической связи, указываю щей на принадлежность их к одному элементу. Позиционные обозначения элементов в этом случае проставляют у одного или у обоих концов линии механической связи.

6.5.20 При изображении отдельных элементов устройств в разных местах в позиционные обозначения этих элементов должно быть включено позиционное обозначение устройства, в которое они входят по типу

=А2 – С6

Данное обозначение означает конденсатор С6, входящий в устройство А2.

Рисунок 6.22 – Пример простановки позиционных обозначений при разбиении схемы на зоны или выполнении схемы строчным способом

6.5.21 При разнесенном способе изображения функциональной группы в состав позиционных обозначений элементов, входящих в эту группу, должно быть включено обозначение функциональной группы по типу

≠T1 — R4

Данное обозначение означает резистор R4, входящий в функциональную группу Т1.

6.5.22 При однолинейном изображении около одного УГО, заменяющего несколько УГО одинаковых элементов (устройств), указывают позиционные обозначения всех этих элементов (устройств) в соответствии с рисунком 6.19.

Если одинаковые элементы (устройства) находятся не во всех цепях, изображенных однолинейно, то справа от позиционного обозначения или под ним в квадратных скобках указывают обозначения цепей, в которых находятся эти элементы (устройства) в соответствии с рисунком 6.23.

Рисунок 6.23 – Позиционное обозначение одинаковых элементов при однолинейном изображении, если элементы находятся не во всех цепях

6. 5.23 На принципиальной схеме должны быть однозначно определены все элементы и устройства, входящие в состав изделия и показанные на схеме.

Данные об элементах и устройствах должны быть записаны в перечень элементов. Связь перечня элементов с УГО элементов и устройств должна осуществляться через позиционные обозначения.

В технически обоснованных случаях допускается все сведения об элементах и устройствах помещать около УГО.

6.5.24 При сложном вхождении, например, когда в устройство, не имеющее самостоятельной принципиальной схемы, входит одно или несколько устройств, имеющих самостоятельные принципиальные схемы, и (или) функциональных групп, или если в функциональную группу входит одно или несколько устройств и т. д., то в перечне элементов в графе «Наименование» перед наименованием устройств, не имеющих самостоятельных принципиальных схем, и функциональных групп допускается проставлять порядковые номера (т.е. подобно обозначению разделов, подразделов и т. д. текстового документа) в пределах всей схемы изделия в соответствии с рисунком 6.24.

Поз.
обозн.
НаименованиеКол.Примечание
    
С1…С3Конденсатор К10-17а-Н90-0,22мкФ  
 ОЖ0.460.10 ТТУ3 
    
 Резисторы С2-33Н ОЖ0.467.093 ТУ  
 Резисторы С2-29В ОЖ0.467.099 ТУ  
R1…R4С2-33Н-0,5-3,3 кОм±5%-А-В-В4 
R5С2-33Н-0,5-10 кОм±5%-А-В-В1 
R6С2-29В-0,5-8,98 Ом±5%-1,0-Б1 
    
А21. Субблок 21-С. ХХХХ.ХХХХХХ.0511 
    
R1…R3Резистор С2-33Н-0,5-3,3 кОм±5%-А-В-В  
 ОЖ0.467.093 ТУ3 
    
Р11.1 Сумматор  
    
С1, С2Конденсатор К10-17а-Н90-0,22мкФ  
 ОЖ0.460.10 ТТУ2 
V1…V4   
 Диод 2Д510А ТТ3.362.096 ТУ4 
    
А3…А52. Субблок АТС. ХХХХ.ХХХХХХ.0123 
    

Рисунок 6. 24 – Пример выполнения перечня элементов

6.5.25 При необходимости указания около УГО номиналов резисторов и конденсаторов их показывают в соответствии с рисунком 6.25 при этом допускается применять упрощенный способ обозначения единиц измерений.

Для резисторов:
— от 0 до 999 Ом – без указания единиц измерения;
— от 1·103 до 999·103 Ом – в килоомах с обозначением единиц измерения строчной буквой «к»;
— от 1·106 до 999·106 Ом – в мегаомах с обозначением единиц измерения прописной буквой «М»;
— свыше 1·109 Ом – в гигаомах с обозначением единиц измерения прописной буквой «Г»

Для конденсаторов6
— от 0 до 9999·10-12 Ф – в пикофарадах без указания единиц измерения;
— от 1·10-8 до 9999·10-6 Ф – в микрофарадах с обозначением единиц измерения строчными буквами «мк».

6.5.26 Для обеспечения однозначности выполнения электрического монтажа, на схеме необходимо указывать обозначения выводов (контактов) элементов (устройств), нанесенные на изделие или установленные в их документации.

Если в конструкции элемента (устройства) и в его документации обозначения выводов (контактов) не указаны, то допускается условно присваивать им обозначения на схеме, повторяя их в соответствующих конструкторских документах (чертеже, электромонтажном чертеже и т. д.).

При условном присвоении обозначений выводам (контактам) на поле схемы должны быть помещены соответствующие пояснения.

При изображении на схеме нескольких одинаковых элементов (устройств) обозначения выводов (контактов) допускается показывать на одном из них.

При разнесенном способе изображения одинаковых элементов (устройств) обозначения выводов (контактов) необходимо показывать на каждой составной части элемента (устройства).

Для отличия на схеме обозначений выводов (контактов) от других обозначений (например обозначений цепей и т.п.) допускается записывать обозначения выводов (контактов) с квалифицирующим символом в соответствии с ГОСТ 2.710-81.

Рисунок 6.25 – Обозначение номиналов резисторов и конденсаторов

6. 5.27 Если элемент на схеме показывают разнесенным способом, то поясняющую надпись помещают около одной составной части или на поле схемы около изображения элемента, выполненного совмещенным способом.

6.5.28 Для удобства чтения схемы рекомендуют указывать характеристики входных и выходных цепей изделия (напряжение, сопротивление и т.п.), а также контролируемые параметры на гнездах и т.п. Вместо характеристик или параметров входных и выходных цепей допускается приводить наименования цепей или контролируемых величин.

6.5.29 Если заведомо известно (например, по техническому заданию), что изделие предназначено для работы только в одном конкретном изделии, то на схеме допускается указывать адреса внешних соединений входных и выходных цепей.

Указанный адрес должен обеспечивать однозначность присоединения. Например, если выходной контакт изделия должен быть соединен с шестым контактом второго соединителя устройств А3, то адрес будет записан следующим образом:

=А3 – Х2:6

При обеспечении однозначности присоединения допускается указывать адрес в общем виде, например, «Коллектор прибора КИУ».

6.5.30 Характеристики входных и выходных цепей изделия, а также адреса их внешних подключений рекомендуется записывать в таблицы, помещаемые взамен УГО входных и выходных элементов – соединителей, плат и т. д. в соответствии с рисунком 6.26.

Каждой таблице присваивается позиционное обозначение элемента, взамен УГО которого она помещена. Над таблицей допускается указывать УГО контакта – гнезда или штыря.

Для удобства построения схемы допускается таблицы выполнять разнесенным способом.

Порядок расположения контактов в таблице определяется удобством выполнения схемы.

Допускается помещать таблицы с характеристиками цепей около УГО входных и выходных элементов в соответствии с рисунком 6.27.

Рисунок 6.26 – Пример изображения элемента внешнего подключения

Конт.ЦепьАдрес
1Δf=0,3…3кГц; RH=600=A1-X1:1
2Uвых=0,5 В; RH=600 Ом=A1-X1:2
3Uвых=+60В; RH=500 Ом=A1-X1:3
4Uвых=+20В;=A1-X1:4

Рисунок 6. 27 – Пример таблицы с характеристиками цепей при наличии на схеме УГО входных и выходных элементов

Аналогичные таблицы рекомендуется помещать на линиях, изображающих входные и выходные цепи при условии, что эти цепи не заканчиваются соединителями. В данном случае таблицам позиционное обозначение не присваивают.

Допускается при необходимости вводить в таблицы другие дополнительные графы, а при отсутствии характеристик цепей или адресов не приводить графы с этими данными. В графе «Конт.» допускается проставлять через запятую последовательные номера нескольких контактов при условии, что они соединены между собой.

6.5.31 Для изображения многоконтактных соединителей допускается применять УГО, не показывающие отдельные контакты. В данном случае сведения о соединении контактов приводят одним из следующих способов:
— около УГО соединителей, на свободном поле схемы или на последующих листах схемы помещают таблицы с указанием адреса соединения. Если таблица расположена на свободном поле схемы или на последующих листах схемы, то над таблицей проставляют позиционное обозначение соединителя. Пример выполнения данного правила в соответствии с рисунками 6.28 и 6.29;
— соединения с контактами соединителя показывают разнесенным способом в соответствии с рисунком 6.30.

X2

Рисунок 6.28 – Пример таблицы помещаемой на свободном поле схемы

 

Рисунок 6.29 – Пример таблицы, помещаемой около УГО соединителя

 

Рисунок 6.30 – Разнесенный способ изображения соединения с контактами соединителя

В графах таблиц приводят следующие данные:
— в графе «Конт.» – номера контактов соединителя строго в порядке возрастания;
— в графе «Адрес» – обозначение цепи и (или) позиционное обозначение элементов, соединенных с контактами;
— в графе «Цепь» – характеристику цепи;
— в графе «Адрес внешний» – адрес внешнего соединения.

При изображении соединения с контактами соединителя разнесенным способом (в соответствии с рисунком 6.30), точки соединенные штриховой линией с соединителем, означают соединения с соответствующими контактами данного соединителя. Характеристики цепей при необходимости помещают на свободном поле схемы над продолжением линий связи в со-ответствии с рисунком 6.30.

6.5.32 При изображении на схеме элементов, параметры которых подбирают при регулировании, около позиционных обозначений этих элементов на схеме и в перечне элементов проставляют звездочки (например, С5*), а на поле схемы помещают сноску: «*Подбирают при регулировании».

В данном случае в перечень элементов записывают элементы, параметры которых наиболее близки к теоретическим, а предельные значения параметров элементов приводят в графе «Примечание».

Если при регулировании параметра подбирают элементы различных типов, то эти элементы перечисляют в технических требованиях на поле схемы, а в графах перечня элементов приводят следующие данные:
— в графе «Наименование» – наименование элемента и параметр наиболее близкий к теоретическому;
— в графе «Примечание» – ссылку на соответствующий пункт технических требований и предельные значения параметров при подборе.

6.5.33 При изображении устройства в виде прямоугольника допускается в прямоугольнике взамен УГО входных и выходных элементов помещать таблицы с характеристиками входных и выходных цепей в соответствии с рисунком 6.31, а вне прямоугольника – таблицы с указанием адресов внешних присоединений в соответствии с рисунком 6.32. При необходимости допускается в таблицы вводить дополнительные графы.

Рисунок 6.31 – Пример изображения устройства

 

Рисунок 6.32 – Пример изображения устройства

Каждой таблице в данном случае присваивают позиционное обозначение элемента, взамен УГО которого она помещена.

Взамен слова «Конт.» в таблице допускается помещать УГО контакта соединителя (гнездо или вилка) в соответствии с рисунками 6.31 и 6.32.

6.5.32 На поле схемы при необходимости допускается приводить указания о марках, сечениях и расцветках проводов и кабелей (многожильных проводов), для выполнения соединения элементов, а также указания о специфических требованиях к электрическому монтажу конкретного изделия, например требования о взаимном расположении отдельных цепей.

6.5.33 Буквенные коды элементов схем электрических приведены в приложении Л. Примеры выполнения схем электрических принципиальных приведены в приложении М. Условные графические обозначения наиболее употребляемых элементов приведены в приложении Н. Условные графические обозначения наиболее употребляемых устройств связи приведены в приложении П.

Электрическая цепь и ее элементы. Принципиальная схема электрической цепи. Схема замещения электрической цепи

1)Электрическая
цепь:

Совокупность устройств для получения в них эл. тока наз. электрической
цепью. В основном цепь состоит из источников питания, приёмников энергии, или
потребителей, и проводов для передачи эл. энергии.

2) Элемент  электричес- кой цепи:

Элементы электрической
цепи
– устройство или прибор,
выполняющий определенные функции. Все элементы электрической цепи
принципиально делятся  на источники и потребители
:     

3) монтажная схема   электрической
цепи.

Монтажная  схема -изображает элементы цепи и соединительные провода.

4) принципиальная схема электрической
цепи. 

Принципиальная 
схема – на ней показываются условные графические изображения элементов и
их соединений.

5) схема
замещения электрической цепи.

Схема замещения – расчетная модель электрической цепи, на которой
элементы замещаются идеализи -рованными элементами без вспомогательных
элементов, не влияющих на результаты расчетов.

6)Иисточники эц:

В
качестве источников питания применяются эл. генераторы, аккумуляторы и
первичные элементы.

7) Приемники эц:

К приёмникам эл. энергии относятся электродвигате ли, лампы накаливания, нагревательные устройст ва и тд.

8)Классификация эц по роду тока:

. ПО РОДУ ТОКА: — 1. цепи постоянного тока (ток, не меняющ. во времени), 2. цепи
переменного тока  (синусоидально-измененяющийся ток

I(t)



t

9) Линейные эц:

Линейные
ЭЦ сопротивление каждого эл-та кот. не зависит ни от тока, ни от напряжения.
Зависимость напряж.  от тока показывается  на вольт-амперных хар-ках. 

I(t)



t

10)Нелинейные эц:

Нелинейные
если хотя бы один  эл-т в цепи имеет сопрот-е,  зависящее  или от тока  или от
напряж-я.

I(t)



t

11) Простые
эц:

Все элементы соединены последовательно

12)Сложные эц:

Сложнее электрические цепи содержат азветвления

13) Идеальный
источник ЭДС:

Ид ист ЭДС – источник, напряжение на зажимах которого не зависит
от тока

14)
Идеальный источник тока:

Источник энергии, ток через который не зависит от напряжения на
его зажимах

15)
Схемы замещения реальных источников энергии:

Графическое
изображение Эл. цепи, составленное из условных обозначений электротехнич.
устройств, наз. принципиальной схемой. Схема замещения эл. цепи является её
количественной моделью. Она состоит из совокупности различных идеализированных
элементов, выбранных так, чтобы можно было с хорошим приближением описать процессы
эл. цепи.

Рассмотрим
один из распространённых источников энергии постоянного тока – гальванический
элемент. Между разноимённо заряженными пластинами возникает однородное Эл. поле
с напряженностью Е [В/м], которое препятствует направленному движению ионов в
растворе. Напряжение, при котором накопление зарядов прекращается, служит
количественной мерой сторонней силы. Её называют электродвижущей силой (ЭДС,
ξ). Если к выводам гальванического элемента подключить приёмник,. То в
замкнутой эл. цепи возникнет ток. Заряд каждой из пластин уменьшится и появится
направленное движение ионов в растворе кислоты. Направленное движение ионов
сопровождается их взаимными столкновениями, что создает внутреннее
сопротивление гальванического элемента постоянному току. Т.о., эскизное
изображение которого дано на рис.1, а изображение на принципиальных схемах – на
рис.2, можно представить в виде схемы замещения (рис.3), состоящей из последовательно
включенных источника ЭДС ξ и  резистивного элемента с сопротивлением . Равным внутреннему сопротивлению
гальванического элемента. Стрелка ЭДС указывает направление движения положительных
зарядов внутри источника под действием сторонних сил. Схема замещения рис.3
применяется и для любых других источников эл. энергии постоянного тока.

16) Закон Ома для участ-ка цепи:

Uab = IR => I = Uab/R

17)
закон Ома для участка цепи, содержа -щего источник ЭДС:

Uab



a       I    R    c    E     b

Uab = Uac + Ucb

Uac = IR

Ucb = φc  — φb = — E

φb  — φc = E

Uab = IR – E





I = (Uab + E)/R

 

18)
Режимы работы источников энергии:

Ист. тока и ЭДС м. раб-ть как
в режиме ист. тока так и  в режиме потребителей (приемников) эл-ой эн-ии.
Источник ЭДС работает в режиме потреб-ля , если напряжения тока ч/з него и ЭДС
не совпадают. (рис-1 – потребитель, 2-источник):

Ист. тока раб. в режиме
потребителя, если напряж. на зажиме,  из кот вытекает ток, выше чем,  на
зажиме, в котором ток втекает.

19,26) Баланс
мощностей в цепи постоянного тока:

Сумме мощностей энергии равна сумме мощностей приёмников энергии

Pист = ∑Pпр

Pпр = I2 R

Pист = EI

Если направление тока и ЭДС через источник тока не совпадает, то
исто -чник потребляет энергию

20)
первый закон  Кирхгофа

 закон Кирхгофа: сумма токов,
направленных к узлу, равна сумме токов, направленных от него.

Для
узла А можно написать:, I1 + I2
– I3 – I4 – I5
= 0 а в общем виде ,т.е.алгебраичеc-кая
сумма токов в узле равна нулю. При этом токи, направленные от узла, считаются
отрицательными.

21) второй закон Кирхгофа

Рассмотрим
источники, работающие в режиме генератора, т.е. аправления токов совпадают с
направ -лениями ЭДС. Одинаковое для них напряжение между точками ВА или, что то
же, между точками ЖЗ определяется по формуле:

 Тогда
для замкнутого контура АБВГДА спра -ведливо уравнение

откуда

или
в обшей форме

.

22) расчёт цепей посто- янного тока путём непосредственного
применения законов Кирхгофа.

По первому зак. Кирхгофа составляется Y – 1 урав- нений. Направления токов выбираются произвольно

По II-му составляется

B – (Y — 1) – T уравнений,
где В – кол. ветвей в цепи

Y – кол. узлов в цепи

T – кол. ветвей содерж. источник тока.

23)
расчёт цепей постоян -ного тока методом контурных токов

Он снован на предположении, что в каждом независимом контуре, в
каждой

Схема электропроводки в квартире | elesant.ru

 

Вступление

Здравствуй Уважаемый читатель! Схемы электропроводки в квартире являются основными документами для электрика. На основе схем электропроводки выполняются все работы по организации электропитания квартиры. Вся электрика в квартире должна выполняться в соответствии со схемами электропроводки, которые в свою очередь делаются в строго соответствии с нормативными документами.

Для электрики в квартире делается несколько различных схем электропроводки. Все они относятся к одному виду схем-электрические схемы, но различаются по типу. Каждый тип электрических схем имеет свою информационную нагрузку и, соответственно, различный внешний вид. 

Типы электрических схем электропроводки в квартире

Все электрические схемы электропроводки отображают основные функциональные части проводки (розетки, светильники, автоматы защиты, УЗО и т.п.) и основные взаимосвязи между ними.

К основным типам электрических схем электропроводки в квартире относятся:

  • Структурная схема;
  • Функциональная схема;
  • Принципиальная схема;
  • Расчетная схема;
  • Монтажная схема (соединений).

На диаграмме ниже я отобразил типы электрических схем с небольшими примерами.

Разберем каждый тип электрических схем в отдельности.

Структурная схема электропроводки квартиры

Структурная схема электропроводки делается самой первой. На ней в виде прямоугольников иллюстрируются взаимосвязи между распределительным щитом, электрическим вводом в квартиру и всеми планируемыми электроприборами, которые в квартире будут установлены.

Графическое построение структурной схемы должно максимально полно отобразить все электрические взаимосвязи. Связи на структурной схеме желательно отобразить в виде стрелок. НА всех элементах схемы нужно проставить их номиналы: можность, напряжение, сила тока. Все это нужно для функциональной электрической схемы квартиры.

Функциональная(принципиальная) схема электропроводки квартиры

В этой схеме электрические связи между элементами электропроводки и сами элементы иллюстрируются в виде специальных обозначений. Смотрите рисунок ниже. Здесь же представляю пример функциональной схемы электропроводки квартиры с заземлением и двумя УЗО(устройства защитного отключения)

Электромонтажная (Полная принципиальная) схема электропроводки квартиры

Это наиболее полный тип схемы электропроводки. На этой схеме обозначаются все электрические элементы (розетки, светильники и т.п.) и бытовые устройства (плита, джакузи, теплый пол, кондиционеры). Точно отображаются линии прокладки всех кабелей электропроводки. Расположение распаячных коробок, шин соединения на входах и выходах электрических цепей. Пример принципиальной схемы электропроводки смотрите ниже.

Однолинейная расчетная схема электропроводки квартиры

Очень важная схема электропроводки квартиры. Делаются расчетные схемы для электрических квартирных щитков. На ней указываются все вводные автоматы защиты, автоматы защиты для отдельных групп электропроводки. Изображаются они специальными условными обозначениями. Также на расчетной схеме обозначаются все потребители и кабели электропроводок.

Все элементы схемы нанесены с расчетными номинальными характеристиками. Для автоматов защиты указываются ток срабатывания в Амперах. Для кабелей указывается количество жил, их сечение и марка. Например: кабель ВВГнг 3х2.5,обозначает кабель с тремя медными жилами в виниловой изоляции с сечением жил 2,5 квадратных миллиметра, причем изоляция нг-негорючая. Об электрических кабелях и их маркировках читайте отдельную статью на сайте.

На основе именно расчетной схемы покупаются материалы для выполнения работ по электрике. Также по расчетной схеме электропроводка квартиры разбивается на группы.

По расчетной схеме любой электрик может собрать электрический квартирный щит и поэтому в электропроекты квартир обычно не включают следующий тип электрической схемы. Это монтажная схема или схема соединений.

Монтажная схема (схема соединений) электропроводки в квартире

Монтажная схема иллюстрирует все электрические соединения в квартире.

Делается она в виде подробной таблицы с указанием, от какого устройства и куда идет кабель, к какой клемме он подсоединяется и какие характеристики имеет. Для электропроектов квартир монтажные схемы делаются редко, В основном схемы соединений делаются для промышленных предприятий с большими распределительными щитами, а также для главного распределительного щита (ГРЩ) жилых домов.

Нормативные ссылки

  • ГОСТ 2.701,Виды и типы схем
  • ПУЭ (Правила Устройства Электроустановок) изд.7
  • ГОСТ 2.702-75,Правила выполнения электрических схем

©Elesant.ru

Другие схемы электропроводки и электропроекты

  • мая 2012

  • июня 2012

  • октября 2012

  • ноября 2012

 

ПРИНЦИПИАЛЬНАЯ СХЕМА — это… Что такое ПРИНЦИПИАЛЬНАЯ СХЕМА?

ПРИНЦИПИАЛЬНАЯ СХЕМА

схема, определяющая полный состав элементов и связи между ними и дающая детальное представление о принципах работы изделия. П. с. служит основанием для разработки конструкторской документации, а также используется при наладке, регулировке, контроле и ремонте изделий.

Большой энциклопедический политехнический словарь.
2004.

  • ПРИНТЕР
  • ПРИПЛОТИННАЯ ГЭС

Смотреть что такое «ПРИНЦИПИАЛЬНАЯ СХЕМА» в других словарях:

  • Принципиальная схема — токового зеркала Принципиальная схема, принципиальная электрическая схема  графическое изображение (модель …   Википедия

  • принципиальная схема — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN basic circuitschematic circuitschematic diagramcircuit diagram …   Справочник технического переводчика

  • принципиальная схема — principinė schema statusas T sritis automatika atitikmenys: angl. BASIC circuit; schematic circuit vok. Prinzipschaltbild, n; Prinzipschaltung, f rus. принципиальная схема, f pranc. circuit de base, m; schéma basique, m; schéma de base, m …   Automatikos terminų žodynas

  • принципиальная схема — principinė schema statusas T sritis Standartizacija ir metrologija apibrėžtis Sutartiniais ženklais pavaizduota elementų ir jų ryšių visuma. atitikmenys: angl. basic scheme vok. grundsätzliches Schaltbild, n rus. принципиальная схема, f pranc.… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • принципиальная схема — principinė schema statusas T sritis chemija apibrėžtis Sutartiniais ženklais pavaizduota elementų ir jų ryšių visuma. atitikmenys: angl. basic circuit; functional diagram; key diagram; schematic circuit rus. принципиальная схема …   Chemijos terminų aiškinamasis žodynas

  • принципиальная схема — principinė schema statusas T sritis fizika atitikmenys: angl. basic diagram; functional diagram; key diagram vok. Prinzipschaltbild, n rus. принципиальная схема, f pranc. schéma de base, m; schéma de principe, m …   Fizikos terminų žodynas

  • Схема — Схема: графический документ [1]; изложение, изображение, представление чего либо в самых общих чертах, упрощённо (например, схема доклада)[2]; электронное устройство, содержащее множество компонентов (интегральная схема). Графический документ… …   Википедия

  • принципиальная электрическая схема — схема электрическая принципиальная (надпись на чертеже) [Интент] принципиальная (электрическая) схема — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] EN circuit diagram A circuit diagram (also known as an electrical diagram …   Справочник технического переводчика

  • схема — Упрощённое графическое изображение предмета или процесса с пояснением и описанием [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] схема Условное графическое изображение объекта, в общих чертах передающее суть его… …   Справочник технического переводчика

  • схема — Упрощённое графическое изображение предмета или процесса с пояснением и описанием [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] схема Условное графическое изображение объекта, в общих чертах передающее суть его… …   Справочник технического переводчика

Виды схем, принципы их построения

Электрическая схема — это чертеж, на котором упрощенно и наглядно изображены связи между отдельными элементами электрической цепи, выполненный с применением условных графических обозначений и позволяющий понять принцип действия устройств. В отличие от машиностроительных и строительных чертежей электрические схемы выполняют без соблюдения масштаба.

В зависимости от назначения электрические схемы разделяют на монтажные, принципиальные и некоторые другие. Далее будут рассмотрены в основном принципиальные схемы.

Монтажные схемы — это рабочие чертежи, по которым выполняют монтаж. Оборудование электроподвижного состава обычно комплектуют на отдельных панелях, в отдельных блоках, ящиках. Каждое такое устройство имеет свою схему — рабочий чертеж. На монтажных схемах оборудование показывают так, как оно расположено в действительности на вагонах с полной маркировкой.

На принципиальной электрической схеме условными графическими обозначениями показывают только основные элементы оборудования — тяговые двигатели, пускотормозные реостаты, контак торы и др. Эти схемы составляют так, чтобы можно было получить ясное представление о том, по каким электрическим цепям и через какие элементы оборудования проходит электрический ток от источника к потребителю. Поэтому на таких схемах не показывают второстепенные элементы (переходные зажимы, промежуточные провода и пр.), которые могут затруднить понимание схемы и сделать ее ненаглядной.

Для того чтобы принципиальная схема была более простой и наглядной, оборудование, аппараты и приборы располагают на ней в том порядке, в каком они электрически соединены, без учета действительного размещения их на вагоне и механической связи друг с другом. Поэтому, например, контакты одного аппарата могут располагаться на схеме в различных местах. Все соединительные провода изображают по возможности прямыми линия ми кратчайшей длины.

Различают следующие принципиальные электрические схемы Вагона:

силовых цепей, включающих в себя тяговые двигатели и аппараты переключения режимов их работы, через которые проходит Тот же ток, что и через тяговые двигатели;

цепей управления, включающих в себя устройства и аппараты, Которыми осуществляют включения и переключения силовых аппа ратов, а также лампы сигнализации о состоянии силовой цепи ц положении аппаратов;

вспомогательных цепей, в которые включены аккумуляторная батарея, мотор-компрессор, лампы освещения, сигнальные фары печи отопления, аппараты управления раздвижными дверями ц другие вспомогательные аппараты.

Ясному представлению о работе подвижного состава, умелой его эксплуатации, быстрому устранению неисправностей во многом способствует умение разбираться в электрических схемах или, как говорят, читать их. Прочитать электрическую схему вагона -! значит, проследить по каким путям ток поступает к тяговым двигателям и другим аппаратам. Для этого необходимо знать, какое положение занимают контакты аппаратов, осуществляющих переключения отдельных цепей, так как в зависимости от положения этих контактов (замкнуты они или разомкнуты) некоторые электрические цепи находятся под током, а другие обесточены.

Все контакты реле и контакторов обычно изображают в состоянии, в котором они находятся при нулевом положении главной рукоятки и положении «Вперед» реверсивной рукоятки контроллера машиниста. В соответствии с этим все блокировочные и силовые контакты аппаратов, производящие соединения проводов электрической цепи, подразделяют на размыкающие, т. е. замкнутые при нормальном положении аппарата (при отсутствии тока или внешних сил), и замыкающие, т.е. разомкнутые при этом же положении аппарата.

Нормальным считают для индивидуальных контакторов положение отключенное, для групповых переключателей — положение последовательного соединения тяговых двигателей в тяговом режиме (ПС), для реверсора — положение «Вперед».

При чтении электрической схемы прежде всего определяют пути прохождения тока. При этом отправной точкой в схемах постоянного тока принято считать положительный полюс источника питания, а конечной- его отрицательный полюс. Необходимо также ¦ иметь ясное представление о том, как устроены аппараты и машины, включенные в цепь.

Правила выполнения схем определяются государственными стандартами.

Контрольные вопросы 1. Чем отличаются электрические схемы вагонов от машиностроитель’ ных и строительных чертежей?

2. В чем разница принципиальных и монтажных электрических схем?

3. Каково назначение принципиальных схем силовых, вспомогатеЛЬ’ ных цепей и цепей управления?

4. Какое положение на принципиальных схемах принято считать нормальным: для индивидуальных контакторов, переключателей положений, реверсоров?

5. Какие контакты электрических аппаратов называются замыкающими, а какие — размыкающими?

6. С чего начинают чтение электрической схемы?

⇐Радиооборудование | Электропоезда метрополитена | Условные графические и буквенные обозначения⇒

Принципиальные и монтажные схемы освещения в квартире и доме

На рисунке внизу показано, как наружная обойма цоколя лампы подключена к рабочему нулю N, а удаленный контакт — к фазе L.

При монтаже электропроводки схем освещения следует соблюдать правила использования цветовой разметки изоляции для каждой магистрали. Она в дальнейшем значительно облегчит поиск неисправностей и выполнение доработок. Каждый проводник L, N и РЕ на всем протяжении квартиры должен быть одного цвета. Принято использовать проводники с желто-зеленой изоляцией для защитного нуля, голубой — для рабочего N, а оставшуюся, например, красную или белую — для фазы L.

Такая принципиальная схема довольно проста, но в распределительной коробке РК могут возникнуть сложности с подключением проводов к клеммам. Дело в том, что внутри РК собираются провода из четырех кабелей от квартирного щитка, выключателя, светильника и магистрали к следующему светильнику.

Провод, идущий от выключателя к осветительному устройству, относится к фазному. Хотя в данном кабеле для фазы уже применен красноватый провод. Поэтому понадобиться использовать тот, который имеет голубий расцветка, но его невозможно перепутывать с рабочим нулем. Чтобы достичь желаемого результата на изоляцию одевают кембрик красноватого цвета либо бирку с надписью. Данный проводник подключают на доп клемму ДК, которая при включенном выключателе располагается под потенциалом фазы.

Эта схема обширно всераспространена, ее рекомендовано повсевременно повторять для любого осветительного прибора без конфигураций. Это облегчит вероятную работу по поиску образующихся дефектов в электрической цепи и исполнение добавочных включений. 

При этом методе в одно отверстие у клеммы возможно подключить 3 электропровода, хотя надлежит учитывать немного особенностей их соединения. В случае если сечение проводника для освещения обычное в 1,5мм2, то его диаметр составляет 1,4 мм. Для 3-х таковых жил необходим внутренний диаметр отверстия не менее, чем 3,3 мм, но лучше 4.

Все 3 жилы нужно пропустить под два крепежных винта и тесно обжать для создания надежного электрического контакта.

В случае если до вставки в отверстие сделать крепкую скрутку жил, то плоскость их соприкосновения возрастет, обеспечив наименьшее переходное противодействие в месте контакта. Этим исключается излишний нагрев проводов от огромных нагрузок. В случае если есть шанс сварить электропровода опосля скрутки, то от нее отказываться не стоит.

Таковой метод соединения самый верный. В данном случае колодка используется исключительно для фиксации проводов снутри разветвительной коробки и возможно заворачивать лишь один крепежный винт, но все жилы вставляются с одной стороны.

Используя сварку, возможно прирастить количество коммутируемых жил 1,5мм2 до 4 в отверстии с поперечником 4 мм. В случае если клеммная колодка жестко прикреплена внутри разветвительной коробки, то соединительные концы возможно просовывать через внутреннее отверстие трубки так, чтоб наружу малость выступали сваренные концы жил повторяющий вид наплавленных шариков. Их разрешается не изолировать.

Но идеальнее всего для надежности их упрятать и прикрыть слоем изоляции.

Схема включения осветительных приборов через двух клавишный выключатель

В люстрах с несколькими лампочками традиционно делят осветительные приборы на 2 группы. Это разрешает делать разную освещенность комнаты, используя свет от одной либо другой части схемы или двух совместно. На любую группу ламп накаливания действует своя кнопка двухпозиционного выключателя.

В данной схеме пригодится четырехжильная электропроводка от разветвительной коробки к выключателю и люстре. На схеме показано, что для коммутации проводов в РК понадобиться применять 2 добавочные клеммы ДК1 и ДК2, через которые отступающая фаза от выключателя подается на удаленные контакты ламп накаливания.
Тут также фаза L подводится к выключателю так, чтоб использовать два его контакта, а ноль от собственного электропровода соединяется впрямую со всеми патронами осветительных приборов и выводится на цоколь лампочки.
Схема для монтажа клемм в разветвительной коробке схожа на осмотренную раньше, но в ней добавлена очередная клемма — сейчас их стало 5. 

К одному отверстию колодки подходит наибольшее число жил — 3. Это позволяет использовать колодки с внутренним поперечником 3,3 мм.
В случае если применять для соединения жил сварку, то количество жил, вставляемых в некую клемму, возрастет до 4. Им будет нужно внутренний диаметр отверстия от 4 мм.

Схема включения осветительного прибора для освещения коридора



Тут рассматривается вариант управления источником света при помощи 2-ух выключателей, находящихся на значимом удалении между собой. В данной схеме применяют простые двухклавишные либо особые «проходные» электровыключатели или тумблеры с групповыми контактами.
Лампочка зажигается либо гаснет при конкретном сочетании кнопок у двух выключателей. Серьезной фиксации их положения нет. Зато освещением можно управлять с хоть какого конца помещения.

От разветвительной коробки с клемм К1 и К2 к любому выключателю следует четырехжильный кабель. Фаза на осветительный прибор подается через клемму К3 от РК в последствии коммутаций выключателями.
Монтажная схема разветвительной коробки состоит из 6 клемм.

Тут разрешается использовать клеммы с внутренним диаметром от 3,3 мм поскольку наибольшее количество объединяемых жил не превосходит 3-х. Но ежели применять сварку проводников, то монтаж понадобиться вести с одной стороны и количество клемм возрастет до 7. При этом в отдельных местах электропровода понадобиться сваривать по 4 и применять для них клеммы с внутренним диаметром от 4 мм.

Для коммутаций РЕ проводника будет нужно применять 2 клеммы.
Повышенное число клемм имеет возможность востребовать бо́льшие габариты разветвительной коробки.

Схема включения осветительного прибора для освещения коридора с управлением от импульсного реле

Система реле разрешает делать переключения света средством импульсной подачи фазного потенциала на клемму S, расположенную на его корпусе. В последствии первого импульса, прибывающего от нажатия хоть какой клавиши, реле подключит фазу L на клемму С, соединенную через клемму К3 с удаленным контактом лампы осветительного прибора. При втором импульсе реле снимает напряжение со своей выходной клеммы и лампочка угасает.
Клавиши нужно использовать с самовозвратом от пружин. Располагать их возможно в местах на большом удалении. Достаточно комфортно включать свет при входе в спальную комнату из коридора, а выключать клавишей у прикроватной тумбочки в пределах изголовья.

Импульсные реле имеют все шансы быть исполнены с различным корпусом, который уготован для крепления на Din рейку снутри квартирного щитка либо установку в разветвительной коробке.
Две клавиши управления светом подключаются параллельно. Это упрощает монтаж и подготовку трасс под кабель, который обязан иметь 3 жилы: две для работы и одну для защиты РЕ проводником.
При размещении реле внутри ответвительной коробки нужно изучить габариты всех приборов и предугадать удачный доступ к ним для работы.
Монтажная схема электропроводки для такового освещения показана на рисунке. При ее применении возможно минимизировать площадь поперечного сечения проводов, объединяющих друг от друга клеммы клавиш, до 0,35 мм2. Они надежно вынесут нагрузку, образующуюся при подаче потенциала фазы на клемму S импульсного реле.

Иногда сможет появиться надобность управления светом из нескольких мест, к примеру, освещением входа в дом с улицы и из комнат. Чтобы достичь желаемого результата достаточно подключить вдоль несколько клавиш так, как показано на иллюстрации ниже.

Монтажная схема для этого случай будет иметь следующий вид.

В зависимости от той ли иной ситуации и смотря на потребности управлять светом можна из любой точки помещения и любым количеством (групами) осветительных точек в помещение.

С помощью суточных таймеров и фотореле можна ограничить работу осветительных приборов в дневное время суток тем самым секономить на случайно невыключеном выключателе.

Принципиальная схема

— узнайте все о принципиальных схемах

Что такое принципиальная схема?

Принципиальная схема — это визуальное отображение электрической цепи с использованием основных изображений деталей или стандартных промышленных символов. Использование символа зависит от аудитории, просматривающей диаграмму. Эти два разных типа принципиальных схем называются графическими (с использованием основных изображений) или схематическими (с использованием стандартных символов). Принципиальная схема в виде принципиальной схемы используется для визуального представления электрической цепи электрику.Принципиальная схема в графическом стиле будет использоваться для более широкой, менее технической аудитории.

Обозначения принципиальных схем

На принципиальной схеме можно использовать сотни различных символов. К ним относятся простые изображения объектов, таких как батарея или резистор, для графической схемы, или стандартные символы для таких объектов, как конденсаторы или катушки индуктивности.

В сочетании с символами принципиальной схемы существует также ряд различных типов стилей линий для соединения объектов.В случае пересечения линий используйте переход между линиями, чтобы показать пересечение линий. Важно понимать, кто будет просматривать принципиальную схему, чтобы гарантировать использование правильных типов символов.

Как создать принципиальную схему

Существует много разных способов создания принципиальной схемы. Их можно создавать вручную, но более эффективным способом является использование программного обеспечения для построения диаграмм, такого как SmartDraw, которое предназначено для этой цели.
Программное обеспечение для построения диаграмм, специально разработанное для создания принципиальных схем, имеет несколько преимуществ.

  • Быстрая и простая конструкция.
  • Предоставляет доступ к тысячам символов.
  • Легко поделиться в электронном виде.
  • Обеспечивает точное размещение предметов.
  • Легко редактировать.

SmartDraw позволяет быстро, точно и легко создать принципиальную схему.
Он также позволяет вам создавать персональные пользовательские библиотеки символов, которые вы обычно используете.Посмотрите это краткое руководство по созданию электрических схем.
Узнайте больше о том, как сделать принципиальную схему, прочитав это руководство по принципиальной схеме.

Примеры схем

Лучший способ понять принципиальные схемы — это посмотреть на некоторые примеры принципиальных схем.

Щелкните любую из этих принципиальных схем, включенных в SmartDraw, и отредактируйте их:

Просмотрите всю коллекцию примеров схем и шаблонов SmartDraw.

Переход от схемы к схеме подключения для целей подключения — базовое управление двигателем

Заполненная электрическая схема может помочь с физическим монтажом проводов. Чтобы помочь в разработке схемы соединений, полезно начать с принципиальной схемы схемы и системы нумерации .

Схема подключения и схематический чертеж

Рассмотрим рисунок выше. Он включает трехпроводную принципиальную схему, а также эквивалентные компоненты управления и силовую цепь .В этом примере нет управляющего трансформатора, поэтому мы будем получать управляющую мощность непосредственно от линии. Схема управления . Питание берется со стороны нагрузки устройств максимального тока и со стороны линии силовых контактов.

После того, как схематическая диаграмма будет правильно пронумерована, каждое устройство будет иметь два идентифицирующих его номера: один провод на стороне линии и один на стороне нагрузки. Например, в трехпроводной схеме кнопка останова имеет провода 1 и 2, в то время как кнопка запуска и удерживающий контакт получают номера проводов 2 и 3 (отсюда термин « 2-3, контакт »).

Схема и электрические схемы с номерами

После того, как все устройства были правильно пронумерованы, мы просто играем, соединяя точки. Каждая точка с одним и тем же номером — электрически общий и должна быть соединена вместе. Используйте прямые линии и подключайте провода только к точкам подключения оборудования.

Принципиальные и электрические схемы — в комплекте.

Убедитесь, что все соединения выполняются в точках подключения или «от терминала к терминалу». На практике мы обычно подключаем не более двух проводов к одной точке и никогда не выполняем «стыковку в открытом воздухе».”

На приведенном выше рисунке показаны сильные стороны электрических схем и схем: схемы легко читаются и используются для логического поиска неисправностей в цепи, а схемы соединений показывают, как оборудование физически соединено друг с другом.

Разница между схемами и принципиальными схемами

Различия между принципиальными схемами и принципиальными схемами

Схемы и принципиальные схемы обычно используются в инженерных схемах.Возможно, вы слышали их очень часто, но они немного отличаются друг от друга. Их целевые пользователи или читатели различны, где схемы широко используются среди продвинутых программ просмотра схем, в то время как принципиальные схемы удобны для новичков. Проиллюстрировав различия между принципиальными схемами и схемами, вы поймете, как использовать схемы при идентификации компонентов электрической системы, отслеживании цепи или даже при установке электрического оборудования.

Принципиальная схема: удобна для опытных пользователей

Схема или схематическая диаграмма представляет элементы системы с абстрактными и графическими символами вместо реалистичных изображений.Принципиальная схема больше ориентирована на понимание и распространение информации, а не на выполнение физических операций. По этой причине в схеме обычно опускаются детали, не относящиеся к информации, которую она намеревается передать, и могут добавляться упрощенные элементы, чтобы помочь читателям понять особенности и взаимосвязи.

Электронная схема для электроники — это то, что рецепт для повара. Он расскажет вам, какие ингредиенты использовать и как их расположить и соединить.Вместо того, чтобы подробно объяснять рецепт, используется схематическая диаграмма, изображающая устройство электроники. Электронные схемы состоят из цифровых электронных символов, которые представляют каждый из используемых компонентов. На следующей принципиальной схеме микроэлектронного устройства символы соединены линиями, показывающими, как соединять компоненты.

Принципиальные схемы также используются во многих других областях, не только в электрических системах. Например, когда вы едете в метро, ​​карта метро для пассажиров представляет собой своего рода схематическое изображение, на котором станции метро обозначены точками.Химический процесс также может быть отображен в схематической диаграмме с символами химического оборудования.

Принципиальная схема: удобнее для новичков

Принципиальная схема (также называемая электрической схемой, элементарной схемой и электронной схемой) представляет собой графическое представление электрической схемы. Принципиальные схемы широко используются для проектирования схем, изготовления и обслуживания электрического и электронного оборудования.Принципиальные схемы можно разделить на две категории — наглядные принципиальные схемы и принципиальные электрические схемы.

Графические схемы намного легче понять, чем принципиальные электрические схемы. Соединяя реалистичные электрические компоненты с проводкой, наглядная диаграмма позволяет зрителям легко и быстро идентифицировать электрические компоненты системы немедленно, не требуя профессиональных знаний. Это часто упоминается в руководстве пользователя для нормальной работы.В некоторой степени принципиальные схемы более практичны.

Часть 4: Что такое принципиальная электрическая схема?

Принципиальная схема представляет электрическую систему в виде изображения, которое показывает основные особенности или взаимосвязи, но не детали. На принципиальной схеме электрические компоненты и проводка не полностью соответствуют физическому устройству реального устройства.Если вы хотите понять схематическую диаграмму, вам необходимо овладеть базовыми знаниями в области электричества и физики, а также международно стандартизованными символами. Посмотрите на параллельные схемы ниже, вы можете обнаружить, что батарея представлена ​​в виде двух коротких линий, индикаторы — в виде круга с крестом внутри, а проводка отображается в виде линии. Инженеры-электрики в основном используют такую ​​принципиальную схему с унифицированными обозначениями цепей. Ниже представлена ​​принципиальная электрическая схема полупроводниковой электроники.

Принципиальные и принципиальные схемы являются важными инженерными схемами. EdrawMax , универсальное программное обеспечение для построения диаграмм, является отличным средством для создания схем и принципиальных схем. Бесплатно скачайте программу для создания своих работ.

EdrawMax

Программное обеспечение для создания диаграмм All-in-One

Создавайте более 280 типов диаграмм без усилий

С легкостью приступайте к построению диаграмм с помощью различных шаблонов и символов

  • Превосходная совместимость файлов: Импорт и экспорт чертежей в файлы различных форматов, например Visio
  • Поддерживается кроссплатформенность (Windows, Mac, Linux, Интернет)

Разница между графическими и схематическими схемами

Время чтения: около 6 минут

Автор: Lucid Content Team

Специалисты и мастера, работающие самостоятельно, полагаются на инженерные схемы, когда им нужно знать, какие компоненты включены в систему, где эти компоненты расположены, и как они соединяются и взаимодействуют друг с другом.В конце концов, гораздо проще просканировать и понять визуальное представление системы или потока процесса, чем прочитать высокотехничный текст, описывающий систему или процесс.

Ваш уровень знаний и то, что вы пытаетесь выполнить, определят, какой тип диаграммы вы захотите использовать. Например, профессиональный электрик может захотеть использовать подробную схему для отслеживания и устранения проблем в электрической системе. С другой стороны, если вы заменяете выключатель света в спальне вашего ребенка, простая графическая диаграмма, которая сопровождает инструкции по установке, обычно — все, что вам нужно для выполнения работы.

В этой статье мы обсудим различия между схематическими диаграммами и графическими диаграммами, чтобы помочь вам определить, какой тип диаграммы лучше всего подходит для вашего проекта.

Что такое графическая диаграмма?

Графическая диаграмма использует изображения для представления различных компонентов конкретной системы.

Графические схемы могут различаться по уровню детализации. На некоторых диаграммах могут быть реалистичные изображения, чтобы было легче идентифицировать различные компоненты. У других могут быть простые наброски, которые может легко понять средний человек, работающий над проектом выходного дня.

Ниже приведены несколько типов графических диаграмм, с которыми вы можете столкнуться.

Блок-схема

Как следует из названия, блок-схема использует простые блок-схемы вместо стандартизованных символов или подробных изображений для представления основных компонентов системы. Блок-схемы часто используются при проектировании аппаратного и программного обеспечения, а также в электротехнике. Их также можно использовать для создания диаграмм бизнес-данных.

Блок-схемы обычно менее подробны, чем диаграммы других типов, и предназначены для того, чтобы дать вам общий обзор компонентов системы, связей между каждым компонентом и отношений между ними.Простые помеченные формы упрощают непрофессионалам понимание основных концепций системы.

Эти типы диаграмм используются для выявления проблемных областей в существующих системах, составления первоначальных планов для новой системы и представления новых идей.

Ниже приведен пример блок-схемы, показывающей базовую высокоуровневую схему подключения звонка дверного звонка к кнопкам передней и задней дверей. Обратите внимание, что схема не очень подробная, но она дает вам достаточно информации, чтобы понять, как подключить кнопки дверного звонка к проводам, ведущим к звонку.

Начните работу над собственной блок-схемой с помощью этого шаблона.

Пример блок-схемы приемника (Щелкните изображение, чтобы изменить в Интернете)

Схема соединений

Этот тип схемы аналогичен блок-схеме. Как и блок-схема, электрическая схема представляет собой упрощенное графическое представление электрической цепи. Компоненты системы отображаются в виде простых фигур или диаграмм. Основное различие между схемой подключения и блок-схемой заключается в том, что схемы подключения в основном используются в электрических приложениях.Эти диаграммы включают информацию о соединениях питания и простую информацию о потоке сигналов.

Приведенный ниже пример схемы подключения дает вам немного больше информации, например, о цветах проводов и простых письменных инструкциях, которые помогут вам завершить схему. Этот тип схемы предназначен для легкого понимания среднестатистическим домовладельцем и обычно прилагается к инструкциям, прилагаемым к оборудованию.

Следующая наглядная электрическая схема является примером более подробной разводки для системы звонков переднего и заднего дверей.Этот тип чертежа по-прежнему очень прост, но включает в себя достаточно деталей, чтобы средний домовладелец смог успешно установить и подключить систему с двумя дверными звонками. Подобный рисунок, вероятно, будет включен в печатные инструкции, прилагаемые к дверному звонку, который вы покупаете в местном магазине товаров для дома.

Даже если вы никогда раньше не подключали дверной звонок, простые чертежи помогут вам определить различные компоненты и способы их подключения, чтобы звонок работал должным образом.Графическая диаграмма может не сделать вас опытным инженером-электриком, но она может помочь вам в выполнении простых домашних работ.

Что такое принципиальная схема?

Слово «схема» означает план, схему или модель. Таким образом, схематическая диаграмма — это графическое представление плана или модели, представленное простым и доступным способом. В схемах используются простые линии и символы для передачи такой информации, как что, как и где.

На принципиальной схеме, используемой для электроники, используются стандартные символы — простые линейные рисунки — для обозначения различных электронных компонентов.Стандартизированные символы позволяют любому опытному электрику прочитать и понять любую принципиальную схему. Например, резистор представлен линией с зазубринами, что позволяет легко идентифицировать все резисторы на схематической диаграмме ниже.

Пример схемы (Щелкните изображение, чтобы изменить в Интернете)

Профессиональный электрик, имеющий опыт чтения схем, указанных выше, не должен иметь проблем с пониманием того, что означают все символы. Но для любителя схема может просто выглядеть как серия прямых и волнистых линий.

Различные типы схем

Схемы обычно связаны с инженерией или электроникой. Однако любую диаграмму, на которой для передачи информации используются линии и символы, можно считать схемой. Вы, вероятно, сталкиваетесь и взаимодействуете со схематическими диаграммами в повседневной жизни без необходимости протягивать электрическую проводку через стены.

Например, представьте себе простую карту велосипедных маршрутов. Цветные линии используются для обозначения различных маршрутов и того, как они соединяются друг с другом.Белые точки обозначают начало тропы, где гонщики могут легко выехать на трассу и съехать с нее, наполнить бутылки водой и отдохнуть.

Чертежи-схемы также используются при производстве на стадии проектирования. Они помогают инженерам понять, как разные части сочетаются друг с другом и взаимодействуют, чтобы продукт работал должным образом. Кроме того, простая блок-схема может использоваться в качестве схемы, определяющей процесс производства и распространения.

Химики используют схематические рисунки, чтобы описать, как различные элементы взаимодействуют друг с другом при создании продукта.

Графические схемы, блок-схемы и схемы подключения — это простейшие схемы, которые лучше всего подходят для среднего домовладельца или разнорабочего, выполняющего проект на выходные. Диаграммы содержат достаточно деталей, чтобы идентифицировать компоненты и помочь вам понять, как соединить компоненты вместе. Эти простые схемы не предназначены для установки новых систем или добавления к существующим системам. Скорее они предназначены для использования с простыми проектами.

Принципиальные схемы более подробны и предназначены для использования профессионалами.Стандартизированные символы гарантируют, что опытные сотрудники могут читать и понимать систему, чтобы они могли устранять неполадки в проблемных областях, добавлять новые компоненты в существующие системы и устанавливать новые системы.

Подпишитесь на Lucidchart, чтобы начать рисовать схемы всех ваших технических систем и сделать вашу компанию более понятной.

Зарегистрируйтесь сейчас

Что означает принципиальная схема?

Принципиальная схема — это фундаментальное двумерное представление схемы, показывающее функциональность и возможность соединения между различными электрическими компонентами.Разработчику печатных плат жизненно важно ознакомиться со схематическими обозначениями, которые представляют компоненты на принципиальной схеме.

В этой статье мы обсудим следующие моменты:

Стандарты условных обозначений

Схематические символы регулируются во всем мире двумя стандартами:

IEC 60617: Международная электротехническая комиссия (IEC) выпустила этот стандарт. Он основан на более старом британском стандарте (BS 3939).Эта база данных включает более 1750 условных обозначений.

Стандарт ANSI Y32 : Американский национальный институт стандартов (ANSI). Это обеспечивает множество специальных символов, изначально использовавшихся для авиационных приложений. Ряд незначительных изменений, внесенных в этот стандарт, привели существующий документ в соответствие с IEC.

Каковы разные условные обозначения?

В приведенной ниже электронной схеме используется набор стандартизованных символов для обозначения различных электронных компонентов.

Рис. A: Принципиальная принципиальная схема

Схема показывает 3 компонента (аккумулятор, резистор и светодиод). Эти компоненты связаны друг с другом сетками / дорожками. У каждого компонента есть символ с разными атрибутами. Атрибуты резистора могут быть условным обозначением, значением сопротивления, размером, символом, номинальным напряжением, мощностью и площадью основания. Точно так же батарея и светодиод будут иметь свои атрибуты.

В таблице ниже показаны имена, символы и соответствующие им условные обозначения, используемые в схеме.Обозначения BT, R и LED обозначают батарею, резистор и светодиод соответственно. Эти условные обозначения помогают нам идентифицировать компоненты.

Условные обозначения

Зная символы и их условные обозначения, мы можем интерпретировать любую схему и построить ее соответствующим образом.

Это наиболее распространенные условные обозначения на схемах:

Общие условные обозначения

Значения и атрибуты

Мы знаем, что компоненты можно идентифицировать по их условному обозначению.Однако информации о размерах и мощности этих компонентов нет. Например, рассмотрим базовую электронную схему, показанную в предыдущем разделе рис. а. На схеме видно, что положительный полюс аккумулятора подключен к светодиоду через резистор R. Но другой информации об атрибутах этих компонентов (величине сопротивления резистора и емкости аккумулятора) нет. .

Принципиальная схема должна предоставлять эту дополнительную информацию, чтобы гарантировать выбор соответствующих компонентов. Сопротивление резистора должно быть выражено в омах (Ом). Аккумулятор должен указывать разность потенциалов (напряжение), выраженную в вольтах. Остальные компоненты описываются иначе. Например, конденсаторы различаются по величине емкости, выраженной в фарадах (Ф), индуктивности — по значению их индуктивности, выраженной в Генри (Гн).

Иногда символам могут быть присвоены дополнительные атрибуты (номинальная мощность, допуски и т. Д.). Это помогает нам определить подходящие компоненты для схемы.Некоторые из общих атрибутов компонента:

  1. Символ с формой и булавками
  2. Значения сопротивления, емкости и индуктивности компонентов
  3. Условное обозначение, например, U1, R1, C1 и т. Д.
  4. Пример максимальных условий эксплуатации: максимальное напряжение для конденсаторов, максимальная мощность для резисторов
  5. Пример допусков: Для сопротивления: ± 1%, ± 5%
  6. Обозначение производителя (MPN)
  7. Посадочные места для компонентов (для резисторов: 0402, 0805; для 8-контактной IC: SOIC8)

Также обратите внимание на создание посадочного места печатной платы в Allegro, Altium Designer и KiCad.

Международная система единиц

Значения атрибутов могут варьироваться от очень маленьких до очень больших единиц. Чтобы избежать заполнения принципиальных схем длинными повторяющимися цепочками нулей для таких значений, как 1 000 000 000 или 0,0000000001, мы используем Международную систему единиц для значений (SI).

В таблице ниже показаны единицы СИ, которые обычно используются на схематических диаграммах.

Префикс Символ Значение Степени 10
tera T 100000000000 10 12
гига G 100000000 10 9
мега M 1000000 10 6
кг к 1000 10 3
милли м 0.001 10 -3
микро u 0,000 001 10 -6
нано n 0,000 000 001 10 -9
пико p .000 000 000 001 10 -12

В чем разница между принципиальной схемой и схемами подключения?

На схематической диаграмме линии используются для обозначения проводов, а символы используются для обозначения компонентов.

Пример принципиальной схемы

Принципиальная схема не показывает практическое соединение между компонентами или их положение. Он содержит только символы и линии.

Схема соединений — это обобщенное графическое представление электрической цепи. Компоненты представлены в схемах подключения упрощенными формами. Электрические схемы обычно дают подробную информацию о взаимном расположении и расположении устройств.

Пример схемы подключения

Как читать схему печатной платы?

Чтобы понять схему печатной платы, нам важно узнать, как компоненты на схеме соединены.Он содержит информацию о различных компонентах и ​​условиях работы схемы.

Принципиальная схема дает следующую информацию:

  1. Используемые компоненты
  2. Электрические соединения между выводами компонентов
  3. Условия эксплуатации, такие как напряжение, ток, допуски
  4. Специальные инструкции, такие как график импеданса SE (несимметричный), дифференциальные пары и положения компонентов, такие как размещение развязывающих конденсаторов, кристаллов и т. Д.
  5. Блок-схема
  6. История изменений (при наличии)

Схема сетей

Схематические сети определяют, как компоненты соединяются в цепи. Линия между двумя взаимосвязанными компонентами называется сеткой.

Сети на принципиальной схеме

Соединения и узлы

Соединение образуется при пересечении двух или более проводов в одной точке. Это соединение представлено размещением маленькой точки (узла) в точке пересечения, как показано на изображении ниже.Чтобы узнать больше, прочтите Сетевая теория для лучшего проектирования и разработки печатных плат.

Изображение узлов на принципиальной схеме

Узлы помогают нам определить соединение между проводами, пересекающими точку. Отсутствие узла на стыке означает, что два отдельных провода просто проходят без какого-либо электрического соединения.

Именование схемных сетей

Для того, чтобы схематическая диаграмма была более разборчивой, цепи помечены своими именами, а не нарисованы линиями, чтобы показать возможность соединения.Предполагается, что сети с тем же именем подключены, даже если видимое соединение не установлено. На изображении ниже показан пример схематической диаграммы, на которой цепи помечены своими именами.

Схема с маркированными сетями

В чем разница между принципиальной схемой и компоновкой?

Схема — это чертеж, который определяет логические соединения между компонентами на печатной плате, будь то жесткая печатная плата или гибкая плата.Это в основном показывает вам, как компоненты электрически связаны. Схема содержит список соединений, который представляет собой простую структуру данных, в которой перечислены все соединения в проекте, как указано на чертеже. На изображении ниже показан пример принципиальной схемы.

Пример принципиальной схемы печатной платы

Напротив, компоновка печатной платы показывает точное физическое расположение каждого компонента на печатной плате и показывает физические провода (дорожки), которые соединяют их вместе. Пример компоновки печатной платы показан ниже.

Пример компоновки печатной платы

Как создать принципиальную схему?

Если в проекте используется иерархическая схема, в которой многочисленные функциональные схемы взаимосвязаны друг с другом, то она определяет отношения между группами компонентов в различных схематических представлениях.

Ниже приведены шаги, необходимые для создания принципиальной схемы с помощью инструмента САПР для печатных плат:

Генерация символа: этот процесс включает в себя рисование тела компонента, добавление контактов и номеров контактов, определение атрибутов символа и назначение посадочного места.Символы иногда легко доступны в программном обеспечении PCB CAD. Чтобы узнать больше, прочтите статью «Как создать библиотеку схем и символов в KiCad».

Размещение символа компонента: тело символа компонента создается путем помещения замкнутых форм символа в редактор схемной библиотеки.

Чтобы узнать больше о размещении компонентов, прочтите нашу статью «Рекомендации по размещению компонентов при проектировании и сборке печатных плат».

Нумерация контактов: контакты определяют точки подключения на компоненте для входящих и исходящих сигналов.Нумерация выводов сделана для того, чтобы соединения, показанные на схеме, были правильно подключены медью на печатной плате.

Атрибуты символа: в основном состоит из категории, значения, производителя, номера детали производителя и поставщика. Рекомендуется, чтобы каждый символ в вашей схеме имел свое собственное уникальное обозначение, чтобы можно было легко идентифицировать каждую часть.

Каковы правила рисования принципиальных схем?

Ниже приведены некоторые из лучших практик, которым следует следовать при рисовании принципиальных схем:

  1. Электрические соединения между компонентами представлены линиями.Линии, которые пересекаются друг с другом, не соединяются, если в точке пересечения нет узла.
  2. Всегда рекомендуется иметь только 3 линии, подключенные к узлу.
  3. В сложных схемах рекомендуется назначать имя цепям. Предполагается, что одноименные сети связаны.
  4. Номера контактов, полярность, значения и имена цепей должны быть написаны горизонтально.
  5. Разместите входы слева, а выходы справа.
  6. Оформление схематических разделов в функциональных блоках.
  7. Всегда размещайте номера выводов снаружи графического символа.
  8. Символы соединения листов всегда следует размещать на крайнем левом или крайнем правом крае страницы.
  9. Поместите основную надпись в нижний правый угол первого листа. В основной надписи должна отображаться следующая информация:
    1. Название
    2. Каталожный номер
    3. Ревизия (при наличии)

Принципиальные схемы в основном состоят из обозначений компонентов и линий, которые представляют соединение между компонентами.Понимание принципиальной схемы очень важно для дизайнеров, чтобы спроектировать успешную печатную плату.

Мы рассмотрели основные понятия, относящиеся к схематическим обозначениям и схематическим представлениям. Сообщите нам в разделе комментариев, если есть какие-либо конкретные темы, о которых вы хотели бы узнать больше.

СКАЧАТЬ РУКОВОДСТВО ПО DFM:

Как читать схему

Добавлено в избранное

Любимый

102

Обзор

Схемы

— это наша карта для проектирования, создания и устранения неисправностей схем.Понимание того, как читать схемы и следовать им, является важным навыком для любого инженера-электронщика.

Это руководство должно превратить вас в грамотного читателя схем! Мы рассмотрим все основные символы схемы:

Затем мы поговорим о том, как эти символы связаны на схемах, чтобы создать модель цепи. Мы также рассмотрим несколько советов и рекомендаций, на которые следует обратить внимание.

Рекомендуемая литература

Понимание схем — это довольно базовый навык работы с электроникой, но есть несколько вещей, которые вы должны знать, прежде чем читать это руководство.Посмотрите эти уроки, если они звучат как пробелы в вашем растущем мозгу:

Условные обозначения (часть 1)

Готовы ли вы к шквалу компонентов схемы? Вот некоторые из стандартизованных основных схематических символов для различных компонентов.

Резисторы

Самый фундаментальный из схемных компонентов и символов! Резисторы на схеме обычно представлены несколькими зигзагообразными линиями с двумя выводами , выходящими наружу.В схемах, использующих международные символы, вместо волнистых линий может использоваться безликий прямоугольник.

Потенциометры и переменные резисторы

Переменные резисторы и потенциометры дополняют обозначение стандартного резистора стрелкой. Переменный резистор остается устройством с двумя выводами, поэтому стрелка просто расположена по диагонали посередине. Потенциометр — это трехконтактное устройство, поэтому стрелка становится третьей клеммой (дворником).

Конденсаторы

Обычно используются два символа конденсатора.Один символ представляет поляризованный (обычно электролитический или танталовый) конденсатор, а другой — неполяризованные колпачки. В каждом случае есть две клеммы, перпендикулярно входящие в пластины.

Символ с одной изогнутой пластиной указывает на то, что конденсатор поляризован. Изогнутая пластина обычно представляет собой катод конденсатора, который должен иметь более низкое напряжение, чем положительный анодный вывод. Знак плюс также должен быть добавлен к положительному выводу символа поляризованного конденсатора.

Катушки индуктивности

Катушки индуктивности

обычно представлены серией изогнутых выступов или петлевых катушек. Международные символы могут просто обозначать катушку индуктивности как закрашенный прямоугольник.

Переключатели

Коммутаторы

существуют во многих различных формах. Самый простой переключатель, однополюсный / однопозиционный (SPST), представляет собой две клеммы с полусоединенной линией, представляющей исполнительный механизм (часть, которая соединяет клеммы вместе).

Переключатели с более чем одним ходом, такие как SPDT и SP3T ниже, добавляют больше посадочных мест для привода.

Переключатели с несколькими полюсами, как правило, имеют несколько одинаковых переключателей с пунктирной линией, пересекающей средний привод.

Источники энергии

Так же, как существует множество вариантов питания вашего проекта, существует множество символов схем источника питания, которые помогают указать источник питания.

Источники постоянного или переменного напряжения

В большинстве случаев при работе с электроникой вы будете использовать источники постоянного напряжения. Мы можем использовать любой из этих двух символов, чтобы определить, подает ли источник постоянный ток (DC) или переменный ток (AC):

Батареи

Батарейки, будь то цилиндрические, щелочные AA или литий-полимерные аккумуляторные батареи, обычно выглядят как пара непропорциональных параллельных линий:

Чем больше пар линий, тем больше ячеек в батарее.Кроме того, более длинная линия обычно используется для обозначения положительной клеммы, а более короткая линия соединяется с отрицательной клеммой.

Узлы напряжения

Иногда — особенно на очень загруженных схемах — вы можете назначить специальные символы для узловых напряжений. Вы можете подключать устройства к этим символам с одним контактом , и они будут напрямую связаны с 5 В, 3,3 В, VCC или GND (землей). Узлы положительного напряжения обычно обозначаются стрелкой, направленной вверх, в то время как узлы заземления обычно включают от одной до трех плоских линий (или иногда стрелку или треугольник, направленную вниз).

Условные обозначения (часть 2)

Диоды

Базовые диоды обычно представляют собой треугольник, прижатый к линии. Диоды также поляризованы, поэтому для каждого из двух выводов требуются отличительные идентификаторы. Положительный анод — это вывод, входящий в плоский край треугольника. Отрицательный катод выходит за пределы линии символа (воспринимайте его как знак -).

Существует множество различных типов диодов, каждый из которых имеет специальный рифф на стандартном символе диода. Светодиоды (LED) дополняют символ диода парой линий, направленных в сторону. Фотодиоды , которые генерируют энергию из света (в основном, крошечные солнечные элементы), переворачивают стрелки и направляют их в сторону диода.

Другие специальные типы диодов, такие как диоды Шоттки или стабилитроны, имеют свои собственные символы с небольшими вариациями на штриховой части символа.

Транзисторы

Транзисторы

, будь то биполярные транзисторы или полевые МОП-транзисторы, могут существовать в двух конфигурациях: положительно легированные или отрицательно легированные.Итак, для каждого из этих типов транзисторов есть как минимум два способа его нарисовать.

Биполярные переходные транзисторы (БЮТ)

БЮТ — трехполюсные устройства; у них есть коллектор (C), эмиттер (E) и база (B). Существует два типа BJT — NPN и PNP, и каждый имеет свой уникальный символ.

Контакты коллектора (C) и эмиттера (E) расположены на одной линии друг с другом, но на эмиттере всегда должна быть стрелка. Если стрелка указывает внутрь, это PNP, а если стрелка указывает наружу, это NPN.Мнемоника для запоминания: «NPN: n ot p ointing i n ».

Металлооксидные полевые транзисторы (МОП-транзисторы)

Как и BJT, полевые МОП-транзисторы имеют три терминала, но на этот раз они названы исток (S), сток (D) и затвор (G). И снова, есть две разные версии символа, в зависимости от того, какой у вас полевой МОП-транзистор с n-каналом или p-каналом. Для каждого типа полевого МОП-транзистора существует ряд часто используемых символов:

Стрелка в середине символа (называемая основной частью) определяет, является ли полевой МОП-транзистор n-канальным или p-канальным.Если стрелка указывает внутрь, это означает, что это n-канальный MOSFET, а если он указывает, это p-канал. Помните: «n is in» (своего рода противоположность мнемонике NPN).

Цифровые логические ворота

Наши стандартные логические функции — И, ИЛИ, НЕ и ИСКЛЮЧАЮЩЕЕ — все имеют уникальные условные обозначения:

Добавление пузыря к выходу отменяет функцию, создавая NAND, NOR и XNOR:

У них может быть более двух входов, но формы должны оставаться такими же (ну, может быть, немного больше), и все равно должен быть только один выход.

Интегральные схемы

Интегральные схемы

решают такие уникальные задачи, и их так много, что они действительно не получают уникального символа схемы. Обычно интегральная схема представляет собой прямоугольник с выступающими по бокам выводами. Каждый вывод должен быть помечен как номером, так и функцией.

Схематические символы для микроконтроллера ATmega328 (обычно присутствующего на Arduinos), микросхемы шифрования ATSHA204 и микроконтроллера ATtiny45. Как видите, эти компоненты сильно различаются по размеру и количеству выводов.

Поскольку микросхемы имеют такой общий символ схемы, имена, значения и метки становятся очень важными. Каждая микросхема должна иметь значение, точно идентифицирующее имя микросхемы.

Уникальные ИС: операционные усилители, регуляторы напряжения

Некоторые из наиболее распространенных интегральных схем получают уникальный символ схемы. Обычно вы увидите операционные усилители, расположенные, как показано ниже, с 5 выводами: неинвертирующий вход (+), инвертирующий вход (-), выход и два входа питания.

Часто в один корпус интегральной схемы встроено два операционных усилителя, для которых требуется только один вывод для питания и один для заземления, поэтому тот, что справа, имеет только три контакта.

Простые регуляторы напряжения обычно представляют собой трехконтактные компоненты с входными, выходными и заземляющими (или регулирующими) контактами. Обычно они имеют форму прямоугольника с выводами слева (вход), справа (выход) и внизу (заземление / регулировка).

Разное

Кристаллы и резонаторы

Кристаллы или резонаторы обычно являются важной частью схем микроконтроллера. Они помогают обеспечить тактовый сигнал. Кристаллические символы обычно имеют два вывода, в то время как резонаторы, которые добавляют два конденсатора к кристаллу, обычно имеют три вывода.

Заголовки и разъемы

Будь то обеспечение питания или отправка информации, разъемы необходимы для большинства цепей. Эти символы различаются в зависимости от того, как выглядит разъем, вот образец:

Двигатели, трансформаторы, динамики и реле

Мы объединим их вместе, так как они (в основном) все так или иначе используют катушки. Трансформаторы (не самые очевидные) обычно включают две катушки, прижатые друг к другу, с парой линий, разделяющих их:

Реле обычно соединяют катушку с переключателем:

Динамики и зуммеры обычно имеют форму, аналогичную их реальным аналогам:

Двигатели

и обычно имеют обведенную буквой «М», иногда с немного большим количеством украшений вокруг клемм:

Предохранители и PTC

Предохранители и PTC — устройства, которые обычно используются для ограничения больших скачков тока — каждое имеет свой уникальный символ:

Символ PTC на самом деле является общим символом для термистора , резистора, зависящего от температуры (обратите внимание на международный символ резистора там?).


Несомненно, многие символы схем не включены в этот список, но те, что указаны выше, должны дать вам 90% грамотности в чтении схем. В общем, символы должны иметь довольно много общего с реальными компонентами, которые они моделируют. Помимо символа, каждый компонент на схеме должен иметь уникальное имя и значение, которое в дальнейшем помогает его идентифицировать.

Обозначения и значения имен

Один из важнейших ключей к схемотехнической грамотности — это способность распознавать, какие компоненты какие.Компонентные символы рассказывают половину истории, но для завершения каждый символ должен сочетаться с именем и значением.

Имена и значения

Значения помогают точно определить, что такое компонент. Для схемных компонентов, таких как резисторы, конденсаторы и катушки индуктивности, значение говорит нам, сколько у них Ом, фарад или генри. Для других компонентов, таких как интегральные схемы, значением может быть просто название микросхемы. Кристаллы могут указывать свою частоту колебаний как свою ценность.По сути, значение компонента схемы вызывает его наиболее важную характеристику .

Имена компонентов обычно представляют собой комбинацию одной или двух букв и числа. Буквенная часть имени определяет тип компонента — R для резисторов, C для конденсаторов, U для интегральных схем и т. Д. Каждое имя компонента на схеме должно быть уникальным; если в цепи несколько резисторов, например, они должны называться R 1 , R 2 , R 3 и т. д.Имена компонентов помогают нам ссылаться на определенные точки на схемах.

Префиксы имен довольно хорошо стандартизированы. Для некоторых компонентов, таких как резисторы, префикс — это просто первая буква компонента. Другие префиксы имен не столь буквальны; индукторы, например, L (потому что ток уже взял I [но он начинается с C … электроника — глупое место]). Вот краткая таблица общих компонентов и их префиксов:

Имя Идентификатор Компонент
R Резисторы
C Конденсаторы
L Индукторы
Q Транзисторы
U Интегральные схемы
Y Кристаллы и генераторы

Хотя тезисы являются «стандартизированными» названиями для обозначений компонентов, они не всегда соблюдаются.Вы можете увидеть интегральные схемы с префиксом IC вместо U , например, или кристаллы, помеченные как XTAL вместо Y . Используйте свой здравый смысл при диагностике, какая часть есть какая. Символ обычно должен передавать достаточно информации.

Схема чтения

Понимание того, какие компоненты есть на схеме, — это более чем полдела на пути к ее пониманию. Теперь все, что осталось, — это определить, как все символы связаны друг с другом.

Сети, узлы и метки

Схематические цепи сообщают вам, как компоненты соединяются вместе в цепи. Цепи представлены в виде линий между клеммами компонентов. Иногда (но не всегда) они имеют уникальный цвет, например, зеленые линии на этой схеме:

Соединения и узлы

Провода могут соединять две клеммы вместе, или их можно соединять десятки. Когда провод разделяется на два направления, образуется соединение . На схемах изображаем стыки с узлами , маленькими точками на пересечении проводов.

Узлы

дают нам возможность сказать, что «провода, пересекающие этот переход , соединены ». Отсутствие узла на стыке означает, что два отдельных провода просто проходят мимо, не образуя никакого соединения. (При разработке схем обычно рекомендуется по возможности избегать этих несвязанных перекрытий, но иногда это неизбежно).

Сетевые имена

Иногда, чтобы схема была более разборчивой, мы даем цепи имя и маркируем ее, а не прокладываем провод по всей схеме.Предполагается, что цепи с таким же именем подключены, даже если между ними нет видимого провода. Имена могут быть написаны прямо поверх сети, или они могут быть «тегами», свисающими с провода.

Каждая цепь с таким же именем подключена, как на этой схеме для коммутационной платы FT231X. Имена и метки помогают сохранить схемы от слишком хаотичного (представьте, если бы все эти цепи были действительно соединены проводами).

Цепям

обычно дается имя, в котором конкретно указывается назначение сигналов на этом проводе.Например, цепи питания могут быть обозначены «VCC» или «5V», а цепи последовательной связи — «RX» или «TX».

Советы по чтению схем

Идентифицировать блоки

Действительно обширные схемы следует разбивать на функциональные блоки. Это может быть раздел для ввода мощности и регулирования напряжения, или раздел микроконтроллера, или раздел, посвященный разъемам. Попытайтесь распознать, какие секции какие, и проследить за цепочкой от входа к выходу. По-настоящему хорошие разработчики схем могут даже выложить схему в виде книги: входы слева, выходы — справа.

Если ящик схемы действительно хорош (например, инженер, который разработал эту схему для RedBoard), они могут разделить части схемы на логические помеченные блоки.

Распознать узлы напряжения

Узлы напряжения — это одноконтактные компоненты схемы, к которым мы можем подключать клеммы компонентов, чтобы назначить им определенный уровень напряжения. Это специальное приложение имен цепей, означающее, что все клеммы, подключенные к узлу напряжения с одинаковым именем, соединены вместе.

Узлы напряжения с одинаковыми названиями — например, GND, 5 В и 3,3 В — все подключены к своим аналогам, даже если между ними нет проводов.

Узел заземления особенно полезен, потому что очень многие компоненты нуждаются в заземлении.

Справочные листы данных компонентов

Если на схеме есть что-то, что не имеет смысла, попробуйте найти таблицу для наиболее важного компонента. Обычно компонент, выполняющий большую часть работы со схемой, — это интегральная схема, такая как микроконтроллер или датчик.Обычно это самый крупный компонент, часто расположенный в центре схемы.

Ресурсы и дальнейшее развитие

Вот и все, что нужно для чтения схем! Зная символы компонентов, отслеживание цепей и определение общих меток. Понимание того, как работает схема, открывает вам целый мир электроники! Ознакомьтесь с некоторыми из этих руководств, чтобы попрактиковаться в новых знаниях схемотехники:

  • Делители напряжения — это одна из самых основных принципиальных схем.Узнайте, как с помощью всего двух резисторов превратить большое напряжение в меньшее!
  • Как использовать макетную плату — Теперь, когда вы знаете, как читать схемы, почему бы не сделать ее! Макетные платы — отличный способ создавать временные функциональные прототипы схем.
  • Работа с проводом — Или пропустите макет и сразу начните с проводки. Умение разрезать, зачищать и подключать провода — важный навык электроники.
  • Последовательные и параллельные схемы

  • — Построение последовательных или параллельных схем требует хорошего понимания схем.
  • Шитье проводящей нитью — Если вы не хотите работать с проволокой, как насчет создания схемы электронного текстиля с проводящей нитью? В этом прелесть схематических схем, одна и та же схематическая схема может быть построена множеством различных способов с использованием различных носителей.

Как читать электрические схемы

Электрическая схема — это схема, которая показывает, как соединены все провода и компоненты в электронной схеме.Они похожи на карту для построения или устранения неисправностей схем и могут рассказать вам почти все, что вам нужно знать, чтобы понять, как работает схема.

Умение читать электрические схемы — действительно полезный навык. Чтобы начать развивать свои способности к чтению схем, важно запомнить наиболее распространенные схематические символы. Каждый физический компонент (например, резистор, конденсатор, транзистор) имеет уникальный схематический символ. Основная цель этого руководства — показать вам основные компоненты схемы, которые вы должны знать.

Недостаточно просто уметь распознавать компоненты в схеме. Вы также должны иметь возможность получить общее представление о том, как работает схема, просто взглянув на нее. После этой статьи я рекомендую прочитать «Как анализировать схемы», где мы обсуждаем более продвинутые методы анализа схем, такие как закон Кирхгофа по току и закон Кирхгофа по напряжению.

ИСТОЧНИКИ ПИТАНИЯ

Источники питания поставляют электрическую энергию в цепь в виде напряжения и тока.Каждая функциональная электронная схема должна иметь источник постоянного или переменного тока.

Источники питания постоянного тока

Источники питания постоянного тока (DC) вырабатывают электрический ток, который течет в постоянном направлении. Это схематический символ источника питания постоянного тока:

Источник питания переменного тока с

Источники питания переменного тока (AC) вырабатывают электрический ток в двух направлениях. Это схематический символ источника питания переменного тока:

Тесто х годов

Батарея — это распространенный тип источника постоянного тока.Схематический символ батареи состоит из коротких и длинных параллельных линий. Более длинная линия представляет собой положительный полюс батареи, а более короткая линия представляет отрицательный полюс:

Земля

Земля — ​​это общий обратный путь цепи, по которому ток возвращается к своему источнику. Это часто называют отрицательной стороной схемы. Это схематический символ заземления:

Клеммы

Клеммы — это точки подключения к внешним цепям.Для внешних подключений клеммы обозначены пустыми кружками:

Концевые соединения отличаются от узлов или соединений, обозначенных сплошными кружками:

Коммутаторы

Переключатели замыкают или разрывают соединение в цепи. Они также позволяют вам изменить путь тока.

Переключатель SPST es

Переключатель SPST (однополюсный, однопозиционный) — это переключатель включения и выключения. Два схематических символа ниже показывают различные состояния переключателя SPST.Верхний символ указывает на то, что переключатель находится в выключенном положении, что блокирует прохождение тока. Нижний символ указывает на то, что переключатель включен, что позволяет току течь через переключатель.

Переключатель SPDT es

Переключатели

SPDT (однополюсные, двухпозиционные) могут направлять путь тока к различным частям цепи. В зависимости от положения переключателя существует два пути прохождения тока в этом переключателе:

Переключатель мгновенного действия es

Переключатели мгновенного действия остаются разомкнутыми или замкнутыми только при нажатии.Кнопочные переключатели являются наиболее распространенным типом переключателей мгновенного действия. Эти переключатели либо нормально разомкнутые, либо нормально замкнутые. Верхний схематический символ ниже показывает нормально разомкнутый кнопочный переключатель в разомкнутом положении, а нижний символ показывает нормально замкнутый кнопочный переключатель в замкнутом положении:

Многоточечный коммутатор es

Многоточечные переключатели позволяют переключать путь входного тока на несколько различных выходных путей.

Переключатели

DPST (двухполюсные, однопозиционные) имеют 2 входа и 2 выхода.Эти переключатели позволяют управлять током на два выхода. Поскольку переключатели одноходовые, две выходные клеммы будут включаться и выключаться одновременно. На схематических изображениях ниже показаны разомкнутый переключатель DPST (слева) и замкнутый переключатель DPST (справа):

Переключатели

DPDT (двухполюсные, двухпозиционные) имеют две клеммы для входного тока и четыре клеммы для выходного тока. Эти переключатели позволяют переключать путь двух входных токов на четыре отдельных пути вывода.Вот схематический символ переключателя DPDT:

Резистор с

Резистор — один из самых основных пассивных компонентов схемы. Резисторы обладают электрическим сопротивлением, которое ограничивает ток. Схематический символ резистора показан ниже. Символ слева — это соглашение, используемое в Соединенных Штатах, а символ справа — международный стандарт:

.

Переменный резистор с

Переменный резистор может увеличивать или уменьшать свое сопротивление в зависимости от внешнего входа.Аналоговые датчики, такие как фоторезисторы и термисторы, являются типами переменных резисторов, поскольку их сопротивление изменяется в зависимости от уровня освещенности или температуры. Схематическое обозначение переменного резистора аналогично фиксированному резистору, но диагональная стрелка помещена посередине:

Потенциометр с

Потенциометр — это трехконтактный переменный резистор, который используется для регулировки напряжения и тока в цепи. Два вывода резистора — это V + и земля.Стрелка представляет собой дворник потенциометра, где выходное напряжение берется из:

Фоторезистор с

Фоторезисторы, также известные как светозависимые резисторы (LDR), представляют собой светочувствительные переменные резисторы, которые изменяют сопротивление в зависимости от уровня освещенности. Это схематическое обозначение фоторезистора:

.

Конденсатор с

Конденсаторы — это пассивные электронные компоненты, накапливающие электрический заряд. Есть два распространенных типа конденсаторов — неполяризованные и поляризованные.

Неполяризованный конденсатор с

Неполяризованные конденсаторы не имеют полярности, поэтому не имеет значения, какая сторона подключена к плюсу, а какая к минусу. Эти конденсаторы обычно имеют меньшую емкость, чем поляризованные конденсаторы:

Поляризованный конденсатор с

Поляризованные конденсаторы имеют полярность, поэтому имеет значение, какая сторона подключена к плюсу, а какая — к земле. Поляризованные конденсаторы обычно имеют более высокие значения емкости по сравнению с неполяризованными конденсаторами.Вот схематический символ поляризованного конденсатора:

.

Катушки индуктивности

Катушки индуктивности — это пассивные компоненты, которые создают магнитное поле, когда через них протекает ток. Индукторы могут быть такими же простыми, как катушка с проволокой. Схематическое обозначение индуктора похоже на катушку:

Трансформаторы

Трансформаторы

используются для повышения или понижения напряжения. Они состоят из двух катушек, намотанных вокруг железного сердечника, поэтому на схематическом изображении есть две катушки с прямыми линиями между ними.Линии представляют собой железный сердечник:

Реле

Реле — это переключатель с электрическим управлением. Реле в основном представляют собой электромагниты, подключенные к исполнительному механизму, который размыкает и замыкает переключатель при подаче тока на катушку:

Диоды

Диод — это поляризованное устройство, пропускающее ток только в одном направлении. Поляризованный, он имеет положительный вывод (анод) и отрицательный вывод (катод). Плоский край треугольника — анод, линия — катод:

Транзисторы

Транзисторы используются либо для усиления напряжения, либо для переключения электрических токов.Наиболее распространенными транзисторами являются транзисторы с биполярным переходом (BJT). Существует два основных типа BJT-транзисторов — NPN и PNP. Транзисторы NPN включаются, когда ток течет через базу транзистора, а транзисторы PNP включаются, когда на базе транзистора нет тока. Верхний схематический символ показывает транзистор NPN, а нижний символ показывает транзистор PNP:

Интегральные схемы

Интегральные схемы

— это схемы, содержащие от сотен до миллионов резисторов, конденсаторов и транзисторов в небольшом корпусе.Интегральные схемы выполняют множество функций. Существуют интегральные схемы для усилителей звука, таймеров, микропроцессоров и многого другого. Три наиболее часто используемых интегральных схемы — это таймер 555, аудиоусилитель LM386 и операционный усилитель LM358.

Таймер

555

Чаще всего таймер 555 используется для обеспечения синхронизированных электрических задержек. Однако его также можно использовать как осциллятор и как элемент триггера. На схеме ниже показано фактическое расположение контактов таймера 555 с внутренней схемой IC:

.

Второе изображение является схематическим обозначением таймера 555, используемого в схемах:

Операционный усилитель с

Операционные усилители — это усилители напряжения со входами и обычно с одним выходом.Их также называют операционными усилителями. Условное обозначение операционного усилителя выглядит так:

Модель

LM386

Аудиоусилитель LM386 — это операционный усилитель, специально разработанный для маломощного усиления звука. Будучи маломощным, он идеально подходит для аудиоустройств с батарейным питанием, таких как гитары, радио и любых других схем, издающих звук. Вот схема контактов LM386:

И это символ, используемый на принципиальных схемах:

Модель

LM358

LM358 — это интегральная схема двойного операционного усилителя, работающая от общего источника питания.Обычно используется в качестве усилителя преобразователя, интегратора, дифференциатора или повторителя напряжения. Вот схема контактов LM358:

А вот символ, используемый на принципиальных схемах:

Схематические символы для операционных усилителей обычно не показывают контакты, которые не используются в цепи, как в случае с символом LM358 выше, где показаны только пять из восьми контактов.

Логические ворота

Логические вентили — это электронные схемы, обрабатывающие сигналы, представляющие истинные или ложные значения.Четыре стандартные логические функции — это И, ИЛИ, НЕ и ИСКЛЮЧАЮЩЕЕ ИЛИ. В дополнение к этим функциям есть также логические вентили NAND, NOR и XNOR.

И

Выход логического элемента И истинен, когда все его входы истинны. Вот схематический символ логического элемента И:

ИЛИ

Выход логического элемента ИЛИ является истинным, если хотя бы один из его входов истинен. Вот схематический символ ворот OR:

НЕ

Логический элемент НЕ выводит сигнал, противоположный входу, поэтому его также называют инвертором.Следовательно, выход истинен, когда вход ложен. Вот схематический символ ворот НЕ:

XOR

Элемент «исключающее ИЛИ» или исключающее ИЛИ имеет два входа. Выход элемента XOR может быть истинным только тогда, когда один вход истинен, а другой — ложен. Вот схематический символ логического элемента XOR:

NAND

Логический элемент «НЕ-И» или «НЕ-И» может иметь два или более входа. Выход логического элемента И-НЕ истинен, если какой-либо из входов ложный.Вот схематический символ логического элемента И-НЕ:

НОР

Элемент «НЕ-ИЛИ» или «НЕ-ИЛИ» имеет два или более входов. Выход логического элемента ИЛИ-НЕ истинен, когда все его входы ложны. Вот схематический символ ворот ИЛИ:

XNOR

Элемент «исключающее ИЛИ-ИЛИ» или ИСКЛЮЧАЮЩЕЕ ИЛИ имеет два входа. Выход логического элемента XNOR истинен только тогда, когда оба его входа истинны или когда оба его входа ложны. Вот схематический символ ворот XNOR:

Оптоэлектронные устройства

Оптоэлектронные устройства — это устройства, которые используют свет и электричество для различных целей.Оптоэлектронные устройства можно разделить на две категории — светочувствительные и светоизлучающие. Например, вот схематический символ светочувствительного устройства, называемого фотодиодом:

В отличие от этого, вот схематическое обозначение светоизлучающего устройства, называемого светоизлучающим диодом (LED):

Динамик с

Динамик преобразует электрическую энергию в звуковую. Его схематический символ выглядит как реальный динамик:

Микрофон с

Микрофоны — это преобразователи, преобразующие звуковые волны в электрический сигнал.Вот схематический символ микрофона:

Предохранитель с

Предохранители — это предохранительные устройства, обеспечивающие защиту от перегрузки по току в электрической цепи. Основным элементом предохранителя является провод узкого сечения, который плавится, когда через него протекает слишком большой ток. Вот схематический символ предохранителя:

Двигатель с

Двигатель преобразует электрическую энергию в кинетическую. Его схематический символ — круг с буквой «M», а положительные и отрицательные клеммы слева и справа:

Антенна с

Антенна — это устройство, которое принимает или передает радиосигналы.Вот схематический символ антенны:

.

Провода и соединения на схемах

Теперь, когда вы знакомы с общими символами, используемыми в схематических диаграммах, давайте посмотрим, как читать соединения и пересечения проводов. Провода представлены линиями, а соединения — точками.

На изображениях ниже показаны схематические обозначения проводов, когда они физически соединены в цепи. Точки над перекрестками называются узлами:

Отсутствие узла означает, что провода не соединены, а просто проходят друг мимо друга, вот так:

Есть еще один способ показать неподключенные провода на схеме с полукругом над точкой пересечения проводов, например:

Теперь, когда вы знакомы с основными условными обозначениями и соединениями проводов, вы готовы читать простую схему.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *