Схема отопление попутка: Схемы отопления – попутка, тупиковая, коллекторная и др. Сравнение и выбор

Содержание

Схемы отопления – попутка, тупиковая, коллекторная и др. Сравнение и выбор

Для дома нужно подобрать подходящую схему отопления, чтобы она надежно работала весь период эксплуатации, не была излишне дорогой. Схема разводки отопительных трубопроводов подбирается под конкретную планировку здания. На выбор влияют размещение котельной относительно других комнат, этажность здания, отапливаемая площадь, размещение комнат и их теплопотери и др.

Чтобы определиться с выбором подходящей отопительной схемы, рассмотрим какие системы отопления бывают, их достоинства и недостатки и области применения.

Начнем с самых популярных схем, которые применяются наиболее часто и рекомендуются специалистами для создания отопления в частных домах и квартирах. В них предусматривается установка насосов для циркуляции жидкости. Самотечную систему рассмотрим последней.

Попутная разводка отопительного трубопровода

«Попутка» является универсальной двухтрубной схемой разводки отопительного трубопровода. Подача (горячий трубопровод) от отопительного котла прокладывается по периметру всего здания и к нему последовательно подключаются радиаторы, а заканчивается она на последнем по ходу движения жидкости радиаторе.

Обратка начинается с первого радиатора, к ней попутно подключаются остальные радиаторы и она возвращает теплоноситель обратно в котел.

Из схемы видно, что для каждого радиатора суммарная протяженность подачи и обратки будет примерно одинаковой, поэтому все радиаторы работают в примерно одних и тех же гидравлических условиях.

Схема наилучшим образом подходит для больших площадей отопления, так как позволяет максимально упростить всю разводку для большого здания. В подающем трубопроводе и будет происходить некоторое снижение температуры жидкости, но в данном случае это не критично.

Диаметр основных труб требуется повышенный, в зависимости от подключенной к ним тепловой мощности, чтобы скорость теплоносителя не превышала максимальные рекомендуемые значения (0,7 м/с) при наибольшей нагрузке.

Это обстоятельство значительно удорожает систему, потому что большие фитинги дороже, попутка хоть и самая стабильная, но не самая дешевая.

Тупиковая схема включения радиаторов

Тупиковая схема состоит из двух или нескольких плечей (ветвей, направлений, тупиков…), приблизительно одинаковых по протяженности и по подключенной мощности радиаторов. В ней можно применить более тонкие трубы, так как длина плечей не большая, она ограничена по количеству радиаторов, что и делает систему дешевле.

Подача в каждом плече прокладывается до последнего радиатора, параллельно ей проводится и обратка до котла, или до стояка на каждом этаже.

Разводка может применяться и в маленьких дома и в больших, является универсальной и надежной, но лучше всего ее удается реализовать в домах небольших или средней площади – до 200 м кв. Что бы в каждом плече было не более чем по 5 радиаторов, тогда меньше проблем с их отладкой.

Важно соблюсти примерное равенство мощностей и гидравлических сопротивлений в каждом плече (по 5 а не 6 и 4). Разница в длине двух труб (подача и обратка) между плечами не должна превышать 20 метров.

Коллекторная (лучевая) разводка отопительного трубопровода

В центре дома устанавливается коллектор, к которому парами тонких трубопроводов (подача и обратка) подключаются все радиаторы.

Здесь трубы чаще прячутся под полом и недоступны для обслуживания, так как иначе выполнить разводу не представляется возможным. Недостатки – сложность прокладки трубопроводов с учетом теплоизоляции, трудность регулировки системы.

Обязательно должно быть примерное равенство гидравлических сопротивлений каждой ветви, отходящей от коллектора, иначе система будет разнотемпературной.

Схеме присущи сложность балансировки и не желательность изменения параметров системы «самостоятельно», так как каждая ветвь влияет на все другие подключения в коллекторе. Поэтому при неграмотной регулировке тепло может «пропасть» из какой-то комнаты.

Достоинства – меньшая стоимость, целесообразность монтажа при толстом пироге чернового пола, так как диаметры труб не большие. Отсутствие множества труб в видимой части интерьера.

Однотрубное отопление — «ленинградка»

Здесь действительно имеется экономия на длине трубопровода, но она не большая. Также один трубопровод большого диаметра, проложенный у пола (под полом в теплоизоляторе), меньше портит дизайн по сравнению с двухтрубными системами.

Радиаторы подключаются последовательно по длине трубопровода. Циркуляция жидкости в них за счет конвекции, за счет сопротивления в трубопроводе по длине подключения, которое создается искусственно уменьшением диаметра и др.

Каждый из радиаторов забирает энергию, охлаждая жидкость. В итоге к последнему радиатору приходит наиболее охлажденный теплоноситель.

Бороться с этим явлением можно уменьшая длину трубопровода, а также увеличивая диаметр труб, и создавая в нем большую скорость движения воды, уменьшая, таким образом, разность температур между подачей и обраткой (но скорость не может превышать допустимые значения по шуму для данного диаметра).

Также, по ходу движения жидкости просто увеличивают мощность радиаторов, чтобы компенсировать потери температуры. По сути, схема эффективно может применяться, лишь в небольших до 200 м кв. площадях на одно кольцо.

Система применяется не часто, так как проигрывает остальным по распределению энергии, потреблению электричества для создания скорости струи, а также из-за сложности регулировки и нестабильности работы, так как один радиатор влияет на работу других. Кроме того, система в итоге дороже из-за большого диаметра трубы.

Самотечное отопление

Сверхдостоинство самотечной схемы — не нужно электричество для движения жидкости. Кроме того, как правило, работа системы стабильна и безотказна.

Но она не может применяться на больших площадях, так как естественного теплового напора не хватает, чтобы вода циркулировала с должной скоростью, которая необходима для подачи нужного количества тепла к радиаторам. Обычная максимальная площадь одного этажа, где может быть применима самотечная схема — не более 150 м кв на 1 этаж.
К ней нельзя подключить дополнительные контура с насосами, например обогрев гаража или теплый пол.

Но при должной разности высотных отметок горячей и холодной воды, а также при больших диаметрах трубопровада, площадь может быть большей, что проверяется расчетом.

Также система самотеком обычно обходится дороже в 2 раза, чем схемы с насосом:

  • Требуется большой диаметр трубопроводов и их фитингов для уменьшения гидравлического сопротивления.
  • Как правило, применяются стальные трубопроводы, обеспечивающие этот самый большой внутренний диаметр, которые ржавеют и сложны в монтаже.
  • Котел устанавливается в приямке (в отапливаемом подвале) чтобы быть ниже радиаторов, чем и создается напор от разности температур.
  • Кроме того, наличие множества толстых труб, которые должны иметь определенную начальную и конечную высотные отметки, может значительно подпортить внутренний интерьер.

Схема востребована на удаленных дачах, в местах с нестабильным энергоснабжением, пользуется популярностью «по привычке», так как люди бояться отключений электроэнергии и т. п.

Какую схему отопления предпочесть

  • Для большого дома чаще проектируют попутную схему разводки отопительного трубопровода, стабильную и простую.
  • В домах поменьше чаще стараются сэкономить, и делается более дешевая, стабильно работающая, но несколько более сложная плечевая схема разводки. При этом плечи создаются приблизительно одинаковыми по характеристикам.
  • Лучевая разводка отопления находит все больше сторонников в связи с применением высоких окон, обогреваемых полов, внутрипольных конвекторов. При этом создается вместительное основание пола в котором иногда дешевле проложить тонкие трубы к каждому обогревателю от единого коллектора на этаже.
  • От «ленинградки» специалисты не в восторге из-за их нестабильной работы и сложности проектирования и налаживания. Не стоит усложнять, и искать проблемы «на ровном месте», это касается и отопления.

Если возможны перебои с электроэнергией, то для частного дома нужно приобрести и подключить элеткрогенератор , который должен быть в рабочем состоянии всю зиму. А если обеспечить работу системы не возможно, то в нее необходимо заливать незамерзающую жидкость.

Для твердотопливных котлов, которые не прекращают работу при отключении электроэнергии, насос системы отопления необходимо подключать к «бесперебойнику», чтобы обеспечивалась циркуляция жидкости несколько часов в аварийной обстановке.

А если этим всем заниматься не хочется, а электроэнергия не стабильна, то выручит самотечная система со своей схемой разводки. Правда она сгодится только на небольшой дом при ее создании придется потрудиться и излишне потратится.

Системы с попутным движением теплоносителя

При монтаже систем отопления в частных домах наиболее широкое применение получила двухтрубная разводка. Для ее реализации чаще всего применяются две основные принципиально разные схемы — попутная и тупиковая. Рассмотрим, чем отличается попутная система отопления, какими достоинствами и недостатками она обладает.

Принцип действия попутной системы

Система отопления с попутным движением теплоносителя, которую также называют петля Тихельмана, получает сегодня все более широкое применение.

Особенно высокую эффективность данная схема демонстрирует при монтаже протяженных систем отопительных трубопроводов, например, если необходимо обеспечить эффективный обогрев большого двухэтажного дома.

Петля Тихельмана принципиально отличается от классической тупиковой (встречной) схемы. При встречной системе трубопровода подающая магистраль начинается от котла и заканчивается последним радиатором, а «обратка» начинается от последнего радиатора и заканчивается котлом. При этом теплоноситель в магистралях движется в противоположных направлениях. В системе с попутным движением теплоносителя подача проходит таким же образом, а вот обратная магистраль начинается с первого радиатора, после чего доходит до последнего радиатора и возвращается к котлу. Таким образом, по подающей и обратной магистралям теплоноситель движется в одном направлении.

Создание такой схемы объясняется необходимостью балансировки сети отопления. Если в одном из циркуляционных колец системы потери давления будут меньше, чем в остальных, то поток теплоносителя будет стремиться именно в эту ветку. Соответственно, напор на других радиаторах будет меньше, что приведет к снижению эффективности отопления в соответствующих помещениях. Балансировка предусматривает создание условий, при которых потери давления во всех ветках минимальны. В тупиковых системах для этого приходится устанавливать игольчатые вентили или специальные термостатические клапаны.

При использовании попутной системы задача балансировки решается намного проще.

Если система укомплектована радиаторами с одинаковым числом секций и одинакового типоразмера, то она является автоматически сбалансированной без необходимости применения дополнительной арматуры.

Если же используются разные радиаторы, то ставить арматуру придется. Однако и в этом случае сбалансировать попутную систему будет намного проще, чем тупиковую. Особенно это актуально при значительной протяженности трубопроводов.

Системы отопления с попутным движением теплоносителя, как правило, реализуются с нижней разводкой труб по горизонтальной схеме. При этом прокладывается три трубы:

  • подающая магистраль;
  • обратная магистраль;
  • труба для возврата «обратки» к котлу.

Преимущества и недостатки петли Тихельмана

Как уже было сказано, основным достоинством петли Тихельмана является сбалансированность системы отопления. Она не требует установки дополнительной арматуры для регулировки потока, которая стоит достаточно дорого и к тому же может требовать обслуживания и выходить из строя.

Благодаря сбалансированности системы отопления попутного типа и одинаковой длины циркуляционных колец во всех радиаторах поддерживается практически одинаковый поток теплоносителя, а значит и греют они одинаково. В результате котел и циркуляционный насос работают в оптимальном режиме, и в целом обеспечивается оптимальное значение КПД системы.  Соответственно вы получаете качественный обогрев помещений при снижении расхода энергоносителя и финансовых затрат на эксплуатацию системы.

Петля Тихельмана демонстрирует особую эффективность при создании достаточно крупных систем отопления со значительной протяженностью трубопроводов. В таких условиях спроектировать сбалансированную и хорошо работающую тупиковую систему бывает довольно проблематично. При использовании же попутной схемы особых сложностей с гидравлическим расчетом не возникает.

Схема с попутным движением теплоносителя, как правило, работает с принудительной циркуляцией. Однако может она применяться и в самотечных системах. Более того, в системе с естественной циркуляции теплоносителя петля Тихельмана представляет собой оптимальное решение именно за счет своей сбалансированности и отсутствия необходимости в регулирующей арматуре.

Преимущества системы с попутным движением теплоносителя оптимальным образом раскрываются при ее комплектации высококачественными отопительными приборами. Радиаторы Ogint сочетают в себе высокую тепловую эффективность и отличные гидравлические характеристики. Благодаря этому они позволяют добиться наилучшего режима работы отопления.

Помимо преимуществ петля Тихельмана имеет и ряд недостатков, которые ограничивают ее применение. К основным минусам относятся:

  • более сложный монтаж за счет применения труб разного диаметра;
  • увеличенная протяженность трубопровода, что приводит к удорожанию системы;
  • наличие трех магистральных труб, что может ухудшать эстетические характеристики при открытой прокладке.

В связи с перечисленными недостатками системы с попутным движением теплоносителя имеют меньшее распространение, по сравнению с более простыми тупиковыми системами. Однако в ряде случаев именно такая схема является практически единственным решением для реализации действительно эффективного и экономичного отопления.

Радиаторы для систем с попутным движением теплоносителя:

Петля Тихельмана или попутка. Не связывайтесь с этой системой, если вас к тому не вынуждают обстоятельства.

Попутка — система не лучше и не хуже других. Обладает, как достоинствами, так и недостатками.
Но будоражит умы пользователей больше иных систем, наверное, здесь дело в названии. Что-то
мифическое слышится нам в слове петля: петля времени, петля памяти…

На деле за это системой скрывается обычная гидравлическая схема, несущая в себе больше
проблем, чем любая другая система, например, обыденно звучащая тупиковая система. В слове
тупик ничего мистического нет, а в большинстве случаев применяют именно тупиковую.

Итак, что такое петля Тихельмана?

Это система, в которой теплоноситель движется в одну сторону, и по подающей магистрали, и по
обратной. Вот так:

Обратите внимание! Магистрали уходят от котла в одну сторону и возвращаются с другой. Это
идеальный случай для монтажа попутки. И самый частый, когда без нее можно обойтись. А
обходиться без нее нам надо во всех случаях, когда это возможно.

Когда без попутки не обойтись? Когда радиаторов в линии 8-9 и больше, и когда мы можем
вернуться к котлу, только тем путем, которым ушли от него. Как здесь:

Правда, в этом случае петля Тихельмана из обычной двухтрубки превращается в
псевдотрехтрубку, но мы вынуждены идти на это увеличение трудоемкости системы и ее
стоимости, потому что никакая иная система не сможет обеспечить такого относительного
гидравлического равенства всех приборов в системе, как петля Тихельмана. Но это случай частный
и встречается довольно редко.

В большинстве случаев, когда попутка представляет собой систему, опоясывающую периметр
дома, мы можем с меньшими затратами обойтись тупиковой системой

Почему в этом случае нам не нужна попутка? Во-первых, она более дорогая и материалоемкая.
Во-вторых, рассказы о том, что она не требует балансировки – это басни, распространяемые
неграмотными сантехниками. Балансировать попутку надо обязательно. Конечно, у вас может
получиться попутка, в которой радиаторы будут работать все, но это случается редко. И при этом
могут наблюдаться гидравлические шумы в радиаторах и вам, наверняка, потребуется больший по
мощности и стоимости насос.

Почему попутка требует балансировки? Ведь кажется все радиаторы находятся на одинаковом
расстоянии (по длине магистралей) от насоса. Причина видна из этого графика:

Перепад давления между подачей и обраткой на последних и первых радиаторах по движению
теплоносителя всегда больше, чем на средних. И этот перепад может быть недостаточен для
обеспечения циркуляции теплоносителя через прибор.

Если в нашей системе применены радиаторы с малым гидравлическим сопротивлением,
например, чугунные, алюминиевые, трубчатые (с большим проходным сечением), то средние
радиаторы в системе обязательно будут холодные. Исправить это положение не сложно. На
крайних радиаторах должны быть установлены балансировочные вентили. И в этом смысле
балансировка попутки мало чем отличается от балансировки тупиковой схемы. Количественные
показатели будут приблизительно одинаковы

Как видите, глубина балансировки (показана условно для попутки и тупиковой схем) хоть и
отличается, но не сильно. Конечно нам выгоднее иметь меньшую глубину балансировки, чтобы
сопротивление всей системы было как можно меньше, но при этом не обязательно делать свою
систему дороже на 15-20%. Поэтому чаще всего применяется тупиковая схема, потому что
пользователю без разницы насколько задушен радиатор, на 50 процентов или на 60. Все что
интересует пользователя – это равномерно прогретые радиаторы во всей цепи.


Итак, мы выяснили, что:

  • попутка — это система отопления загородного дома, имеющая незначительное
    преимущество в меньшей глубине балансировки, по сравнению с аналогичной по
    сопротивлению и нагрузке системой тупиковой.
  • Дающая возможность монтировать последовательности из 10 и более радиаторов. Для
    тупиковой системы 10 радиаторов в одном плече, как правило, значение предельное, уже
    трудно поддающееся настройке.
  • Более дорогая по сравнению с тупиковой схемой. Поэтому применять ее в случае, когда
    радиаторов не больше 10-12 и когда попутка не вырождается в трехтрубку, не следует.
    Выгоднее применить тупиковую в два плеча.
  • Ничего кроме попутки мы не сможем применить в случае, когда прокладка магистралей
    возможна только по периметру дома, площадь этажа значительная и радиаторов на этаже

  • 20.

  • Обязательным условием для устройства петли Тихельмана является применение
    балансировочных клапанов на отопительных приборах. Оставить без балансировки можно
    только 3-5 радиаторов в середине петли. Но в этом случае при возникновении
    гидравлических шумов у вас не будет возможности избавиться от них. Поэтому не
    экономим и ставим балансировочники на все приборы. Желательно иметь радиаторы с
    высоким гидравлическим сопротивлением, в этом случае, вы будете избавлены от
    необходимости глубокой балансировки крайних приборов.

В остальном попутка — обычная система. Но применять ее надо только в тех случаях, когда более
высокие затраты на ее монтаж, оправданы невозможностью применить никакую другую систему.
А такое встречается не часто. Поэтому не делайте лишних движений и не тратьте лишние
средства. Без попутки чаще всего можно обойтись.

Попутное и тупиковое движение теплоносителя. Петля Тихельмана


Для создания автономных систем отопления сегодня чаще всего выбирается двухтрубная разводка, которая позволяет
поддерживать равномерную температуру каждого радиатора и эффективно регулировать ее. В зависимости от характера движения теплоносителя в подающей и обратной магистрали, для ее реализации может быть выбрана тупиковая (встречная) или попутная схема. Каждый из этих вариантов имеет свои достоинства и минусы и лучше подходит для определенных условий монтажа. Использование попутной схемы или петли Тихельмана в некоторых случаях представляет собой единственный способ создания эффективного и стабильно работающего отопления. Разберем характерные особенности, плюсы и минусы этой схемы двухтрубной разводки.

Как работает петля Тихельмана


Наиболее распространенной в бытовых сетях является тупиковая схема движения теплоносителя. Ее принцип действия заключается в том, что
нагретая вода от котла по подающей магистрали поступает в каждый радиатор, а на выходе из контура отопительного прибора по обратной магистрали сразу направляется к отопительному котлу. Таким образом потоки воды в «подаче» и «обратке» движутся навстречу друг другу. В данном случае подающая магистраль проходит от котла до последнего прибора, а обратная магистраль — в обратном направлении, начиная от последней батареи до котла.


Принципиальной особенностью системы попутного типа является то, что и в подающей, и в обратной трубе
теплоноситель движется в одном и том же направлении. Обычно такая схема используется в сетях с нижней разводкой. При этом предусматривается прокладка не двух, а трех труб:

  • подающий трубопровод;
  • обратный трубопровод;
  • трубопровод для возврата теплоносителя из обратной магистрали к котлу.


В данном случае «подача» также проходит от котла до последнего отопительного прибора. Обратная магистраль проходит от первого до последнего отопительного прибора. Таким образом теплоноситель движется по ней в том же направлении, что и по напорному трубопроводу. От последнего отопительного прибора он возвращается обратно к котлу по отдельной трубе.

Для чего используется попутная схема


Попутная система отопления применяется в тех случаях, когда необходимо решить проблему сложной балансировки трубопроводной сети. Такая балансировка требуется для того, чтобы обеспечить равномерное распределение тепла между подключенными радиаторами.
Чем ближе батарея расположена к котлу, тем меньшими будут в ее контуре потери давления по сравнению с контурами других батарей. Соответственно основной поток теплоносителя будет стремиться именно в этот контур. В результате в сети отопления тупикового типа возникает ситуация, когда в первом от котла отопительном приборе поддерживается слишком высокая температура, а последний радиатор оказывается слишком холодным и не может эффективно обогревать помещение.


Для устранения этого дисбаланса на каждый радиатор приходится ставить игольчатый вентиль или термостатический клапан для регулировки объема теплоносителя, подаваемого на каждый прибор. Таким образом, давление на конкретной батарее будет тем ниже, чем ближе она расположена к котлу. Однако серьезные сложности с балансировкой возникают, когда необходимо создать отопительную сеть значительной протяженности, например, если нужно обогреть двухэтажный дом. В таких случаях на первом радиаторе давление может быть занижено настолько, что теплоноситель в него просто не потечет, либо может не хватить настройки клапана. В этом случае оптимальным будет использование варианта с попутным движением теплоносителя.


Вариант с попутным движением теплоносителя дает возможность намного легче решить вопрос балансировки. Собственно, такой вопрос возникает только в том случае,
если используются батареи с разными характеристиками. Если все радиаторы в системе отопления имеют одно и то же число секций и одинаковые размеры, то попутная разводка является сбалансированной изначально и не требует применения специальной регулирующей арматуры. При разном количестве секций или при разных типоразмерах установленных в системе радиаторов ее придется балансировать. Однако сделать это будет намного легче по сравнению с тупиковой схемой.

Плюсы и минусы


Главным плюсом петли Тихельмана является именно ее сбалансированность. Выбор такой схемы позволит сократить количество установленной регулирующей арматуры. Соответственно, отпадает необходимость обслуживания дополнительных устройств и возможность их выхода из строя. В результате повышается общая надежность системы и упрощается ее эксплуатация.


Также за счет того, что система является сбалансированной, все батареи в ее составе греют практически одинаково без применения дополнительных решений. Это оптимизирует работу котла и насоса, снижает износ оборудования. Кроме того, в таком режиме повышается эффективность работы системы.


Петля Тихельмана подходит
для создания и систем с принудительной циркуляцией, и для самотечных систем. Наиболее распространены, безусловно, принудительные системы. Однако если возникает потребность создания системы с естественной циркуляцией теплоносителя, то хорошим выбором будет именно попутная схема. Это также объясняется сбалансированностью трубопровода и отсутствием необходимости в установке дополнительной регулирующей арматуры.


Радиаторы Lammin обладают высокой тепловой эффективностью и отличными гидравлическими характеристиками. Благодаря этому их использование дает возможность в полной мере использовать все преимущества данного типа отопительной системы.


Помимо перечисленных достоинств, петля Тихельмана имеет и ряд недостатков:

  • существенное увеличение протяженности трубопроводов;
  • необходимость использования труб различного диаметра;
  • необходимость прокладки трех магистральных трубопроводов.


Главным
минусом является увеличенная протяженность трубопроводов. Это приводит к значительному росту материальных затрат на комплектацию системы отопления. Кроме того, перечисленные недостатки усложняют работы по ее монтажу.


В связи с этими недостатками схемы с попутным движением применяются реже, чем тупиковые. Однако для создания крупных систем с протяженными трубопроводами такая схема зачастую является просто незаменимой и обеспечивает максимальную эффективность.

Попутная система отопления схема своими руками видео

Строительная индустрия радует нас все более разнообразными и практически применимыми тенденциями. Одной из них стала схема отопления под названием петля Тихельмана. Данная система достаточно широко используется не только в нашем государстве, но и далеко за его пределами. Специалисты отмечают, что своей популярностью данная система по большей мере обязана максимальной простоте конструкции. Между тем, несмотря на то, что самостоятельно соорудить эту «петлю» сможет практически каждый, определенную подготовку пройти все же стоит. В противном случае вы рискуете достигнуть результата, качество которого будет, как минимум, неудовлетворительным.
Петля Тихельмана – одно из самых эффективных решений

Мифы вокруг приспособления

Если вам придется когда-нибудь столкнуться с необходимостью сделать выбор между такими системами для отопления дома, как попутная и тупиковая, вы наверняка заметите, насколько неоднозначные отзывы и мифы относительно первого варианта заполняют сетевое пространство. Между тем, практика показывает, что львиная доля публикаций псевдопрофессионалов не имеет никакой практической почвы и построены исключительно в гипотетической плоскости. Итак, специалисты выделяют три наиболее распространённых мифа, которые порочат славу отопления с попутным движением теплоносителя:

  • Необходимость в балансировании такой системы отсутствует, а потому на отопительном приборе в ее конструкции не нужно проводить монтаж клапанов балансировочного типа;
  • В данной конструкции можно специально уменьшить как диаметр, так и длину трубопровода.
  • В каждом циркуляционном кольце присутствует одинаковое гидросопротивление.

Стоит отметить, что существуют определенные государственные стандарты, а также специальные учебники, обратившись к которым вы сможете быстро убедиться в ложности мифов, представленных выше.
Пример схемы “петли”

Краткая характеристика «попутки»

Нужно сразу сказать, что чисто с конструкционной точки зрения «попутка» является едва ли не наиболее простым среди предложенных в современной строительной индустрии вариантов. Попутная система отопления предполагает протяжку подающей трубы традиционным способом, то есть прокладку ее непосредственно от котла в последний по схеме радиатор. Одновременно с этим, есть и обратная труба, монтаж которой осуществляется следующим образом: она протягивается к нагревательному устройству от самого первого радиатора. В связи со спецификой прокладки разводки такого типа суммарная длина труб, которые подключаются к каждой батарее, является одинаковой. Простыми словами: если к батарее ведет короткая труба подачи, то отводная труба будет достаточно длинной.
Схема системы с указанием мощностей

Каковы преимущества данного варианта?

Выбирая между аналогами, которые современные специалисты разработали для частных домов, необходимо разобраться с тем, каковы их отличительные достоинства. В случае «попутки» справедливо будет упомянуть о таких характеристиках:

  • Несмотря на то, что мероприятия по балансировке все же необходимо осуществлять, их масштабы будут минимальными, в отличие от аналогичных видов работ с другими отопительными конструкциями.
  • Благодаря особенностям конструкции данного типа прогрев помещений осуществляется равномерно, а тепло при этом еще очень долго не покидает дом.
  • В заключении хотелось бы сказать, что попутная схема современной системы отопления, которая более известна под названием петля Тихельмана, функционирует с максимальной отдачей.

В рамках тупиковых конструкций двухтрубного типа радиаторы, которые расположены в наибольшей близости к нагревательному оборудованию, в отличие от отдаленных, как правило, нагреваются до высоких температур. Естественно, такая ситуация требует поиска эффективных решений. В данном случае специалисты рекомендуют проводить монтаж балансировочных кранов, при помощи которых количество теплоносителя, протекающего через трубы около нагревательного агрегата, существенно сокращается.
“Петля” подойдет для помещений с простой планировкой

К сожалению, даже дорогостоящая балансировка не способна позволить пользователю запустить радиаторы на мощность, предусмотренную производителем. Помимо этого, дополнительной денежной затратой в деле организации такой конструкции, является обязательная покупка весьма недешевого насоса, мощностные параметры которого обеспечат эффективное движение теплоносителя.

Одновременно с этим, так называемая петля Тихельмана известна практически полным отсутствием подобных минусов. Так, батареи, которые задействованы в ее конструкции, функционируют в усредненных и равных условиях.

Немного о недостатках

Рассуждая о практической применимости того или иного варианта, необходимо не только изучить отличительные особенности позитивного характера, но и обратить внимание на то, какие недостатки имеются у наиболее перспективного решения и, конечно же, его аналогов. Справедливо сказать, что «попутка» недостатков не лишена. Для начала стоит отметить, что преимущественно в целях экономии, на базе тупиковых конструкций по ходу продвижения теплоносителя диаметр магистрали несколько уменьшается. С попутным вариантом конструкции так сэкономить не получится, ведь существуют вполне объективные причины, в связи с которыми по периметру помещения осуществляется прокладка труб исключительно равного диаметра.
Точки «равного давления» — схема с попутным движением теплоносителя

Факторы целесообразности выбора

Современные отопительные системы представлены как на отечественном, так и на мировом рынке строительной индустрии в широком разнообразии. Однако, каждое из предложенных конструктивных решений целесообразно применять в некоторых конкретных случаях. Если рассматривать конкретно систему петли Тихельмана, ее установка является рациональным решением, если:

  • у вас большой дом, организация отопления в котором предполагает монтаж большого количества батарей;
  • существует возможность прокладки труб исключительно по периметру комнат;
  • вы готовы потратить на организацию отопления в доме относительно большое количество финансов.

Выше подан традиционный минимальный перечень условий, в соответствии с которыми выбор в пользу «попутки» является рациональным и обоснованным. Таким образом, если работа циркулярного насоса определяется влиянием балансировки, а необходимости в прокладке трехтрубной системы с большими петлями отсутствует, именно попутная схема оптимальным образом будет функционировать в вашем доме.
Настройка клапана – схема с тупиковым движением теплоносителя

Как рассчитать необходимый диаметр труб?

Естественно, в процессе проектирования схемы отопительной системы в конкретном архитектурном объекте необходимо определиться с тем, каковым должен быть диаметр труб в конструкции. В данном случае предполагается вычисление общих тепло-мощностных показателей. Это необходимо сделать в первую очередь, так как в противном случае монтаж отопления будет затруднен. Итак, в процессе определения диаметра труб мы высчитываем мощность конструкции. Необходимо заранее определить такие параметры:

  • объем дома;
  • разность температур внутри помещений и в окружающей среде;
  • стандартный коэффициент по потерям тепла, который в свою очередь напрямую зависит от того, насколько утепленным является архитектурный объем в целом.

Схема двухтрубной системы

В отношении коэффициента существуют уже заранее определенные числа, которые зависят от степени теплоизоляции архитектурного объекта. Так, если присутствует минимальная теплоизоляция или она полностью отсутствует, то коэффициент равен 3 или 4. В случае облицовки здания кирпичом данный показатель варьируется в диапазоне от 2 до 2.9. При условии среднего уровня изоляции тепла в помещениях предлагается коэффициент со значением порядка 1.8. В завершении стоит сказать, что, если дом утеплен качественными строительными материалами, а также при условии, что был проведен монтаж стеклопакетов и современных дверей на всех входах в здание, коэффициент теплопотерь является минимальным – не более, чем 0.9.

После расчетов, описанных выше, необходимо определить с какой скоростью теплоноситель будет передвигаться по трубам. Традиционный диапазон значений данного параметра – от 0.36 до 0.7 метров в секунду. Специалисты называют эти рамки оптимальными. Как правило, диаметр труб в районе 26 миллиметров является наиболее подходящим как для обратной магистрали, так и для подающей. Для подключения радиаторов к системе специалисты рекомендуют использовать 16-тимилиметровые трубы.

Сколько воды должно быть в «петле»?

Вполне очевидно, что для грамотной организации отопления в доме необходимо знать конкретное количество теплоносителя, который будет заполнять и приводить в действие всю систему. Прежде, чем приступать к непосредственно к расчетам количества необходимой воды, нужно определить каковы теплопотери всего дома. Для этого необходимо знать такие параметры, как:

Далее остается лишь воспользоваться формулой следующего типа: G = S * 1 / Ро * (Тв – Тн)к. Получив значение теплопотерь можно приступать к определению количества воды. Для этого используем такую формулу – Q = G/(c*(Т1-Т2)). Для ее применения понадобиться знать удельную теплоемкость воды, а также ее температуру как в обратной трубе, так и в подающей.
Схема вертикальной двухтрубной системы

Доверьтесь современным технологиям

Ни для кого не секрет, что во времена эры современных технологий люди могут позволить машинам и программному обеспечению решать множество рутинных задач. Очевидно, что новичок в строительной сфере не в состоянии в полном объеме осуществить все необходимые расчеты, а также с нуля создать полноценный проект отопления в доме. К счастью, разработчики уже создали специальные программы, использование которых существенно упрощает дело проектирования и расчетов. Как правило, программное обеспечение для строительной сферы является достаточно дорогостоящим.

Между тем, многие компании предлагают бесплатные версии программ, которые обладают настолько ограниченным функционалом, чтобы пользователь ознакомился с основными возможностями продукта. Собственно, для проектирования отопления в загородном доме подобной бесплатной версии программного продукта может быть вполне достаточно.
Схема магистралей воды в системе отопления

Алгоритм работ

Для того, чтобы осуществить качественный монтаж системы в собственном доме, вам придется следовать определенной технологии. Так, сборка проводится в следующем порядке:

  • установка котла;
  • монтаж радиаторов;
  • прокладка магистралей;
  • монтаж циркуляционного насоса;
  • установка расширительного бака, а также объектов группы безопасности.

В процессе монтажа системы не забывайте, что необходимо учитывать и специфику планировки каждого конкретного помещения. Следует учитывать насколько магистральные пути, которые так или иначе все равно необходимо прокладывать около двери, портят визуальный образ комнат. В хозяйственных помещениях скрывать трубы нет смысла, а в жилых комнатах трубу можно протянуть непосредственно под дверью.
Тупиковая и попутная схема движения теплоносителя

Тупиковая система отопления — схема для частного дома. Жми!

Схемы отопления в жилых домах частного сектора домостроительства являются тупиковыми двухтрубными системами отопления, однотрубные применяются редко.

На практике существуют несколько вариантов схем. Каждая из них монтируется в соответствии с конкретными условиями жилого помещения.

Что из себя представляет

Система отопления, смонтированная таким образом, когда кольца, по которым проходит теплоноситель, не равны друг другу, называется тупиковой.

На рисунке приведена общая схема такой системы, где присутствуют два трубопровода:

  1. C нагретым теплоносителем. Подающая магистраль, на схеме обозначена красным цветом.
  2. C остывшим теплоносителем. Обратная магистраль, на схеме обозначена синим цветом.

Согласно данной схеме поток нагретого теплоносителя после выхода из газового котла протекает по подающему трубопроводу в направлении к радиаторной системе. При попадании в радиатор, в процессе прохождения сквозь него, нагретый поток теплоносителя отдает тепло. После охлаждения поток теплоносителя сразу уходит в обратную магистраль, двигаясь в направлении к газовому котлу.

Альтернативой тупиковой системе является попутная система отопления, но так называемая попутка имеет иную схему прохождения теплоносителя по системе.

Виды тупиковых систем

Вариантов таких систем существует два:

  • горизонтальный, где применяется горизонтальная разводка трубопроводов;
  • вертикальный, где пользуются вертикальной разводкой трубопроводов.

Горизонтальная схема

Согласно данной схеме трубопроводы, подающий и обратный, до момента присоединения к радиаторам располагаются горизонтально.

В этом случае диаметры трубопроводов одинаковы, и типоразмеры монтажных компонентов совпадают с диаметрами трубопроводов. Это существенно упрощает работы при монтаже данных систем и соответственно экономятся как средства, так и время.

При эксплуатации данной системы отопления температура теплоносителя на входе радиаторов примерно одинакова. Но существует недостаток. Дело в том, что при больших площадях и большой протяженности трубопроводов трудно отбалансировать отдельные радиаторы.

Разновидностью двухтрубной тупиковой горизонтальной системы, является схема с центральной магистралью. Важно знать, что такую разводку наиболее целесообразно монтировать в скрытом варианте или в пол при его бетонировании, или в стену под слой штукатурки. Тогда не будет нарушаться дизайн жилого помещения.

[advice]Важно знать: монтировать трубопровод в случае его бетонирования или оштукатуривания необходимо из полимерных труб по технологии соединения на надвижной гильзе.[/advice]

Эта технология представляет собой, соединение без резиновых уплотнительных колец. Сам материал трубы является уплотнителем.

Однако при монтаже к радиаторам возникает проблема с пересечением трубопроводов, так как трубопроводы будут выступать из стяжки.

Важно знать, что решением данной проблемы является применение крестовины.  При выходе к радиатору крестовина даёт возможность, не выходя за пределы монтажной плоскости, обойти магистральный трубопровод.

Эта система даёт возможность подключать:

  • контур — теплый пол;
  • контур — сушильные полотенца.

Подключаются эти контуры с применением смесительного модуля, который состоит из:

  • насоса циркуляции, который придаёт динамику движения теплоносителю;
  • вентиля смешения с датчиком температуры.

Этот модуль дает возможность работать контурам в независимом режиме от основной системы. В таком режиме они сами не оказывают влияние на работу общей системы.

Схема отопления в вертикальном исполнении

Эта схема используется в домах более одного этажа.

От газового котла одновременно происходит разделение на две ветви:

  • первая проходит по первому этажу;
  • вторая через в вертикальный стояк проходит по второму этажу.

Существуют определенные условия, обеспечивающие надежность и устойчивость работы плечевой схемы:

  • количество радиаторов — на каждом этаже должно быть в пределах десяти штук;
  • должны монтироваться трубопроводы с теми диаметрами, которые подходят к данной конкретной системе;
  • должны монтироваться на каждом этаже двухэтажного дома, как на нижнем, так и на верхнем, вентили балансировки, имеющие автоматическую регулировку давления.

[warning]Замечание мастера: вертикальная схема проектируется исключительно с циркуляционным насосом.[/warning]

Дело в том, что вертикальную схему нельзя сделать так, чтобы теплоноситель проходил самотеком, когда движение исключительно под давлением горячего теплоносителя на холодный, поэтому необходимо применение насоса.

Схема двухтрубной тупиковой системы отопления достаточно распространена, так как проста при монтировании и ее несложно эксплуатировать. Данная схема достаточно экономична с финансовой точки зрения. В силу указанных причин частный сектор домовладений охотно ее применяет.

Смотрите интересное видео, в котором специалист дает квалифицированные советы на тему устройства двухтрубной системы отопления:

Оцените статью: Поделитесь с друзьями!

Виды систем отопления частного дома, схема отопления

Схемы системы отопления

Самотечная схема

Однотрубная система

Коллекторная схема

Попутная система отопления

Плечевая система

Вывод

Рассмотрим 5 систем отопления: самотек, «ленинградку» (однотрубную систему), коллекторную, тупиковую и попутную. Сразу раскроем секрет, что самые лучшие схемы — это «попутка» и тупиковая плечевая. В маленьких домах задействуют плечевую, в больших домах лучше всего – «попутка», где много радиаторов с балансировкой не будет никаких проблем.

Такая схема никому сейчас не нужна, и когда ее требуют выполнить, думая, что обойдётся дешево, люди сильно ошибаются. Во-первых, потому что там нужны толстые трубы. Во-вторых, регулировка очень нежная, ее легко нарушить, поэтому нужны уклоны, чтобы котел стоял ниже радиаторов, т.е. нужен приямок на кухне или подвал, тогда это будет работать. И даже в этом случае вы будете иметь одну большую проблему самотека — второй этаж всегда горячее, чем первый. С этим можно бороться, но вся эта борьба приводит к тому, что система удорожается. Потребуется устройство байпасов, сварочные работы, балансировочные краны на втором этаже и их отсутствие на первом. Это приведет к тому, что система самотека обойдется в 3 раза дороже, чем насосная.

Самотечная схема в трехэтажном доме не рекомендуется потому, что движение теплоносителя ленивое, медленное, и те 20 кг разницы в тонне нагретой и холодной воды — недостаточная причина, чтобы вода двигалась интенсивно по трубам и батареям.

На двух этажах самотек будет работать неплохо, но при определенных условиях. К примеру, для полноценного самотека понадобится два полноценных этажа и чердак. На чердаке устанавливается расширительный бак, к которому будет от котла подходить главный стояк, желательно по прямой (небольшое искривление допустимо, но это будет ухудшать работу самотека). От главного стояка будут расходиться «лежаки» с уклоном 0,05, от которых будут опускаться стояки, и они будут собираться в обратку для перехода в котёл.

Самотек хорош, в избе, где есть сени, спальня и поток, и стоит котёл. Также будет прекрасно работать в одноэтажных домах. Рассмотрим еще мансардный дом, где полноценный первый этаж и на втором немножко приподняты стены, затем идёт скошенная крыша. В данном примере, расширительный бак девать некуда, придется устанавливать где-то в помещении. Возникает проблема — кто будет топить дом, если хозяева используют его только на выходных? Следовательно, дом будет замерзать, а значит нужна незамерзайка, которая хуже ходит по системе, чем вода. Она обладает меньшей теплоемкостью и ядовита. К тому же, при нагреве расширительного бака пары теплоносителя будут попадать в помещение, надо дышать ими или нет. Как вариант, можно вывести на улицу, сделав герметичную крышку, но это опять плюс к затратам.

Ещё один недостаток – нет возможности проложить трубы правильно, они должны прокладываться ровно. Итого, прежде чем делать самотёк обратите внимание на дом, учтите нюансы.

Преимущество самотечной системы в том, что она независима от электричества. Если произойдет отключение электроэнергии, то у вас все равно будет тепло.

Что такое однотрубная система, которая якобы стоит дешевле, чем обычная двухтрубная? Ничего она не экономит. «Однотрубка» хороша в цехах, в доме сделать сложно. Например, некая сеть, на которой стоят радиаторы. Не всегда получается так, чтобы получилась действительно «ленинградка», так как мы должны уйти от котла и дойти до крайнего отопительного прибора, и снова вернуться к котлу. Получается всё равно двухтрубная схема отопления, но выглядит как однотрубная.

При таком подключении коэффициент затекания в радиатор сильно снижается. Это приводит к тому, что скорость движения теплоносителя понижается, и, если в обычной системе разница между подачей и обраткой 6-10°, то при уменьшении коэффициента затекания значение возрастает до 20 градусов, потому что вода стоит и успевает сильно остыть. В батарею вода приходит 70 градусов и остывает до 50, следовательно, теплоноситель в следующий радиатор попадает более холодным, следующий – еще холоднее, и так далее. Если в цепи стоят 10 радиаторов, то к последнему теплоноситель попадает уже не 70-градусный, а 40-градусный. С этим можно бороться, увеличивая батареи по ходу движения теплоносителя. Увеличение сложно посчитать и прогнозировать работу системы отопления, и это дороже.

Основной аргумент — чтобы в полу не было соединений.

Рассмотрим такой недостаток. Имеется коллекторный ящик, от которого отходят в разные стороны по 2 трубы к каждому радиатору. Желательно этот ящик ставить в центре строения, потому что если будет стоять в другом месте, то сумма длин труб не будет равной и образуется дисбаланс. Балансировка коллекторной системы не должна трогаться, необходимо, чтобы радиаторы прогревалась одинаково.

Также, увеличивая искусственно гидравлику ближних батарей — увеличивается гидравлика всей системы, и понадобится более мощный насос. Для отопления нужно обеспечить беспрепятственный доступ теплоносителя в отопительные приборы, а в данной схеме гидравлика увеличивается искусственно, чтобы перераспределить потоки.

Это такая схема отопления, в которой не нужно ничего регулировать. Она хороша тем, что сумма длин труб к каждому радиатору одинаковая. Подача начинается от котла, обратка начинается только от первого радиатора, следовательно, если сложить суммы подачи и обратки для каждой батареи, то значение будет одинаковое (константа). В итоге, нет никаких беспокойств, нет необходимости искусственно увеличивать гидравлику, все работает замечательно.

Единственный отрицательный момент заключается в том, что в «попутке» магистральная труба и фитинги должны быть толще, чем в коллекторной системе – это обойдется дороже.

Что из себя представляет тупиковая схема? Она хороша тогда, когда дом небольшой, и есть возможность сделать плечи приблизительно одинаковой длины с разницей не больше 20 м на двух трубах. Если это получается, и тепловая нагрузка на каждом плече примерно одинаковая в доме до 200 м², то лучше, чем плечевая система, ничего сделать нельзя.

В чём преимущество? Во-первых, используется меньшее количество труб, во-вторых, появляется возможность проложить трубы по периметру дома. Если соединения, которые зашиваются в пол, выполняются из сшитого полиэтилена или прессового металлопластика, то они очень надежны и уже опробованы не раз на практике.

Самотечная система используется в домах одноэтажных, двухэтажных, но с полноценным чердаком, где поместится расширительный бак;

однотрубная («ленинградка») — лишние траты, лишнее беспокойство, неудобно и хлопотно;

коллекторная (лучевая) — использовать можно, но учитывайте лишнее количество труб и их расположение поперёк помещений;

оптимальный вариант — «попутка», которая предпочтительнее для больших домов;

или тупиковая плечевая, пригодная для небольших домов до 200 метров квадратных.

Как добавить обогреватель на мотоцикл

Я полагаю, тебе нравится ездить на мотоцикле. Я полагаю, тебе не нравится быть холодным. Подключи что-нибудь горячее и будь счастлив, не так ли? Вроде, как бы, что-то вроде.

Создание нагретых предметов с помощью вашего снаряжения может быть кошмаром — но этого не должно быть, если вы знаете, как это делать правильно!

Во-первых, отказ от ответственности. Для простоты мы собираемся не обращать внимания на некоторые сложности, связанные с электричеством. Мы также собираемся ошибиться в сторону консервативности, потому что, если вы «украдете» слишком много электроэнергии, а в Восточном Джабипе, где вы застряли, будет два градуса ниже нуля, вы не станете счастливым гонщиком.

На самом деле есть только два препятствия, которые нужно преодолеть, решая, как согреться на велосипеде. Их:

  • Сколько электроэнергии можно безопасно взять с велосипеда?
  • Как вы можете превратить это электричество во что-то, что согревает вас (не вызывая электрического пожара)?

Сколько электроэнергии вы можете сэкономить?

Современный мотоцикл обычно вырабатывает больше электроэнергии, чем нужно велосипеду, в зависимости от мощности статора и аккумулятора.Если у вас шестивольтная система или работает магнето, эта статья к вам не относится. Купи современный байк, скряга.

Для вас, любители современных уличных мотоциклов: ваш статор вырабатывает электроэнергию переменного тока, которая направляется к вашему регулятору или выпрямителю, где преобразуется в постоянный ток, обычно от 13 до 15 вольт. Первая задача системы зарядки — восполнить электроэнергию, которую батарея использовала для (электрического) запуска. После этого ему необходимо поддерживать заряд аккумулятора во время работы велосипеда.Теперь, если системе требуется больше электроэнергии (например, если вы нажмете на тормоз и зажжете стоп-сигнал), она есть, потому что система зарядки отправляет немного больше энергии в аккумулятор, пока он не пополнится.

Во всяком случае, это (значительно упрощенная) теория. Если вы хотите использовать нагретую передачу, вам нужно знать три вещи: выходную силу тока статора, сколько ампер потребляет ваш велосипед во время работы и как «преобразовать» мощность в силу тока.

Выходную мощность вашего статора можно найти в заводском руководстве по обслуживанию.Вот сколько электроэнергии вы производите. Имейте в виду, что мощность статора увеличивается с частотой вращения двигателя. Определите мощность статора на крейсерской скорости на высшей передаче, а не на максимальной мощности.

Понимание электрических систем мотоциклов касается не только нагретого оборудования. Вы можете брать с собой, заряжать и использовать всевозможные электронные игрушки в дороге с такими изящными предметами, как этот USB-порт питания. Ревзилла фото.

Определить, сколько ампер потребляет ваш велосипед во время бега, так же просто, как сложить все индивидуальные розыгрыши и подсчитать общее количество.(В некоторых руководствах по обслуживанию эта информация есть, но не во всех.) Если вы что-то просчитываете, не забудьте и другие аксессуары, например, фары дальнего света, которые вы могли добавить. У большинства лампочек одинаковая сила тока. Например, большинство фар h5 потребляют 55 Вт на ближний свет и 60 Вт на дальний свет. У большинства велосипедов есть запас хода, потому что одни вещи работают постоянно, а другие используются периодически или редко. См. Таблицу для некоторых распространенных сценариев использования. Большинство современных мотоциклов с впрыском топлива потребляют от 300 до 600 Вт в пиковых сценариях.

Товар Пик розыгрыша Использование
Фара (дальний свет) 65 Вт Прерывистый
Фара (ближний свет) 55 Вт Константа
Фонарь освещения номерного знака Пять ватт Константа
Стоп-сигнал 20 Вт Прерывистый
Фонарь задний 15 Вт Константа
Комбинация приборов Три ватта Константа
ЭБУ / ECM 25 Вт Константа
Топливный насос 60 Вт Константа
Вентилятор охлаждения 60 Вт Обычно прерывистый
в зимние месяцы
Зажигание 50 Вт Константа
Рог 45 Вт Прерывистый

Разница между производством и потреблением — это магическое число.Это количество сока, которое вы можете безопасно использовать для питания нагретых предметов, не перегружая себя. Причина, по которой это так важно, заключается в том, что для питания элементов, выделяющих тепло, обычно требуется много электроэнергии.

(Вырабатываемая мощность) — (Используемая мощность) = Избыточная мощность

Последняя часть головоломки — это определение розыгрыша предметов, которые вы хотите использовать. Чтобы упростить расчет потребления электроэнергии обогреваемыми предметами, которые вы, возможно, захотите приобрести, мы публикуем данные о потреблении тока на каждой части обогреваемого оборудования, если таковая имеется.(RevZilla предоставляет максимальные показатели тяги для нагретых предметов. Мы предполагаем, что механизм работает так же горячо, как и сам, опять же, в интересах сохранения консервативности.) Просто сложите силу тока того оборудования, которое вы хотите использовать, и посмотрите, подходит ли ваш велосипед. поддержу!

Прямое преобразование ватт в амперы на самом деле невозможно. Это все равно, что пытаться преобразовать чашки в километры. Но поскольку велосипеды работают при очень стабильном напряжении, вы можете рассчитать ампер, исходя из мощности и напряжения, и наоборот. Используйте эти формулы:

Ваше напряжение должно быть где-то между 13.6 и 14,5 при движении велосипеда. Для расчета подаваемой мощности используйте 13,6, чтобы быть консервативным, а при подсчете потребляемой мощности используйте 14,5, чтобы ошибиться из соображений осторожности.

При расчетах я предпочитаю оставлять маржу в 10 процентов или около того по нескольким причинам. Во-первых, не каждая электрическая система полностью эффективна. Небольшая коррозия на клеммах аккумулятора или слабый статор могут привести к уменьшению доступного сока. Во-вторых, в холодную погоду может быть сложно завести велосипед. Вы также можете подождать, пока велосипед прогреется, а время, проведенное на холостом ходу, — это время, когда электрическая система не вырабатывает максимальное количество энергии.Если ваш велосипед не в идеальном состоянии, вам понадобится резервный аккумулятор для нескольких запусков, если это необходимо.

Давайте возьмем старый измельчитель в качестве простого примера упражнения. Представим, что он в разобранном виде, с кикером и без поворотников. Единственная электрическая часть, которую он использует, — это зажигание (около 50 Вт), фара (постоянная 55 Вт, с увеличением до 125, если одновременно используются дальний и ближний свет) и стоп-сигнал / задний фонарь (около 25 Вт с обоими филаменты загорелись). Этот конкретный велосипед имеет систему зарядки на 32 А, но это при 5000 об / мин.Технические характеристики этого мотоцикла (это Харлей!) — 29 ампер при 2500 оборотах в минуту. Этот мотоцикл обычно работает со скоростью 2700 об / мин на высшей передаче со скоростью 70 миль в час.

На крейсерской скорости байк выдает 29 А x 13,6 В = 394 Вт примерно. Он использует 50 + 125 + 25 = 200 Вт. Разница между производством и потреблением составляет 194 Вт, за вычетом 10-процентной погрешности, в результате чего общая рабочая избыточная электрическая мощность составляет 175 Вт … этого достаточно для набора перчаток (27 Вт) и подкладки куртки (77 Вт) с емкостью. осталось! Выполнив несколько быстрых вычислений на бумаге для заметок, не выходя из уютного поджаренного дома, вы можете быстро определить, что вы можете разумно использовать на своем велосипеде.

Другие вещи, которые вы могли бы рассмотреть

Некоторые велосипеды просто не обладают большой дополнительной электрической мощностью. На ум приходит Honda Rebel, как и все ароматы серии Suzuki V-Strom / WeeStrom / SV. Системы зарядки просто не предназначены для перекачивания большого количества сока. Если вы находитесь на этой лодке, вы можете либо снизить потребление электроэнергии (например, используя светодиодные лампы), либо модернизировать систему зарядки (установить статор с высокой выходной мощностью).

Некоторые велосипеды действительно разряжаются на холостом ходу.Когда вы проверяете заводское руководство по обслуживанию, вы можете заметить, что в нем указаны данные о выходе при определенной частоте вращения двигателя. Если вы много-много работаете на холостом ходу, большое количество нагретого оборудования может фактически оставить вашу батарею без полной зарядки.

Если у вас плохой электрический компонент, вам придется путешествовать автостопом. Ваша система зарядки должна соответствовать спецификации. Для питания ваших волшебных согревающих штанов вам нужны чистые соединения, хорошие заземляющие пути и новая батарея. Достаточно плохой аккумулятор фактически съедает электрическую мощность.Батарея никогда не будет заряжаться, заставляя ваш плохой статор работать сверхурочно до конца своего короткого срока службы. И тогда он умрет.

Если ничто другое в этом руководстве вас не заинтересует, позвольте этому быть: правильно функционирующая система зарядки и аккумулятор необходимы для работы с нагрузками с большой потребляемой мощностью, такими как нагретое оборудование на мотоцикле.

Как добавить мощности в ваше снаряжение

У всех разные методы подключения. Не существует отраслевого стандарта, что с самого начала усложняет задачу.Я обычно использую плоские клеммы для захвата, а также использую их для обогревателя сиденья, который не был подключен к вилке Deutsch, как это использует Harley-Davidson.

На моих велосипедах, которые ездят зимой, я часто захожу в магазин, убиваю байк, снимаю перчатки и подключаю поплавковое зарядное устройство. Ревзилла фото.

Если вы выберете путь, который мы используем в нашем видео, и подключитесь к базовому разъему SAE, знайте, что вы можете приобрести практически любую конфигурацию адаптера, которая вам может понадобиться.Разные производители рекомендуют разные вещи в отношении того, что следует или не следует использовать с их компонентами. В этой статье описывается только то, что электрически возможно. См. Инструкции производителя для получения дополнительной информации о том, что рекомендуется.

Поговорим о типах разъемов. Механизм с подогревом представляет собой простую схему. (Фактически, многие нагретые устройства просто действуют как контролируемые короткие замыкания для тех из вас, кто знаком с проводкой.) Большинство хорошо спроектированных разъемов разработаны с учетом нескольких простых принципов.Во-первых, они сконструированы таким образом, что переключить полярность практически невозможно. (Это означает, что подключите их задом наперед, для вас, неспециалистов.) Они также сконструированы таким образом, чтобы горячая сторона разъема никогда не касалась рамы, которая часто используется как заземляющий провод. Из-за этого все, что получает силу, обычно является мужчиной, а все, что дает силу, обычно женским. Поскольку они используются на мотоциклах, самые хорошие, часто используемые соединители стараются иметь хотя бы некоторую устойчивость к атмосферным воздействиям.

Калибр провода тоже важен. Видите разницу в толщине проводов? Что действительно безумно, так это то, что у более толстого шнура на самом деле был более тонкий провод и большая изоляция. Вы не поверите, но более тонкий провод здесь может выдерживать большую силу тока. Не все лиды SAE одинаковы. Ревзилла фото.

Самый распространенный тип, который вы встретите на нагретом редукторе, — это вилка co-ax 2555, названная так из-за размеров вилки. Это наиболее часто используемый тип соединителя на самом оборудовании, в том числе на изделиях Firstgear и Tourmaster.

Powerlet также имеет фирменный разъем. Многие BMW имеют заводские порты Powerlet, поэтому это может повлиять на ваше решение о приобретении оборудования. Разъемы SAE используются на многих проводах Battery Tender к клеммам аккумулятора и, возможно, даже были установлены дилером, у которого вы приобрели велосипед. Если вы решите использовать их, убедитесь, что диаметр провода достаточного диаметра для питания нагретой передачи. Коннекторы поплавкового зарядного устройства светового датчика не подойдут.

Провод SAE подключается к адаптеру.Ревзилла фото.

Туристические машины Harley последних моделей имеют предварительно подключенный порт питания, что упрощает установку сиденья с подогревом. Разъем известен как штекер Deutsch. Наконец, снежные машины, которые предлагают плагины для козырьков с подогревом, используют разъемы RCA — те же самые, что и ваша стереосистема в колледже.

Я видел одного парня, у которого была стопка таких высоких, что ему пришлось использовать более длинный болт для клеммы аккумулятора, который затем он закоротил на металлическом поддоне сиденья. Ревзилла фото.

Вместо того, чтобы отводить миллионы проводов от клемм аккумулятора, я иногда предпочитаю подключать провода к блоку распределения питания, особенно если я пытаюсь использовать источник питания с переключаемым зажиганием.Бег позволяет использовать толстый провод SAE и при необходимости адаптироваться к коаксиальной оси или USB. Один провод и несколько переходников избавляют от необходимости бегать повсюду на велосипеде. Это легкий и простой вариант для большинства райдеров, которым нужен надежный и простой способ приводить в действие подогреватели. Убедитесь, что вы не создаете опасность возгорания. Вы также можете подключить к постоянной розетке, такой как та, которую предлагает Powerlet. Вы также можете снабдить свое нагретое снаряжение питанием с переключением зажигания, если хотите исключить любой риск разрядки аккумулятора, который может вызвать забытый элемент снаряжения.

Последний шаг, который вам нужно сделать, — это подключить предохранитель к источнику питания. Получите общую потребляемую мощность всего оборудования, которое вы используете в цепи (ах), и используйте следующий больший предохранитель на проводе источника питания, не превышая силу тока предохранителя, который был установлен в проводе. Если вы подаете питание с переключением зажигания от неиспользуемой или существующей цепи, помните, что предохранитель, который производитель предоставляет для цепи, является максимальным. Не вставляйте туда предохранитель побольше, иначе вы рискуете возгорать и нанести вред здоровью и безопасности вашего электромонтажного ткацкого станка.Всегда подключайте положительный полюс цепи предохранителем как можно ближе к батарее.

Я ездил при минусовых температурах довольно много раз. Я делал это, потому что был крутым. Теперь я делаю это, потому что мне удобно. Комфортнее лучше. Ревзилла фото.

Поджаренный теплый напиток

Если вы раньше не ездили с подогревом, это настоящее удовольствие. Я был очень теплым, с хорошим снаряжением и некоторыми перчатками с подогревом до температуры ниже нуля градусов. Я бы даже не подумал о поездке в таких условиях без него, а я скряга.Если я думаю, что это стоит денег и усилий, я уверен, что многие из вас тоже останутся довольны. Если вам нужна помощь, вы знаете, что делать. Как и во всех наших технических статьях, оставьте комментарий ниже, и либо другой гонщик будет рядом, чтобы помочь, либо я. Конечно, если вы хотите поговорить с кем-нибудь, кто на теплее, чем я, наши специалисты в области Gear Geeks будут довольно дружелюбны.

Я просто покажусь.

Горячие советы по установке рукояток с подогревом

Рукоятки с подогревом отлично подходят для поездок в холодную погоду.Они не только делают вас более комфортным в холодную погоду, но и повышают безопасность, сохраняя гибкость и чувствительность ваших пальцев на элементах управления. Фотографии Спенсера Роберта.

Грипсы с подогревом отлично подходят для продления сезона катания и сохранения комфорта при понижении температуры. Когда дело доходит до выбора рукояток с подогревом, у вас, по сути, есть два варианта: дешевые панели, которые идут под ваши существующие рукоятки, или полные сборки со встроенными нагревательными элементами. Хотя они, как правило, дороже (в диапазоне от 60 до 160 долларов) и немного громоздки, интегрированные комплекты обычно работают лучше и имеют более качественные элементы управления и проводку.

Интегрированные ручки с подогревом, в которых нагревательные элементы отлиты в сборку, обладают лучшими характеристиками, внешним видом и долговечностью, чем универсальные панели обогрева под ручкой.

Перед установкой новых ручек необходимо удалить старые. Снятие концов штатива может быть непростым делом, поэтому используйте Т-образную рукоятку для рычага и удерживайте конец штанги парой канальных замков и тряпкой, чтобы вес не вращался. Используйте лезвие бритвы, чтобы срезать старые рукоятки (теперь уже не возвращаться!), А затем соскребите остатки клея и протрите штангу и дроссельную заслонку тряпкой, смоченной изопропиловым спиртом или очистителем карбюратора.

Концы прутков OEM часто устанавливаются с резьбой Loctite или даже с натяжной резьбой. Оберните груз тряпкой и возьмитесь за него фиксаторами, чтобы конец штанги не проворачивался.

У некоторых дроссельных заслонок OEM есть выступы и / или фланцы, которые необходимо сбить, прежде чем можно будет надеть нагретую рукоятку. Острый универсальный нож и наждачная бумага с зернистостью 120 сделают свое дело, но если у вас есть доступ к настольному шлифовальному станку или настольной ленточной шлифовальной машине, это даст самый быстрый и чистый результат.

Теперь, когда вы подготовили грифы, пора надеть их на ручки. Большинство встроенных ручек с подогревом слишком жесткие, чтобы их можно было обдуть моим любимым монтажным приспособлением — сжатым воздухом. Лучше всего смочить внутреннюю часть рукоятки и гриф быстро испаряющейся жидкостью, например, как вы уже догадались, изопропиловым спиртом, а затем надавить на рукоятку вращающим движением. Некоторые рукоятки настолько прочны, что их нужно удерживать на месте резиновым молотком.

Обычно вы можете использовать сжатый воздух, чтобы сдувать старые ручки со стержня, но лезвие бритвы сделает эту работу исключительно быстрой.Будьте осторожны, чтобы не порезать пластиковую дроссельную трубку.

В зависимости от комплекта у вас могут быть дисковые или управляющие переключатели, которые необходимо установить в удобном месте. Независимо от того, насколько легко или визуально привлекательно разместить указанные переключатели с правой стороны кабины, не делайте этого. Вам нужно, чтобы эти элементы управления находились как можно ближе к вашей левой рукоятке, чтобы ими было легко пользоваться. В некоторых наборах, таких как ручки Koso Apollo, которые я установил для этой статьи, элементы управления встроены прямо во фланец.Это означает, что вы можете управлять ими, не убирая руки с органов управления. Это также обеспечивает действительно чистую установку.

Когда дело доходит до прокладки проводов рукоятки обратно к батарее, лучше всего проложить ее вдоль направляющей рамы вдали от точек защемления и движущихся частей, что часто означает снятие какого-либо кузова или, возможно, бака. Закрепите тросы стяжками и убедитесь, что вы оставили достаточно слабины на правой рукоятке и передней бабке для обеспечения полного открытия дроссельной заслонки и полного поворота рулевого колеса. Если кузов вашего велосипеда сложно снять, вы можете использовать рыболовную ленту, чтобы протолкнуть провода от передней бабки обратно к батарее.

Не торопитесь, подкладывая проводку к батарее, и не бойтесь использовать множество стяжек. Снятие кузова — это боль, но она обеспечивает доступ, необходимый для правильного выполнения работы.

Последний шаг — включить рукоятки, и для большинства комплектов это так же просто, как вставить входящие в комплект поставки кольцевые клеммы с предохранителями под болты батареи. Как всегда, сначала нужно отсоединить отрицательную клемму (черный провод) и прикрепить ее последней, чтобы избежать неприятного и потенциально опасного короткого замыкания.Большинство аксессуаров поставляются с предохранителями, но если это не так, важно подключить предохранитель на соответствующую силу тока (обычно от 5 до 7,5 А) для защиты от короткого замыкания. И вам следует ознакомиться с руководством пользователя, чтобы убедиться, что вы не перегружаете электрическую систему велосипеда.

Проложите тросы ручки вдоль других проводов кабины вашего велосипеда, чтобы держать его в порядке. Убедитесь, что у вас достаточно слабины для полного поворота дроссельной заслонки и полной блокировки рулевого управления на руле.

Идеальная ситуация с электропроводкой для ручек с подогревом и любых других электрических аксессуаров — это реле или переключаемый распределительный щит, но мы оставим эту тему для другой статьи.А пока поработайте руками, проверьте их, чтобы увидеть, насколько они поджарены, а затем постарайтесь провести приличный день, чтобы прокатиться.

Все о напряжении: когда использовать 120 В вместо 240 В для изделий с подогревом пола

Когда дело доходит до напряжения, большинству из нас не нужно много думать об этом, пока мы не поедем за границу или не сделаем покупки для крупной бытовой техники. Но при выборе ковриков или кабелей для теплого пола важно иметь базовое представление о напряжении, чтобы вы могли найти правильный продукт, который обеспечит вам долгие годы безотказной работы.Но как выбрать между 120 В и 240 В? Вы можете обратиться к онлайн-форуму и получить доброжелательный, но плохой совет, который может привести к дополнительным расходам. Вместо этого прочтите это руководство, которое поможет вам выбрать правильное напряжение для вашего проекта теплого пола.

Напряжение такое же, как у мощности?

. Номинальное напряжение продукта не указывает, сколько энергии оно потребляет. Напряжение — это просто разница в потенциальной электрической силе между двумя точками. Но что это значит? Обычно используется аналогия, чтобы сравнить электричество с водой в ваших трубах дома.Внутри водонагревателя вода почти не движется, пока вы не откроете кран. Когда вы включаете горячую воду в кране, вода течет из водонагревателя по трубам в раковину. Давление воды — это напряжение (В), управляющее скоростью и силой, с которой вода вытекает. Количество протекающей воды будет силой тока (I). А мощность (P) в ваттах — это напряжение, умноженное на силу тока, которая показывает, сколько энергии используется. Эта полезная формула позволяет рассчитать ватт: P = V x I.

Верно ли, что изделия на 240 В выделяют больше тепла, быстрее нагреваются, дешевле в эксплуатации и работают более эффективно, чем при 120 В?

Нет, нет, нет и нет . Это большое заблуждение, которое всплывает на форумах в Интернете. Допустим, вы берете две системы матов одинаковой площади в квадратных футах, одну 120 В, а другую 240 В. Если они спроектированы с одинаковой мощностью в ваттах на квадратный фут (промышленный стандарт — 12 Вт / кв.фут), оба продукта будут использовать одинаковую мощность и одинаковую мощность.Это связано с тем, что система на 120 В потребляет вдвое больше ампер на квадратный фут, чем система на 240 В, а система на 240 В потребляет половину ампер на квадратный фут системы на 120 В. Закон Ома гласит, что при уменьшении напряжения пропорционально возрастают токи. Например, предположим, вы хотите отапливать площадь в 100 квадратных футов. Согласно спецификациям производителя, мы знаем, что обе системы потребляют около 1200 Вт, и мы знаем напряжение, поэтому мы находим усилители, используя формулу: V x I = P или P / V = ​​I. (Эта формула является частью Закон Ома, который требует также значения сопротивления R ):

240 В 120 В
1200 Вт / 240 В = 5.0 ампер 1200 Вт / 120 вольт = 10 ампер

Таким образом, хотя 240V звучит так, будто у него вдвое больше мощности, он генерирует такое же количество тепла (ватт) на квадратный фут, что и система 120V, нагревается с той же скоростью и будет стоить примерно столько же за квадрат ногой для обогрева пола. А для стандартных источников питания на 120 и 240 В подходящие продукты одинаково эффективны (от 120 до 120 В против 240 В против 240 В).

Должны ли кабели или маты соответствовать напряжению источника питания?

Есть .Ниже мы рассмотрим почему, но если есть один важный вывод о напряжении и тепле пола, это то, что напряжение вашего мата или кабеля должно как можно точнее соответствовать напряжению вашего источника питания. Почти во всех домах в США и Канаде есть электрические панели на 120 и 240 В переменного тока. Если вы хотите использовать существующую схему, выберите то, что доступно. Если вы используете новую электрическую цепь, а пол с подогревом меньше 120–150 квадратных футов, мы всегда рекомендуем 120 В.Вы можете выбрать 240 В для новой схемы для небольших участков, но это будет стоить вам дороже и займет дополнительный слот на вашей панели. В общем, площадь обогреваемой площади является одним из основных факторов при выборе продуктов на 120 и 240 В, о которых мы поговорим дальше.

Так зачем выбирать систему на 240 В вместо 120 В и наоборот?

At Warm Your Floor мы рекомендуем системы на 120 В для отапливаемых помещений менее 150 квадратных футов (при 12 Вт / кв.фут) и системы на 240 В для отапливаемых территорий более 150 квадратных футов.Причина этого в том, что один термостат может регулировать 15 ампер. Используя цифры в предыдущем вопросе, системы на 120 В потребляют более 15 А на площади 150 квадратных футов, поэтому производители предлагают системы на 240 В для больших площадей. Используя приведенный выше пример, система на 240 В может нагревать до 300 квадратных футов и по-прежнему управляться одним термостатом.

Иногда источник питания потребителя имеет нестандартное напряжение. Некоторые товары для улицы Warm Your Floor, которые можно носить с собой, могут быть специально заказаны у производителя (SunTouch и Nexans — два) в соответствии с конкретными требованиями.Это подводит нас к следующему вопросу…

Что происходит, если номинальное напряжение продукта не соответствует напряжению источника питания?

Мы рассмотрели тот факт, что вам нужно согласовать напряжение источника питания с напряжением коврика, но что произойдет, если коврик на 240 В будет подключен к источнику питания на 120 В?

Коврик SunTouch мощностью 12 Вт на квадратный фут выделяет только 25% тепла. Это будет неэффективно для обогрева пола.

Обратный случай, подключение продукта 120 В к источнику питания 240 В, приведет к перегрузке системы, вызывая повреждение мата и термостата, преждевременный выход из строя и дорогостоящую переустановку:

Увеличив тепловую мощность в 4 раза по сравнению с нормальной!

Но в особых случаях может потребоваться рассогласование напряжений между источником питания и изделиями для теплого пола.Стандартные напряжения, которые несет Warm Your Floor, составляют 240 В и 120 В, но у некоторых клиентов есть внутренние блоки питания с номинальным напряжением 208 В. В этом случае изделие с более высоким напряжением и номиналом 240 В может быть подключено к источнику питания с более низким напряжением на 208 В, но выделяемое тепло (ватт на квадратный фут) будет уменьшено на 25 процентов при работе на 75% мощности. Чтобы найти это число, мы разделим меньшее напряжение на большее и возведем результат в квадрат:

(208 В / 240 В) ² = 0,75 = 75%

Чтобы компенсировать это сокращение на 25%, некоторые производители рекомендуют располагать кабели немного ближе друг к другу, поэтому для обогрева меньшей площади потребуется больше кабеля.Но этот метод ограничен максимальной нагрузкой на термостат 15 А. И это работает не со всеми продуктами, поскольку некоторые производители требуют определенного расстояния между кабелями. Мы можем порекомендовать продукты для теплого пола, которые обеспечивают большую мощность ватт на квадратный фут, чтобы компенсировать это снижение. Но обязательно проконсультируйтесь с квалифицированным электриком, который поможет вам спланировать компоновку, которая безопасно и эффективно отвечает вашим потребностям.

Есть еще вопросы? Свяжитесь с нами сегодня, и мы поможем вам найти подходящие продукты для вашего проекта теплого пола.

Проектирование электрической системы

— Часть 2: Нагрузки — небольшие под напряжением | Ride Free

Многие небольшие устройства работают от постоянного тока, но подключаются к розетке переменного тока. Это сделано для удобства обычного домашнего пользователя, но для нас неэффективно запускать инвертор для создания переменного тока, только чтобы преобразовать его обратно в какое-то крошечное зарядное устройство постоянного тока для телефона. Поэтому по обе стороны от кровати и рядом с обеденной зоной мы добавили морские розетки для розеток USB и 12 В прикуривателя. Порты USB постоянно используются для зарядки телефона, и я очень рад, что мы их добавили.На самом деле мы еще не использовали порты для прикуривателя, но они дают нам возможность использовать в будущем устройства на 12 В, что может быть более эффективным. Есть обогревательные одеяла, вентиляторы, кухонная техника и даже мобильные холодильники, которые мы могли бы здесь использовать. Обратите внимание, что в розетках USB есть внутреннее напряжение, пониженное до 5 В — стандарт USB. Если вы думаете о том, чтобы собрать свою собственную, убедитесь, что вы понизили это напряжение с 12 В до 5 В, иначе вы приготовите свою электронику. Спросите меня, откуда я знаю!

Я полюбил Blue Sea Systems.Кажется, они единственные, кто делает то, что нам всегда было нужно для фургона (и грузовика, собственно говоря). Во время нашей перестройки были доступны только черные одиночные розетки на 12 В, которые я связал выше. Но теперь я вижу, что Blue Sea производит дуплексный блок, который я бы с удовольствием использовал, плюс одиночные розетки теперь доступны в белом цвете, который будет выглядеть намного лучше, чем черные, которые мы использовали.

Контур 8: Вытяжные вентиляторы

Для печки и душа требуются вытяжные вентиляторы для удаления запахов и влаги.Никаких сюрпризов.

Контур 9: Вентилятор туалета

Это можно было бы использовать с другими вентиляторами, но в отличие от других вентиляторов, этот работает круглосуточно и без выходных. Была запасная цепь, так почему бы не сделать ее отдельной? Вентилятор унитаза питается через реле не из-за большого тока или длинных проводов, а потому, что я хотел иметь возможность управлять им с помощью вспомогательного выхода контроллера заряда солнечной батареи (который представляет собой очень слаботочный сигнал). Контроллер заряда Midnite Classic имеет два программируемых дополнительных выхода, которые можно использовать для управления аксессуарами путем включения или выключения реле.Я подумал, что, возможно, захочу выключить вентилятор унитаза, когда зайдет солнце или когда напряжение батареи упадет слишком низко. Однако оказалось, что вентилятор, поставляемый с нашим компостным туалетом с воздушной головкой, представляет собой такую ​​крошечную нагрузку, что его работа в режиме 24/7 не составляет большого труда. Он почти бесшумный, поэтому мы забываем, что он все время работает.

Встряхните то, что у вас есть

Наш трейлер имеет ограниченную способность генерировать и хранить энергию, поэтому мы работаем в рамках этого, а это означает, что иногда условия диктуют, что мы можем или не можем делать.Это будет верно практически для любой ситуации вне сети (если только вы не можете просто потратить на это кучу денег). Если мы ожидаем ясную и мягкую погоду, нам не нужно много думать о том, как мы используем. Если мы ожидаем пасмурную погоду, дождь или холод, мы сэкономим электроэнергию, чтобы в ближайшие дни мало или совсем не было солнца. Обычно у нас есть около 4 дней автономной работы, что означает, что мы можем сделать это без какой-либо солнечной зарядки. Но это 4 дня относительно спартанской жизни. Зимой более короткий световой день и более низкое солнце означают, что мы уделяем гораздо больше внимания тому, чем пользуемся, и иногда откладываем уборку пылесосом или приготовление попкорна до более солнечного дня.

Одна игра, в которую мы играем, — это попытка не тратить впустую «бесплатную» поступающую энергию. Если батареи полностью заряжены, мы не можем хранить больше энергии в виде электричества, даже если солнце все еще светит. Но энергия может храниться в других формах. В основном мы используем излишки электроэнергии для хранения тепловой энергии. Летом это происходит часто, а в зимние месяцы — реже (из-за более короткого светового дня). Вот несколько приемов, которые мы используем:

  • Готовьте еду заранее. При приготовлении двух обедов или завтраков за один день (или двойной партии по одному рецепту) электроэнергия используется не только для приготовления пищи, но и для мытья посуды (горячая вода) и охлаждения остатков.Разогрев еды на следующий день и мытье пары посуды по-прежнему требует энергии, но гораздо меньше, чем в первый раз. Это очень эффективно.
  • Убедитесь, что в резервуарах с горячей водой прогрета температура. Мы часто отключаем наши, чтобы сберечь электроэнергию, но когда они нагреются, они сохранят тепло около суток. Если у вас есть место, оберните их изоляцией бака обогревателя (из хозяйственного магазина) и улучшите не только их эффективность нагрева, но и то, как долго они будут оставаться горячими после отключения.
  • Сделайте дополнительные кубики льда в морозильной камере.Это замечательно в жаркую погоду, потому что с ледяными напитками легче обходиться без кондиционера. Но даже если погода не требует ледяных напитков, дополнительный лед внутри морозильной камеры повышает его эффективность.
  • Заморозьте стареющие фрукты или продукты. Позже его можно использовать для смузи, и это предотвратит отходы пищи.
  • Используйте электрический чайник, чтобы наполнить грелку, и бросьте ее под одеяло. К тому времени, как вы ложитесь спать, там будет приятно и жарко.Электрический чайник — наш любимый прибор, поскольку он и быстрее, и эффективнее, чем кипячение воды на электрической плите. Бутылки с горячей водой могут показаться старомодными, но они работают фантастически хорошо!
  • Термосы для предварительного заполнения. Это стоит делать только с настоящими термосами для вакуумных колб, а не с дешевыми бутылками с пластиковой изоляцией. Сделайте чай, кофе или горячий суп и наполните им большой термос. Для еще лучших результатов предварительно нагрейте термос, наполнив его кипятком, и дайте ему постоять в течение 10 минут, затем слейте воду (сохраните ее для приготовления пищи или посуды !!!) и снова залейте желаемой жидкостью.В большинстве хороших термосов содержимое остается горячим в течение 24 часов. Это хороший способ приготовить горячий напиток утром или горячий суп на ужин без необходимости готовить, или хороший теплый обед во время холодной зимней прогулки или прогулки на снегоступах.
  • Уловка с термосом также полезна для удержания ледяной воды (из морозильной камеры). Летом в нашей термосе размером с «Growler» кусок льда хранится в течение 3 дней в грузовике. Лучше всего завершить поездку на горячем велосипеде с холодной водой, ожидающей в грузовике!
  • Зарядка аккумуляторов в ноутбуках, телефонах, аккумуляторных батареях AA / AAA, велосипедных компьютерах, GPS и т. Д.

Не сложно?

Современные ожидания заключаются в том, что мы имеем право использовать электроэнергию, когда захотим и когда захотим. Это ожидание — что люди устанавливают график, а наш построенный мир должен его учитывать, светлый или темный, горячий или холодный, влажный или сухой — ведет к расточительству и чрезмерному потреблению. Когда мы отключились от сети, нам не нужно было ничего прекращать; мы стали более гибкими только тогда, когда сделали это. Мы обнаружили, что это гораздо меньше проблем, чем мы боялись, и такое поведение быстро стало частью повседневной жизни.Видеть, как все это написано вот так, наверное, кажется, что это заноза в заднице, но это только из-за того, насколько это незнакомо. Вскоре это становится чем-то, что вы просто делаете, а наличие большей связи с окружающим нас миром природы способствует более полноценному существованию.

Что мы упустили? Сообщите нам в комментариях, есть ли еще какие-то советы, о которых мы должны знать, или вопросы, на которые я (все еще) не ответил.

Благодарим вас за покупки на Amazon по нашей партнерской ссылке.

Автомобильный обогреватель не работает: причины, почему и как это исправить

Drive и его партнеры могут получать комиссию, если вы покупаете продукт по одной из наших ссылок. Подробнее.

Поскольку лето уходит осенью и переходит в зиму, большинство водителей не слишком беспокоятся о обогревателе своей машины. В прошлом году это сработало, а годом раньше, почему не сработало в этом году? Ну что ж, хорошие драйверы ( G&Gers, Guiders, Garage Gnomes? Имя подберём позже.), жизнь имеет обыкновение бросать в вас кривые мячи, и угадайте, что ваш обогреватель больше не работает должным образом.

Обогреватели — не самое загадочное чудовище, о котором их больше всего мечтают. Системы обогрева состоят из сердечника обогревателя, вентилятора обогревателя, системы охлаждающей жидкости автомобиля и элементов управления HVAC. Когда горячая охлаждающая жидкость втягивается в сердечник нагревателя, вентилятор нагревателя, управляемый элементами управления HVAC, выдувает это тепло в кабину, когда охлажденная охлаждающая жидкость возвращается обратно в систему. Хотя это простая система, может возникнуть ряд проблем, из-за которых ваша система отопления не будет работать должным образом.

А сейчас идеальное время, чтобы узнать, что может пойти не так, и понять, что отопитель вашего автомобиля — капут. Следуйте примеру команды The Drive whip-smart info, которая описывает основные причины, по которым ваш автомобильный обогреватель не работает должным образом, и способы их устранения. Разогреем эту маму!

Depositphotos

7 причин, по которым ваш автомобильный обогреватель не работает должным образом?

Как и в случае с любым неисправным объектом, любая из множества причин может оказаться ведущей причиной.Чтобы лучше диагностировать работающую систему обогрева вашего автомобиля, давайте рассмотрим причины, по которым она может выйти из строя.

Неисправный термостат

Неисправный или сломанный термостат является наиболее частой причиной недостаточного нагрева вашего автомобиля. Застрявшая в открытом или закрытом положении деталь может вызвать проблемы не только с нагревом, но и с системой охлаждения двигателя. Одно становится вопросом комфорта, другое становится проблемой: «О нет, у меня заклинило двигатель».

Низкий уровень антифриза / охлаждающей жидкости

Вторая по частоте проблема — низкий уровень антифриза или охлаждающей жидкости.Когда уровень охлаждающей жидкости / антифриза падает, горячая жидкость не может попасть в сердечник обогревателя, и, таким образом, в вашей кабине остается прохладно. Это может произойти, если двигатель работает слишком интенсивно и перегревается, или если он не был должным образом заполнен.

Depositphotos

Крупный план элементов управления HVAC.

Неисправный вентилятор отопителя

Хотя горячая охлаждающая жидкость / антифриз может попасть в сердечник отопителя, вентилятор отопителя, часть, которая действительно нагнетает тепло в кабину, может сломаться или получить короткое замыкание.

Неисправный резистор электродвигателя вентилятора

Если резистор электродвигателя вентилятора сломан, у вас могут возникнуть проблемы с настройкой скорости вентилятора или вообще с доступом воздуха.

Засорение сердечника нагревателя

Проблемы, возникающие реже, чем указанные выше, мусор и частицы, попадающие в систему охлаждающей жидкости, могут засорить сердечник нагревателя. Это может произойти, когда радиатор ржавеет изнутри или если мусор проникает сквозь радиатор и застревает в сердечнике обогревателя. В любом случае, вы собираетесь отремонтировать сердечник обогревателя или сразу же заменить его.

Дырявый радиатор

Негерметичный радиатор может помешать проникновению охлаждающей жидкости в сердечник нагревателя и, в худшем случае, может повредить двигатель.

Неисправные органы управления HVAC

Проще говоря, кнопки, ручки или сенсорные экраны с тактильной обратной связью вашего автомобиля могут не запускать систему обогрева. Короткие замыкания, сломанные циферблаты и плохие сенсорные экраны могут привести к неисправностям, которые не позволят вашему обогревателю работать.

Неисправная проводка или перегоревшие предохранители

Подобно сломанным элементам управления HVAC, проводка вашего автомобиля может быть повреждена или иметь короткое замыкание.Это будет означать, что обогреватель не срабатывает, когда водитель дает ему команду на работу. Нехорошо.

Depositphotos

Вот как починить сломанный термостат

Чтобы развеять ваши опасения по поводу неисправности и показать, насколько простым может быть ремонт своими руками, Drive составил простое руководство о том, как починить сломанный термостат. Вам нужно будет приобрести новую охлаждающую жидкость и новый термостат.

Безопасность

Работа на машине может быть опасной и грязной, поэтому вот что вам нужно, чтобы не умереть, не получить увечья или не потерять палец, а также чтобы ваши джинсы, рубашка и кожа оставались безупречными. — надеюсь .

Все, что вам нужно, чтобы починить сломанный термостат

Мы не экстрасенсы и не шпионим за вашим ящиком с инструментами или в гараже, так что вот что вам понадобится для выполнения работы.

Список инструментов
  • Сливное ведро
  • Выбор гаечных ключей
Список деталей

Расположение инструментов и оборудования так, чтобы все было легко доступно, сэкономит драгоценные минуты, ожидая, пока ваш умелый ребенок или четвероногий помощник принесет вам наждачная бумага или паяльная лампа.( Для этой работы вам не понадобится паяльная лампа. Не просите ребенка давать вам паяльную лампу — Эд .)

Вам также понадобится плоское рабочее место, например, пол гаража, подъездная дорожка или улица стоянка. Проверьте свои местные законы, чтобы убедиться, что вы не нарушаете какие-либо правила при движении по улице, потому что мы не уберем вас от звонка.

Как исправить поломку термостата

  1. Дайте машине остыть в течение 15–20 минут.
  2. Найдите термостат. Он будет у основания радиатора, между сердечником и основным шлангом.
  3. Снимите крышку радиатора.
  4. Для увеличения клиренса приподнимите переднюю часть автомобиля.
  5. Поставьте ведро под радиатор и слейте охлаждающую жидкость, отсоединив шланг.
  6. Снимите и замените термостат.
  7. Присоедините шланг к радиатору.
  8. Добавьте охлаждающую жидкость и закройте бачок крышкой.
  9. Опустите автомобиль.
  10. Запустить двигатель.
  11. Дождитесь появления тепла.
  12. Сделайте тест-драйв.
  13. Убедитесь, что уровень охлаждающей жидкости не упал.
  14. Если есть, при необходимости долейте.

Готово!

Depositphotos

Мужчина заправляет антифриз.

Как исправить низкий уровень антифриза

Вторая по частоте причина — низкий уровень антифриза или охлаждающей жидкости в вашем автомобиле. К счастью, на это уходит меньше времени, чем на замену термостата.Все, что вам понадобится, это воронка и новая охлаждающая жидкость. Готовый?

  1. Дайте автомобилю остыть, снимите крышку радиатора и вставьте воронку в отверстие.
  2. Залейте новую охлаждающую жидкость до полного заполнения бачка. Возможно, вам придется схватить главный шланг охлаждающей жидкости и физически прокачать охлаждающую жидкость, чтобы убедиться в отсутствии воздушных карманов.
  3. Заменить крышку радиатора.
  4. Заведите автомобиль и проверьте, не горит ли он.

Вот и все!

Получите помощь с подогревателем вашего автомобиля от механика по JustAnswer

Drive распознает, что, хотя наши практические руководства подробны и легко выполняются, ржавый болт, компонент двигателя не в правильном положении или утечка масла повсюду может сорвать проект.Вот почему мы сотрудничаем с JustAnswer, который связывает вас с сертифицированными механиками по всему миру, чтобы помочь вам справиться даже с самыми сложными задачами.

Итак, если у вас есть вопрос или вы застряли, нажмите здесь и поговорите с ближайшим к вам механиком.

Часто задаваемые вопросы о автомобильных обогревателях

У вас есть вопросы, У Drive есть ответы!

В: Как я могу обогреть машину без обогревателя?

A: Позаимствовав фразу из превосходнейшего Лучника: «Неееет!» Нам нужно, чтобы вы совсем перестали думать о том, как можно обогреть машину без обогревателя.Почему? Потому что ты не можешь. Любая форма внешнего тепла, например, обогреватель, электрический или пропановый, — верный способ поджечь себя и свою машину. И если вы попытаетесь подражать «Лайфхаку» из какого-нибудь отрывочного блога, вы закончите как этот парень. И ты не хочешь быть этим парнем. Он плохой образец для подражания.

В: Есть ли в моей машине предохранитель для обогревателя?

A: В обогревателе вашего автомобиля действительно есть предохранитель. Вы можете проверить, не сгорел ли предохранитель нагревателя, заглянув в блок предохранителей.Вам понадобится запыленная инструкция по эксплуатации вашего автомобиля, чтобы узнать, где находится блок предохранителей и какой предохранитель предназначен для обогревателя.

Q: Сколько стоит новый термостат?

A: Средняя стоимость термостата составляет около 45 долларов, но если вы заменяете термостат, вам также необходимо учесть новую охлаждающую жидкость, что обойдется вам примерно в 8-15 долларов за галлон.

Вопрос: Как часто нужно промывать охлаждающую жидкость?

A: Принято считать, что каждые пять лет или 100 000 миль.Тем не менее, это может измениться, если у вас возникнут проблемы с перегревом или перегревом автомобиля.

Q: Почему моя машина дует холодным воздухом при включенном обогреве?

A: Ваш обогреватель сломался!

Q: Сколько стоит новый сердечник нагревателя?

A: Сердечники нагревателя обычно стоят от 100 до 300 долларов. Реальная стоимость связана с трудозатратами, поскольку большинство домашних мастеров обычно не рвут сердечники обогревателя из-за их глубокого расположения в моторном отсеке или под приборной панелью.

Вопрос: Сколько стоит починка сердечника нагревателя?

A: Если вы делаете это самостоятельно, вы оплачиваете только стоимость новых деталей. Если у вас есть профессиональное решение, вы видите банкноту от 800 до 1000 долларов.

Q: Как долго прослужит сердцевина нагревателя?

A: Большинство сердечников нагревателя рассчитаны на очень долгий срок службы, в среднем около 10-15 лет. Очевидно, что если вы перегрузите сердечник нагревателя или не сможете устранить неисправность, когда она возникнет, например, нагрев не будет работать так хорошо, как раньше, срок службы значительно сократится.

Обзор электрических цепей

— Ответы № 2

Обзор электрических цепей

Переход к:

Главная страница сеанса обзора — Список тем

Electric Circuits — Главная || Версия для печати || Вопросы со ссылками

Ответы на вопросы: Все || # 1-7 || # 8-51 || # 52-59 || # 60-72

Часть B: множественный выбор

8.Если бы электрическая цепь была аналогична аквапарку, то аккумулятор был бы аналогичен ____.

а. трубы, по которым вода проходит через водяной контур

г. насос, который подает энергию для перемещения воды с земли на высоту

г. люди, которые текут с верха водного аттракциона на нижний водный аттракцион

г. скорость, с которой вода закачивается на горку

e. изменение потенциальной энергии гонщиков

ф.верх водной горки

г. дно водной горки

ч. длинные очереди в парке

и. скорость, с которой движутся всадники при скольжении сверху вниз по траектории

Ответ: B

Водный аттракцион в аквапарке аналогичен электрическому контуру. Во-первых, есть сущность, которая течет — вода течет в аквапарке и (условно) + течет заряд в электрической цепи.В каждом случае текучая среда самопроизвольно течет из места с высоким уровнем энергии в место с низким уровнем энергии. Поток идет по трубам (или горкам) в аквапарке и по проводам в электрической цепи. Если трубы или провода порваны, непрерывный поток жидкости через контур не может быть непрерывным. Для установления цепи требуется полный цикл.

Этот поток жидкости — будь то вода или заряд — возможен, когда создается разница давлений между двумя точками в контуре .В аквапарке перепад давления — это разница напора воды, создаваемая двумя локациями на разной высоте. Вода самопроизвольно течет из мест с высоким давлением (большая высота) в места с низким давлением (низкая высота). В электрической цепи разность электрических потенциалов между двумя выводами батареи или источника энергии обеспечивает электрическое давление, которое оказывает давление на заряд, чтобы переместить их из места высокого давления (высокий электрический потенциал) в место низкого давления (низкий электрический потенциал). потенциал).

Энергия требуется для перемещения жидкости вверх по склону . В аквапарке водяной насос используется для работы с водой, чтобы поднять ее с небольшой высоты обратно на большую. Водяной насос не подает воду; вода, которая уже есть в трубах. Напротив, водяной насос подает энергию для перекачивания воды из места с низкой энергией и низким давлением в место с высокой энергией и высоким давлением. В электрической цепи аккумулятор является зарядным насосом, который прокачивает заряд через аккумулятор из места с низким электрическим потенциалом (клемма -) в место с высоким электрическим потенциалом (клемма +).Аккумулятор не подает электрический заряд; заряд уже в проводах. Аккумулятор просто подает энергию для работы над зарядом, перекачивая его на в гору .

9. Если бы электрическая цепь была аналогична аквапарку, то положительный полюс батареи был бы аналогичен ____.

а. трубы, по которым вода проходит через водяной контур

г.насос, который подает энергию для перемещения воды с земли на высоту

г. люди, которые текут с верха водного аттракциона на нижний водный аттракцион

г. скорость, с которой вода закачивается на горку

e. изменение потенциальной энергии гонщиков

ф. верх водной горки

г. дно водной горки

ч. длинные очереди в парке

и.скорость, с которой движутся всадники при скольжении сверху вниз по траектории

Ответ: F

Водный аттракцион в аквапарке аналогичен электрическому контуру. Во-первых, есть сущность, которая течет — вода течет в аквапарке и (условно) + течет заряд в электрической цепи. В каждом случае текучая среда самопроизвольно течет из места с высоким уровнем энергии в место с низким уровнем энергии.Поток идет по трубам (или горкам) в аквапарке и по проводам в электрической цепи. Если трубы или провода порваны, непрерывный поток жидкости через контур не может быть непрерывным. Для установления цепи требуется полный цикл.

Этот поток жидкости — будь то вода или заряд — возможен, когда создается разница давлений между двумя точками в контуре . В аквапарке перепад давления — это разница напора воды, создаваемая двумя локациями на разной высоте.Вода самопроизвольно течет из мест с высоким давлением (большая высота) в места с низким давлением (низкая высота). В электрической цепи разность электрических потенциалов между двумя выводами батареи или источника энергии обеспечивает электрическое давление, которое оказывает давление на заряд, чтобы переместить их из места высокого давления (высокий электрический потенциал) в место низкого давления (низкий электрический потенциал). потенциал).

Энергия требуется для перемещения жидкости вверх по склону .В аквапарке водяной насос используется для работы с водой, чтобы поднять ее с небольшой высоты обратно на большую. Водяной насос не подает воду; вода, которая уже есть в трубах. Напротив, водяной насос подает энергию для перекачивания воды из места с низкой энергией и низким давлением в место с высокой энергией и высоким давлением. В электрической цепи аккумулятор является зарядным насосом, который прокачивает заряд через аккумулятор из места с низким электрическим потенциалом (клемма -) в место с высоким электрическим потенциалом (клемма +).Аккумулятор не подает электрический заряд; заряд уже в проводах. Аккумулятор просто подает энергию для работы над зарядом, перекачивая его на в гору .

10. Если бы электрическая цепь была аналогична аквапарку, то электрический ток был бы аналогичен ____.

а. трубы, по которым вода проходит через водяной контур

г.насос, который подает энергию для перемещения воды с земли на высоту

г. люди, которые текут с верха водного аттракциона на нижний водный аттракцион

г. скорость, с которой вода закачивается на горку

e. изменение потенциальной энергии гонщиков

ф. верх водной горки

г. дно водной горки

ч. длинные очереди в парке

и.скорость, с которой движутся всадники при скольжении сверху вниз по трассе

Ответ: D

Поток воды в аквапарке аналогичен потоку заряда в электрической цепи. Скорость, с которой заряд проходит через точку в цепи, измеряемая в кулонах заряда в секунду (или некотором сопоставимом наборе единиц), называется током. В нашей аналогии текущая жидкость — это вода, а скорость, с которой жидкость проходит через любую заданную точку, — это течение.

11. Потенциальная энергия единицы заряда в любом заданном месте называется электрической ___.

а. текущий

г. сопротивление

г. потенциал

г. мощность

Ответ: C

Это определение электрического потенциала — понятие, которое вы должны усвоить.

[# 8 | # 9 | # 10 | # 11 | # 12 | # 13 | # 14 | # 15 | # 16 | # 17 | # 18 | # 19 | # 20 | # 21 | # 22 | # 23 | # 24 | # 25 | # 26 | # 27 | # 28 | # 29 | # 30 | # 31 | # 32 | # 33 | # 34 | # 35 | # 36 | # 37 | # 38 | # 39 | # 40 | # 41 | # 42 | # 43 | # 44 | # 45 | # 46 | # 47 | # 48 | # 49 | # 50 | # 51]

12. Один ампер — это величина тока, которая существует, когда ____ протекает через определенную точку в проводнике в ____.

а.один ватт; одна секунда

г. один джоуль; один час

г. один электрон; одна секунда

г. один электрон; один час

e. один вольт; одна секунда

ф. один вольт; один час

г.один кулон; одна секунда

ч. один кулон; один час

Ответ: G

Ампер — единица измерения электрического тока. Электрический ток определяется как скорость, с которой заряд проходит через точку в цепи, измеряемую в стандартных единицах кулонов заряда в секунду.

[# 8 | # 9 | # 10 | # 11 | # 12 | # 13 | # 14 | # 15 | # 16 | # 17 | # 18 | # 19 | # 20 | # 21 | # 22 | # 23 | # 24 | # 25 | # 26 | # 27 | # 28 | # 29 | # 30 | # 31 | # 32 | # 33 | # 34 | # 35 | # 36 | # 37 | # 38 | # 39 | # 40 | # 41 | # 42 | # 43 | # 44 | # 45 | # 46 | # 47 | # 48 | # 49 | # 50 | # 51]

13.Если 6 кулонов заряда проходят мимо точки «А» в контуре за 4 секунды, то ____ кулонов заряда проходят мимо точки «А» за 8 секунд.

а. 0,67

г. 1,5

г. 2

г. 3

e. 4

ф.6

г. 8

ч. 12

и. 24

Ответ: H

Ток (I) — это количество заряда, протекающего через точку (Q) за заданный промежуток времени (t). То есть I = Q / t. Таким образом, в этом случае ток в точке A равен (6 C) / (4 с) или 1.5 ампер. Таким образом, отношение Q / t составляет 1,5 независимо от времени. Решите уравнение

1,5 Кл / с = Q / (8 с)

для Q, чтобы получить ответ.

[# 8 | # 9 | # 10 | # 11 | # 12 | # 13 | # 14 | # 15 | # 16 | # 17 | # 18 | # 19 | # 20 | # 21 | # 22 | # 23 | # 24 | # 25 | # 26 | # 27 | # 28 | # 29 | # 30 | # 31 | # 32 | # 33 | # 34 | # 35 | # 36 | # 37 | # 38 | # 39 | # 40 | # 41 | # 42 | # 43 | # 44 | # 45 | # 46 | # 47 | # 48 | # 49 | # 50 | # 51]

14.В какой из следующих ситуаций загорится лампочка? Перечислите все подходящие варианты.

Ответ: DF

Для установления цепи должен быть замкнутый проводящий контур от положительной клеммы к отрицательной. Это будет означать, что цепи D, E и F будут цепями. Но чтобы лампочка загорелась, ее необходимо включить в электрическую цепь. Итак, в E лампочка не загорается, поскольку петля не проходит в лампочку и не проходит сквозь нее; заряд будет просто вытекать из + клеммы батареи и прямо обратно в отрицательную клемму батареи.

Для вопросов № 15- № 17:

Простая схема, содержащая аккумулятор и лампочку, показана на схеме справа. Используйте эту диаграмму, чтобы ответить на несколько следующих вопросов.

15. Ток через батарею ___.

а. больше, чем через лампочку

г.меньше, чем через лампочку

г. то же, что и через лампочку

г. больше, чем через каждый провод

e. меньше, чем через каждый провод

Ответ: C

Начисление — это сохраняемая величина; он никогда не приобретается и не теряется.В электрической цепи заряд, присутствующий в проводах и проводящих элементах, — это то, что движется по цепи. Этот заряд заключен в провода и не может выйти (при условии, что в цепи нет неисправности). По мере того, как заряд течет, он не накапливается в данном месте. И заряд не израсходовал, а как бы расходное количество. При этом заряд не трансформируется в другой тип сущности. Учитывая все эти рассуждения, можно было бы заключить, что ток в одном месте в электрической цепи такой же, как ток в любом другом месте в электрической цепи.

16. Заряд, протекающий по этой цепи, имеет наибольшее напряжение в ____. Выберите один лучший ответ.

а. + клемма аккумулятора

г. — клемма аккумулятора

г. непосредственно перед входом в лампочку

г. сразу после выхода из лампочки

e. … бред какой то! Энергия заряда одинакова во всем контуре.

Ответ: A

Клемма «+» батареи — это высокоэнергетическая клемма батареи.

17. Роль или назначение батареи в этой цепи — ____. Выберите три.

а. подавать электрический заряд, чтобы мог существовать ток

г. подавать энергию к заряду

г.переместите заряд с — на + вывод аккумуляторной батареи

г. преобразовать энергию из электрической энергии в световую

e. установите разность электрических потенциалов между клеммами + и —

ф. восполнить потерянный в лампочке заряд

г. Обеспечьте сопротивление потоку заряда, чтобы лампочка могла нагреваться

Ответ: до н.э.

Чтобы установить электрическую цепь, заряд должен быть переведен с низкой энергии на высокую.При достижении высокой энергии заряд самопроизвольно течет через проводящие провода и другие проводящие элементы схемы назад вниз к клемме с низким энергопотреблением. Роль батареи заключается в обеспечении энергией, необходимой для переноса заряда с клеммы — на клемму + батареи. Помещая большое количество одинакового заряда в одном месте, устанавливается электрическое давление или разность потенциалов, заставляя одинаковые заряды перемещаться из этого места в место противоположного заряда (клемма -).

18. Аккумулятор на 12 В будет обеспечивать ___. Перечислите все подходящие варианты.

а. 3 кулоны заряда с 4 джоулями энергии

г. 4 кулоны заряда с 3 джоулями энергии

г. 12 кулонов заряда с 1 Джоуль энергии

г. 1 кулон заряда с энергией 12 джоулей

e. 0,5 кулонов заряда с энергией 24 джоулей

ф.24 кулоны заряда с 2 джоулями энергии

Ответ: D

Электрический потенциал (или напряжение) определяется как электрическая потенциальная энергия на заряд. Это джоули энергии на кулон заряда, которыми обладает некоторое количество заряда в некотором месте в электрической цепи. Аккумулятор на 12 В перемещает некоторое количество заряда с клеммы — на клемму +, передавая энергию заряда. Каждый кулон заряда потреблял бы 12 Джоулей энергии.Соотношение энергия / заряд будет 12 Дж / Кл.

19. Заряды, протекающие по проводам в вашем доме ____.

а. хранятся в торговых точках у вас дома

г. создаются при включении устройства

г. происходят в энергетической компании

г. берут начало в проводах между вашим домом и энергокомпанией

e. уже есть в проводах у вас дома

Ответ: E

Этот вопрос направлен против распространенного заблуждения об электрических цепях.Заблуждение предполагает, что роль электрической розетки, аккумулятора или энергокомпании заключается в обеспечении заряда, необходимого для передвижения по дому. Но энергетическая компания является только источником энергии, необходимой для приведения заряда в движение, путем установления разности электрических потенциалов. Сам заряд присутствует в проводах и токопроводящих элементах вашего дома в виде мобильных электронов.

20.Примерно сколько времени потребуется электрону, чтобы пройти от аккумуляторной батареи автомобиля до фары и обратно (полный цикл)?

а. секунды

г. часы

г.

лет

г. одна миллионная секунды

e. одна десятая секунды

Ответ: B

Электрический заряд, проходящий по электрической цепи, движется довольно медленно.Довольно удивительно для многих, что расстояние, пройденное за единицу времени, составляет порядка 1 метра в час.

21. Представленная справа электрическая схема состоит из аккумулятора и трех одинаковых лампочек. Какие из следующих утверждений относительно этой схемы верны? Перечислите все подходящие варианты.

а. Ток через точку X будет больше, чем через точку Z.

г. Ток через точку Z будет больше, чем через точку Y.

г. Ток будет одинаковым через точки X, Y и Z.

г. Ток через точку X будет больше, чем через точку Y.

e. Ток через точку Y будет больше, чем через точку X.

Ответ: C

Как обсуждалось в вопросе № 15 выше, ток в электрической цепи везде одинаков. Таким образом, ток в этих трех местах одинаков.

22. Представленная справа электрическая схема состоит из аккумулятора и трех одинаковых лампочек. Какие из следующих утверждений относительно этой схемы верны? Перечислите все подходящие варианты.

а. Разность электрических потенциалов между X и Y больше, чем между Y и Z.

г. Разность электрических потенциалов между X и Z больше, чем между Y и W.

г.Разность электрических потенциалов между X и Y такая же, как между Y и Z.

г. Разность электрических потенциалов между X и Z такая же, как между Y и W.

e. Разность электрических потенциалов между Y и W больше, чем между X и Y.

Ответ: DE

Разность электрических потенциалов на лампочке (или на любом резисторе) в электрической цепи — это просто произведение тока в этой лампочке на ее сопротивление.Каждая лампочка имеет одинаковое сопротивление (поскольку они идентичны) и одинаковый ток (поскольку ток везде одинаковый). Таким образом, разность электрических потенциалов на каждой лампочке одинакова. И падение потенциала на любых двух последовательных лампочках одинаково. И падение потенциала на двух лампочках будет больше, чем на одной лампочке.

23. Электрическая схема, показанная справа, состоит из аккумулятора и трех одинаковых лампочек.Какие из следующих утверждений относительно этой схемы верны? Перечислите все подходящие варианты.

а. Обычный ток направляется по внешней цепи от точки X к Y, от Z к W.

г. Обычный ток направляется через внешнюю цепь от точки W к Z, от точки Y к X.

г. Обычный ток направляется по внутренней цепи от точки W к точке X.

г. Обычный ток направляется по внутренней цепи из точки X в точку W.

e. Точка, в которой заряд обладает наименьшим количеством электрической потенциальной энергии, — это точка W.

Ответ: ACE

Батарея называется внутренней схемой. Заряд перемещается по внутренней цепи от клеммы — к клемме + (в направлении от W к Z). Провода и лампочки составляют внешнюю цепь; заряд движется по внешней цепи от клеммы + к клемме — (в направлении от X к Y, от Z к W).

24. Напряжение ____ в электрической цепи.

а. проходит через

г. выражается через

г. постоянно на протяжении

г. скорость, с которой расходы проходят через

Ответ: B

Напряжение или электрический потенциал не движутся.Таким образом, варианты A и D не являются ответами, поскольку они подразумевают изменение напряжения. И напряжение или электрический потенциал заряда не является чем-то постоянным во всей цепи, как предполагает вариант C.

Напряжение или электрический потенциал — это мера того, насколько заряжено количество заряда в данном месте относительно клеммы -. Часто это выражается как разница между двумя точками. Возможно, вы обратили внимание на эту формулировку «потенциал через …» в нескольких ответах в этом обзоре.

25. Два или более из следующих слов и фраз означают одно и то же. Определите их, перечислив их буквы.

а. Напряжение

г. Мощность

г. Разница электрических потенциалов

г. Скорость движения платежей

e.Электрическое давление

ф. Энергия

Ответ: ACE

Напряжение или разность электрических потенциалов являются синонимами. Напряжение не является синонимом энергии. В то время как напряжение (или разность электрических потенциалов) является мерой того, насколько заряжено количество заряда в данном месте, напряжение выражается как энергия на заряд (а не просто как энергия).По аналогии между аквапарком и электрической цепью, напряжение — это мера количества электрического давления, оказываемого на заряд, заставляя его перемещаться из одного места в другое.

Мощность — это синоним мощности. Ток является синонимом скорости, с которой течет заряд.

26. Высоковольтная батарея может ____.

а. много работать над каждым зарядом, с которым он сталкивается

г.выполнять много работы в течение срока службы

г. протолкнуть много заряда через цепь

г. длиться долго

Ответ: A

Напряжение относится к энергии / заряду. Батарея, рассчитанная на высокое напряжение, может выполнять большую работу на каждый кулон заряда, с которым она сталкивается. В зависимости от размера батареи он может или не сможет выполнять большую работу в течение своего срока службы.

27. Что из перечисленного происходит при перезарядке аккумуляторной батареи?

а. Батарея, мощность которой разряжена, восстанавливается.

г. Батарея, у которой закончился ток, возвращается в нее.

г. Батарея, которая разрядилась, возвращается к ней.

г. Батарея, в которой закончились химические реактивы, подверглась химическому преобразованию.

Ответ: D

Батареи выполняют свои задачи по энергоснабжению, используя энергию экзотермической окислительно-восстановительной реакции для работы при зарядке в электрической цепи. Когда батарея больше не работает, ее реагенты расходуются до такой степени, что электрический потенциал, который реагенты способны производить, невелик по сравнению с общим сопротивлением цепи. В такой момент времени способность индуцировать ток ограничена до такой степени, что элементы внешней цепи больше не работают.

Не все батареи можно перезаряжать. Те, которые являются перезаряжаемыми, могут превращать продукты обратно в реагенты. Зарядное устройство использует электрическую энергию из розетки, чтобы обратить вспять ранее экзотермическую реакцию, превращая ее продукты обратно в реагенты.

28. Птицы могут спокойно стоять на высоковольтных линиях электропередачи. Это потому что ____.

а.они имеют низкий потенциал по отношению к земле.

г. они не оказывают сопротивления току.

г. они всегда выбирают неиспользуемые линии электропередач.

г. разность потенциалов между их ногами мала.

e. они идеальные изоляторы.

ф. они прекрасные дирижеры.

Ответ: D

Чтобы заряд протекал между двумя точками, между этими двумя точками должна быть установлена ​​разность электрических потенциалов.Если птица ставит левую ногу на линию электропередачи, а правую ногу на расстоянии нескольких сантиметров от той же линии электропередачи, то разницы потенциалов между его двумя ногами практически нет. Без разности электрических потенциалов заряд не будет проходить через птицу, и птица будет в безопасности.

29. Когда лампочка в вашей лампе больше не работает, это потому, что в лампочке _____.

а. заканчивается энергия и больше не может качать заряд

г.нет напряжения и необходимо зарядить

г. закончились электроны и поэтому нет больше тока

г. сгорел все ватты и больше не светит

e. сработал автоматический выключатель и должен быть закреплен на блоке предохранителей

ф. обрыв нити накала, что привело к обрыву цепи

г. … бред какой то! Лампочка в порядке; вашей семье просто нужно полностью оплатить счет за электроэнергию.

Ответ: F

Самая частая причина неспособности лампочки зажигать — обрыв нити накала.Спиральная проволока из вольфрама протянута между двумя вертикальными опорами. Если потревожить в горячем состоянии или из-за чрезмерного износа, металлический вольфрам может сломаться и оставить зазор между двумя вертикальными опорами. Этот разрыв представляет собой разрыв цепи; замкнутый проводящий контур больше не устанавливается, и заряд не течет.

30. В цепи вашего фонаря нужна батарейка, чтобы ____.

а.заряд предоставляется на провода

г. энергия света уравновешивается аккумулятором

г. возможна экзотермическая реакция, создающая свет

г. в цепи

поддерживается разность электрических потенциалов.

e. подаются электроны, чтобы зажечь лампочку

Ответ: D

Одна из функций батареи — просто установить разницу в электрическом потенциале между двумя ее выводами.Заряд с высоким потенциалом будет проходить через внешнюю цепь в место с низким потенциалом.

31. При включении освещения в помещении они сразу загораются. Лучше всего это объясняется тем, что ____.

а. электроны очень быстро перемещаются от переключателя к нити накала лампочки

г. электроны, присутствующие повсюду в цепи, движутся мгновенно

Ответ: B

Электроны очень медленно перемещаются из одного места в другое.Но как только цепь замыкается, они сразу начинают движение. Пока электроны движутся примерно на метр или за час, фактический сигнал, который говорит им начать движение, может двигаться со скоростью света. Таким образом, как только переключатель включен, по цепи циркулирует сигнал, чтобы электроны маршировали . Электроны присутствуют в нити накала цепи.

32. Скорость дрейфа подвижных носителей заряда в электрических цепях ____.

а. очень быстро; меньше, но очень близко к скорости света

г. быстрый; быстрее, чем самая быстрая машина, но далеко не скорость света

г. медленный; медленнее Майкла Джексона пробегает 220-метровую

г. очень медленно; медленнее улитки

Ответ: D

Скорость дрейфа — это расстояние, на которое заряд перемещается за единицу времени.Это значение очень мало, так как электроны движутся очень и очень медленно. Двигаясь со скоростью около 1 метра в час, они буквально медленнее, чем улитка.

33. Предположим, что ток в типовой цепи (постоянный ток) велик. Это показатель того, что ____.

а. мобильные носители заряда движутся очень быстро

г. большое количество мобильных носителей заряда продвигается в секунду

г.и a, и b верны

Ответ: B

Ток (скорость, с которой заряд движется мимо точки в цепи) и скорость дрейфа (расстояние, на которое заряд проходит за секунду) не следует путать (и часто это так). Если ток большой, можно быть уверенным только в одном: много зарядов перемещается вперед через точку в цепи каждую секунду.

34.Какие из следующих утверждений представляют правильные эквиваленты единиц измерения? Перечислите все подходящие варианты.

а. 1 Ампер = 1 Кулон в секунду

г. 1 Джоуль = 1 В / кулон

г. 1 Ватт = 1 Джоуль • секунда

г. 1 Вт = 1 В • Кулон в секунду

e.1 Джоуль / Ом = 1 Ампер • Кулон

ф. 1 Джоуль • Ом = 1 В 2 • секунда

Ответ: ADEF

Этот вопрос требует знания как единиц измерения электрических величин, так и уравнений, связывающих эти величины.

При выборе a, ампер — это единица измерения тока (I), а кулон в секунду — это единица заряда в единицу времени (Q / t).Это согласуется с уравнением I = Q / t.

При выборе b джоуль — это единица энергии (Э), а вольт / кулон — это единица измерения напряжения на единицу заряда (В / Кв). Поскольку напряжение — это энергия, приходящаяся на заряд, мы ожидаем, что энергия будет эквивалентна напряжению • заряда. Таким образом, неправильно приравнивать единицы энергии к единицам напряжения на заряд.

При выборе c, ватт — это единица мощности (P), а джоуль • секунда — это единица энергии (E), умноженная на единицу времени (t).Но мощность — это энергия / время, а не энергия • время, так что это неправильный эквивалент единиц.

При выборе d ватт — это единица мощности (P). Справа вольт — это единица измерения напряжения (В), а кулон в секунду — это единица измерения тока (I). Так как P = I • V, это правильная эквивалентность единиц.

При выборе e джоуль / Ом — это единица энергии на единицу сопротивления (E / R). Ампер • Кулон — это единица измерения тока, умноженная на единицу заряда (I • Q).Таким образом, уравнение предполагает, что E / R = I • Q. Это можно переставить алгебраически, чтобы сказать, что E / Q = I • R. Поскольку напряжение — это энергия, приходящаяся на заряд (E / Q), уравнение можно переписать как V = I • R. Таким образом, это правильная эквивалентность единиц измерения.

При выборе f джоуль • Ом — это единица энергии, умноженная на единицу сопротивления (E • R). Вольт 2 / секунда — это единица измерения напряжения 2 , умноженная на единицу времени (В 2 • t). Таким образом, это уравнение предполагает, что E • R = V 2 • t.Это можно переставить алгебраически, чтобы сказать, что E / t = V 2 / R. Правая часть уравнения эквивалентна мощности, поэтому уравнение можно переписать как P = V 2 / R. При правильном способе записи уравнения мощности заданная эквивалентность единиц верна.

35. На какой из следующих схем представлены последовательно включенные резисторы? Перечислите все подходящие варианты.

Ответ: B

A и C представляют собой параллельные соединения, как показано разветвлением, которое происходит до и после резисторов.В варианте B нет разветвления, поэтому резисторы подключаются последовательно.

Вопросы № 36- № 39:

На схеме справа показаны два одинаковых резистора — R 1 и R 2 , включенные в цепь с 12-вольтовой батареей. Используйте эту диаграмму, чтобы ответить на несколько следующих вопросов.

36. Эти два резистора соединены в ____.

а.серия

г. параллельно

г. ни

Ответ: A

Можно начать с плюсовой клеммы аккумулятора и начать водить пальцем по проводу. Если когда-либо есть точка, в которой провод подходит к стыку и разветвляется в двух или более направлениях, тогда схема имеет параллельное соединение.В противном случае это последовательная цепь. На этой диаграмме нет разветвления. Таким образом, это последовательная схема.

37. Разность электрических потенциалов (падение напряжения) на каждом резисторе составляет ___ Вольт.

а. 6

г. 12

г. 24

г…. бред какой то!. Разность электрических потенциалов зависит от фактического сопротивления резисторов

.

Ответ: A

Заряд получает увеличение электрического потенциала на 12 вольт при перемещении по внутренней цепи (аккумулятор). Таким образом, когда заряд покидает аккумулятор и проходит через внешнюю цепь, общее падение электрического потенциала должно составлять 12 вольт.Это падение напряжения происходит в два этапа, когда заряд проходит через каждый из резисторов. Заряд потеряет 6 вольт на первом резисторе и 6 вольт на втором резисторе, вернув его к нулю к тому времени, когда он вернется на клемму — батареи. Диаграмма потенциальных возможностей справа является визуальным средством представления этой важной концепции.

38. Если третий резистор (R 3 ), идентичный двум другим, добавить последовательно с первыми двумя, то общее сопротивление будет ____, а общий ток будет ____.

а. прибавка, прибавка

г. уменьшение, уменьшение

г. увеличение, уменьшение

г. уменьшение, увеличение

e. увеличиваются, остаются прежними

ф. уменьшаются, остаются прежними

г.оставить прежним, увеличить

ч. остаются прежними, уменьшаются

и. остаются прежними, остаются прежними

Ответ: C

Увеличение количества резисторов в последовательной цепи приведет к увеличению общего сопротивления этой цепи и уменьшению тока.(Обратное верно для параллельной схемы.)

39. Если третий резистор (R 3 ), идентичный двум другим, добавлен последовательно с первыми двумя, то разность электрических потенциалов (падение напряжения) на каждом из трех отдельных резисторов будет ____.

а. увеличить

г.уменьшение

г. остаются прежними

Ответ: B

Используя те же рассуждения, что и в вопросе № 37, мы можем сказать, что заряд приобретает 12 Вольт при прохождении через батарею. Он должен будет потерять эти 12 вольт в три этапа при прохождении через внешнюю цепь. Поскольку теперь во внешней цепи есть три падения напряжения вместо двух первоначальных, каждое падение должно быть меньше, чем раньше.Таким образом, на каждом резисторе будет падение напряжения на 4 В (вместо исходных 6 В).

Вопросы № 40- № 43:

На схеме справа показаны два одинаковых резистора — R 1 и R 2 , включенные в цепь с 12-вольтовой батареей. Используйте эту диаграмму, чтобы ответить на несколько следующих вопросов.

40. Эти два резистора соединены в ____.

а. серия

г. параллельно

г. ни

Ответ: B

Можно начать с плюсовой клеммы аккумулятора и начать водить пальцем по проводу. Если когда-либо есть точка, в которой провод подходит к стыку и разветвляется в двух или более направлениях, тогда схема имеет параллельное соединение.В противном случае это последовательная цепь. На этой диаграмме есть некоторые разветвления. Когда заряд достигает точки разветвления, он проходит либо через резистор в левой ветви (R 1 ), либо через резистор в правой ветви (R 2 ). Таким образом, это параллельная схема.

41. Разность электрических потенциалов (падение напряжения) на каждом резисторе составляет ___ Вольт.

а.6

г. 12

г. 24

г. … бред какой то!. Разность электрических потенциалов зависит от фактического сопротивления резисторов

.

Ответ: B

Заряд получает увеличение электрического потенциала на 12 вольт при перемещении по внутренней цепи (аккумулятор).Таким образом, когда заряд покидает аккумулятор и проходит через внешнюю цепь, общее падение электрического потенциала должно составлять 12 вольт. Это падение напряжения происходит за один шаг, поскольку заряд проходит только через один резистор на обратном пути к батарее. Таким образом, поскольку для заряда выбирается либо левая, либо правая ветвь (но не обе), любая ветвь должна обеспечивать падение напряжения на 12 В. В параллельных цепях разность электрических потенциалов на батарее равна разности электрических потенциалов на любой ветви.Диаграмма потенциальных возможностей справа является визуальным средством представления этой важной концепции.

42. Если третий резистор (R 3 ), идентичный двум другим, добавить параллельно с первыми двумя, то общее сопротивление будет ____, а общий ток будет ____.

а. прибавка, прибавка

г.уменьшение, уменьшение

г. увеличение, уменьшение

г. уменьшение, увеличение

e. увеличиваются, остаются прежними

ф. уменьшаются, остаются прежними

г. оставить прежним, увеличить

ч.остаются прежними, уменьшаются

и. остаются прежними, остаются прежними

Ответ: D

Добавление идентичного резистора в отдельную ветвь обеспечит больше путей, по которым заряд может проходить через петлю цепи. Это было бы эквивалентом добавления еще одной будки на пункте взимания платы на платной дороге параллельно с существующей будкой.Открытие другой полосы движения снизит общее сопротивление и приведет к увеличению скорости потока автомобилей. То же самое происходит с зарядом в параллельных цепях. Больше ответвлений означает меньшее сопротивление и повышенный ток.

43. Если третий резистор (R 3 ), идентичный двум другим, добавить параллельно с первыми двумя, то разность электрических потенциалов (падение напряжения) на каждом из трех отдельных резисторов будет ____.

а. увеличить

г. уменьшение

г. остаются прежними

Ответ: C

Разность электрических потенциалов на любой ветви равна напряжению батареи. Добавление новой ветви может изменить общее сопротивление и общий ток, но не изменит разность электрических потенциалов ни на батарее, ни на ветвях.

[# 8 | # 9 | # 10 | # 11 | # 12 | # 13 | # 14 | # 15 | # 16 | # 17 | # 18 | # 19 | # 20 | # 21 | # 22 | # 23 | # 24 | # 25 | # 26 | # 27 | # 28 | # 29 | # 30 | # 31 | # 32 | # 33 | # 34 | # 35 | # 36 | # 37 | # 38 | # 39 | # 40 | # 41 | # 42 | # 43 | # 44 | # 45 | # 46 | # 47 | # 48 | # 49 | # 50 | # 51]

44. Сопротивление токонесущего провода увеличится на ____. Выберите все, что подходит.

а. длина провода увеличена

г.сечение провода увеличено

г. температура проволоки повышена

г. напряжение на концах провода увеличивается

e. провод ставим все ближе и ближе к + клемме цепи

Ответ: AC

Сопротивление провода увеличивается с увеличением длины и (в меньшей степени) с повышением температуры.Увеличение длины провода увеличивает количество столкновений заряда атома и, следовательно, величину сопротивления. Повышение температуры увеличивает удельное сопротивление материала и, таким образом, увеличивает общее сопротивление.

45. При подключении к розетке на 120 В лампочка потребляет 300 джоулей энергии в течение 5 секунд. Мощность лампочки ____ Вт.

а.0,0167

г. 0,50

г. 2,0

г. 2,50

e. 60

ф. 600

г. 1500

ч. 7200

Ответ: E

Мощность — это просто скорость, с которой энергия подается в цепь или преобразуется в цепи.В этом случае мощность — это энергия, потребляемая за раз.

P = (300 Дж) / (5 секунд) = 60 Вт

46. Определенная электрическая цепь содержит аккумулятор, провода и лампочку. Если потенциальная энергия приобретается за счет заряда в месте расположения батареи, тогда заряды теряют потенциальную энергию ____.

а. только в проводах

г. в лампочке только

г. поровну в проводах и лампочке

г.в основном в проводах но немного в лампочке

e. в основном в лампочке, но немного в проводах

ф. никуда

Ответ: E

Charge теряет энергию при прохождении через зоны сопротивления. При последовательном соединении участки с наибольшим сопротивлением преобразуют электрическую энергию в другие формы с большей скоростью. Таким образом, энергия будет потеряна в лампочке и в проводах в гораздо меньшей степени.

47. Лампочка с высоким сопротивлением и лампочка с низким сопротивлением последовательно подключены к 6-вольтовой батарее. Какая из двух лампочек будет светить ярче всех?

а. У них будет одинаковая яркость.

г. Лампа с низким R будет светиться ярче.

г. Лампа с высоким R будет светиться ярче.

г. Невозможно сделать такой прогноз, поскольку яркость лампы не зависит от сопротивления лампы.

Ответ: C

Поскольку две лампочки включены последовательно, каждая из них испытывает одинаковый ток (i). Мощность будет отдана продуктом i 2 • R. Поскольку i одинаково для каждой лампочки, лампа с наибольшим сопротивлением будет иметь наибольшую мощность. Таким образом, лампочка с высоким R преобразует электрическую энергию в энергию света с максимальной скоростью и, таким образом, будет светить наиболее ярко.

48.Лампочка с высоким сопротивлением и лампочка с низким сопротивлением подключены параллельно и питаются от 6-вольтовой батареи. Какая из двух лампочек будет светить ярче всех?

а. У них будет одинаковая яркость.

г. Лампа с низким R будет светиться ярче.

г. Лампа с высоким R будет светиться ярче.

г. Невозможно сделать такой прогноз, поскольку яркость лампы не зависит от сопротивления лампы.

Ответ: B

Поскольку две лампочки включены параллельно, каждая из них испытывает одинаковое падение напряжения (В).Мощность будет отдана продуктом i 2 • R. Поскольку V одинаково для каждой лампочки, лампа с наибольшим сопротивлением будет иметь наименьший ток. Ток имеет наибольшее значение при определении мощности лампочки, поскольку в уравнении он возведен в квадрат. Таким образом, лампочка с низким сопротивлением будет иметь наибольший ток и, таким образом, преобразовывать электрическую энергию в энергию света с наибольшей скоростью; он будет сиять наиболее ярко.

49.Три одинаковые лампочки подключены к батарее, как показано справа. Какие настройки можно было бы внести в схему, чтобы увеличить ток, измеряемый в точке X? Включите все, что применимо.

а. увеличить сопротивление одной из лампочек

г. увеличить сопротивление двух лампочек

г. уменьшить сопротивление двух лампочек

г. увеличить напряжение АКБ

e. уменьшить напряжение АКБ

ф.снимаем одну из лампочек

Ответ: CDF

Ток в последовательной цепи (как полный ток, так и ток через отдельные резисторы) напрямую зависит от напряжения батареи и обратно пропорционально полному сопротивлению цепи. Этот ток можно увеличить, увеличив напряжение аккумулятора. Его также можно увеличить, уменьшив общее сопротивление. Удаление лампы уменьшило бы общее сопротивление, а уменьшение сопротивления любой отдельной лампы уменьшило бы общее сопротивление.

50. Три одинаковые лампочки (обозначенные X, Y и Z) подключены к батарее, как показано справа. Какие настройки можно внести в схему ниже, чтобы увеличить ток в точке P? Перечислите все подходящие варианты.

а. увеличить сопротивление одной из лампочек

г. увеличить сопротивление двух лампочек

г. уменьшить сопротивление двух лампочек

г.увеличить напряжение АКБ

e. уменьшить напряжение АКБ

ф. снимаем одну из лампочек

Ответ: CD

Точка P представляет собой место, где можно измерить полный ток этой параллельной цепи. Полный ток будет напрямую зависеть от общего напряжения и обратно пропорционально общему сопротивлению. Увеличение напряжения батареи приведет к увеличению тока в точке P.Уменьшение общего сопротивления приведет к увеличению тока в точке P. Общее сопротивление можно уменьшить, добавив еще один резистор в отдельную ветвь или уменьшив сопротивление любой из ветвей.

51. Три одинаковые лампочки (обозначенные X, Y и Z) подключены к батарее, как показано справа. Какие настройки можно внести в схему ниже, чтобы уменьшить ток в лампочке Z? Перечислите все подходящие варианты.

а. увеличить сопротивление лампы X

г. уменьшить сопротивление лампы X

г. увеличить сопротивление лампы Z

г. уменьшить сопротивление лампы Z

e. увеличить напряжение АКБ

ф. уменьшить напряжение АКБ

г. снять лампу Y

Ответ: CF

Ток в лампе Z зависит от падения напряжения на лампе Z и сопротивления лампы Z.В форме уравнения,

Я Z = V Z / R Z

Увеличение напряжения батареи приведет к увеличению падения напряжения на лампе Z (V Z ) и, таким образом, обеспечит больший ток через лампу. Уменьшение сопротивления лампы Z также приведет к увеличению тока через лампу. Однако изменение положения лампы X или Y не повлияет на соотношение V Z / R Z .

Переход к:

Главная страница сеанса обзора — Список тем

Electric Circuits — Главная || Версия для печати || Вопросы со ссылками

Ответы на вопросы: Все || # 1-7 || # 8-51 || # 52-59 || # 60-72

Вам тоже может понравиться…

Пользователи The Review Session часто ищут учебные ресурсы, которые предоставляют им возможности для практики и обзора, которые включают встроенную обратную связь и инструкции. Если это то, что вы ищете, то вам также может понравиться следующее:

  1. Блокнот калькулятора

    Блокнот калькулятора включает в себя текстовые задачи по физике, организованные по темам. Каждая проблема сопровождается всплывающим ответом и аудиофайлом, в котором подробно объясняется, как подойти к проблеме и решить ее.Это идеальный ресурс для тех, кто хочет улучшить свои навыки решения проблем.

    Посещение: Панель калькулятора На главную | Блокнот для калькулятора — электрические схемы

  2. Minds On Physics App Series

    Minds On Physics the App («MOP the App») представляет собой серию интерактивных модулей вопросов для учащихся, которые серьезно настроены улучшить свое концептуальное понимание физики. Каждый модуль этой серии посвящен отдельной теме и разбит на подтемы.«Опыт MOP» предоставит учащемуся сложные вопросы, отзывы и помощь по конкретным вопросам в контексте игровой среды. Он доступен для телефонов, планшетов, Chromebook и компьютеров Macintosh. Это идеальный ресурс для тех, кто желает усовершенствовать свои способности к концептуальному мышлению. Четвертая часть серии включает темы «Электрические схемы».

    Посетите: MOP the App Home || MOP приложение — часть 4

Электроэнергия, работа и мощность

Чтобы понять, как работают устойчивые технологии, важно усвоить определенные основные принципы.Знать, как фотоэлектрические элементы преобразуют солнечную энергию в электричество, означает понимать основы электричества и света. Понимание того, как ветряные турбины производят электричество, означает понимание кое-чего о власти, работе и электромагнетизме. В этом модуле будут представлены основные концепции, необходимые для понимания технологий, обсуждаемых в этом курсе. Хотя формулы иногда используются для объяснения основных принципов, суть не в том, чтобы уметь решать количественные задачи. Формулы помогут вам увидеть взаимосвязь.

Цели обучения: Учащиеся смогут:

  1. Выделите разницу между энергией, работой и мощностью и приведите примеры каждого из них с использованием соответствующих единиц.
  2. Дайте соответствующие определения следующим электрическим терминам: электрон, электрический заряд, электрический потенциал, сопротивление, ток, мощность, проводник, полупроводник и изолятор.

    Учащийся сможет сопоставить электрические величины / свойства с различными единицами измерения, используемыми в электротехнике (например,грамм. вольт, ампер, ватт, ом, ампер-час, киловатт-час и т. д.)

  3. Обозначить элементы электрической цепи.
  4. Укажите различия между параллельными и последовательными цепями и отметьте влияние на электрический потенциал (измеренный в вольтах) и ток (измеренный в амперах).
  5. Объясните взаимосвязь между потоком тока и магнетизмом и покажите, как это лежит в основе электродвигателей и генераторов.
  6. Различайте электричество постоянного и переменного тока, определите полезные качества каждого из них, отметьте, какие устройства связаны с каждым из них, и опишите роль силовых инверторов.

Энергия, работа и власть

Перейти к: Force | Работа | Мощность

Проще говоря, Вселенная состоит из четырех вещей: пространства, времени, массы и энергии. Первый закон термодинамики гласит, что энергия не может быть ни создана, ни разрушена. Но Эйнштейн показал нам, что энергию можно превратить в массу и наоборот. Второй закон термодинамики гласит, что каждый раз, когда энергия меняет форму, часть ее превращается в тепло. Энергия бывает разных форм.Самая полезная энергия или энергия высочайшего качества — это то, что мы можем использовать для работы. Например, энергия движения (кинетическая энергия) воды, падающей через плотину, может быть использована для вращения водяного колеса для измельчения зерна или выработки электричества.

Потенциальная и кинетическая энергия

Provenance: Первоисточник: Environment Canada (https://www.ec.gc.ca/eau-water/default.asp?lang=en&n=00EEE0E6-1), доступ через USGS: https://water.usgs .gov / edu / wuhy.html Это воспроизведение является копией официальной работы, опубликованной правительством Канады, и воспроизведение не было произведено в сотрудничестве или с одобрения правительства Канады.
Повторное использование: Информация на этом веб-сайте была размещена с намерением сделать ее доступной для личного или общественного некоммерческого использования и может быть воспроизведена частично или полностью и любыми средствами без взимания платы или дополнительного разрешения, если не указано иное. Пользователи должны: проявлять должную осмотрительность для обеспечения точности воспроизводимых материалов; Укажите как полное название воспроизводимых материалов, так и организацию автора; и Укажите, что воспроизведение является копией официального произведения, опубликованного правительством Канады, и что воспроизведение не было произведено при поддержке или с одобрения правительства Канады.

Самая низкая форма энергии с точки зрения полезности — тепло. Да, тепло можно использовать для производства пара и привода электрических турбин. Но для этого требуется много тепла, и это тепло должно исходить от какого-то другого источника энергии, например, горящего угля или солнечного света. Физики используют термин энтропия, чтобы описать изменение полезной энергии на менее полезное тепло.

Проще говоря, вселенная состоит из четырех вещей; пространство, время, масса и энергия. Первый закон термодинамики гласит, что энергия не может быть ни создана, ни разрушена.(Хотя позже Эйнштейн показал, что для ядерных реакций энергию можно превратить в массу и наоборот). Энергия бывает разных форм. Когда энергия передается от одного объекта к другому или когда она преобразуется из одного типа в другой, ее можно использовать для выполнения работы. Например, энергия движения (кинетическая энергия) воды, падающей через плотину, может быть использована для вращения водяного колеса для измельчения зерна или выработки электричества.

Энтропия — это мера распределения энергии. Концентрированные формы энергии, такие как энергия, хранящаяся в ядре атома, в химических связях или в высоковольтных электрических устройствах, очень полезны для выполнения работы.С другой стороны, менее концентрированные формы энергии, такие как низкотемпературное тепло, вибрации или звуковые волны, гораздо менее полезны. Второй закон термодинамики гласит, что всякий раз, когда энергия используется для выполнения работы, часть энергии превращается из концентрированной формы в менее полезную. Физики говорят, что по мере того, как энергия распространяется или рассеивается, энтропия увеличивается. Одним из результатов второго закона термодинамики является то, что ни один процесс не может преобразовать 100% энергии в полезную работу.

Что такое энергия? Полезно разделить энергию на два списка. Кинетическая энергия — это энергия движущегося объекта. Падающая вода (реагирующая на силу тяжести), солнечный свет, электроны, протекающие по проводу (электричество), велосипед в движении, использование мускулов для движения глаз во время чтения — все это примеры кинетической энергии. Потенциальная энергия — это то, что сохраняется и готово к преобразованию в кинетическую энергию. Это включает воду, удерживаемую плотиной, электрический заряд, хранящийся в батарее, химическую энергию, хранящуюся в жирах и сахарах, и химическую энергию, хранящуюся в бензине и угле.

На схеме гидроэлектростанции вода, стекающая по напорному штоку, имеет кинетическую энергию. Эта кинетическая энергия используется для вращения турбины, подключенной к электрогенератору. Вода, хранящаяся за плотиной, имеет потенциальную энергию или запасенную энергию. Обратите внимание, что сила тяжести, действующая на воду, в каждом случае обеспечивает энергию.

Сила

Когда к объекту прикладывается энергия, мы думаем об этом как о силе .Некоторые силы требуют контакта между двумя объектами, а другие действуют на расстоянии. Силы, которые требуют контакта , включают толкание, тянущее усилие (натяжение) и трение. Силы, которые действуют без прямого контакта между объектами, включают гравитацию, магнетизм и электрическую силу. Стандартная единица силы названа в честь сэра Исаака Ньютона, отца физики. Один Ньютон (1 Н) = количество силы для ускорения 1 кг массы на один метр в секунду 2 . Или 1 Н = (1 кг x 1 м) / с 2 .

Аппарат Джоуля для демонстрации эквивалентности работы и тепла

Provenance: Изображение из нового ежемесячного журнала Harper’s, № 231, август 1869 г. Доступно по: https://commons.wikimedia.org/wiki/File:Joule%27s_Apparatus_(Harper%27s_Scan).png
Повторное использование: Этот элемент находится в общественном достоянии и может быть использован повторно без ограничений.

Работа

Мы используем энергию для работы. Самый простой способ думать о работе — это перемещать объект.Когда к объекту прикладывается сила (масса, умноженная на ускорение), которая заставляет этот объект перемещаться, пройденное расстояние — это уже выполненная работа. Но мы используем энергию для выполнения большего количества работ, чем перемещение мебели или автомобилей. Работа также выполняется, когда мы используем солнечный свет или природный газ для обогрева наших домов, когда мы используем электричество для освещения наших комнат или когда мы используем бутерброд с арахисовым маслом и желе для питания клеток нашего мозга.

Поскольку энергия бывает разных форм, неудивительно, что существуют разные способы ее измерения.Трудно отслеживать все различные единицы энергии. Посмотрите на таблицу ниже, чтобы увидеть некоторые единицы и отношение к джоулям, который является золотым стандартом измерения энергии. Он назван в честь Джеймса Джоуля, пивовара 19 века, который показал эквивалентность механической работы и тепла. Один джоуль примерно равен количеству энергии, необходимому для поднятия 100-граммового яблока на 1 метр (3,3 фута).

Изображенный аппарат был использован Джеймсом Джоулем для демонстрации эквивалентности механической работы и тепла.Он рассчитал работу, выполняемую силой тяжести на гирю. Эта тяга повернула лопаточные колеса, которые смешали воду в изолированном контейнере. Вода нагревается при перемешивании, показывая, что тепло = работа.

Паровая машина Ватта

Происхождение: Wikicommons: https://commons.wikimedia.org/wiki/File:SteamEngine_Boulton%26Watt_1784.png
Повторное использование: Этот элемент находится в общественном достоянии и может использоваться повторно без ограничений.

Мощность

Мощность — это мера того, сколько энергии используется за определенный период времени. Для этого мы можем использовать ватт. Джеймс Ватт был пионером в понимании физики энергии и разработал один из первых успешных паровых двигателей. Он одолжил нам свою фамилию для этого подразделения.

Показано изображение паровой машины, совместно разработанной Джеймсом Ваттом для откачки воды из затопленных угольных шахт в Англии.

Ватт — это один джоуль энергии, затрачиваемый за секунду. Таким образом, ватт включает в себя как затраченную энергию, так и время, в течение которого она была затрачена.По аналогии, вы можете получить один галлон воды из капающего крана за час или из открытого крана за 15 секунд. В конце концов, вы все равно получите галлон воды, но во втором случае вода течет в ведро намного быстрее. Так что аспект времени важен. Мы используем термин мощность для обозначения количества энергии и скорости ее доставки. Джоуль — это член энергии, а ватт — член мощности.

Насколько велик ватт мощности? Подбрасывание 100 г яблока в воздух на 1 м (3.3 фута) потребляет 1 ватт мощности. Ноутбук, который вы, возможно, используете для чтения, потребляет около 5 & acirc; & # 128; & # 147; 50 ватт, в зависимости от того, работает ли у вас в фоновом режиме музыка или работают другие приложения. Старомодная лампа накаливания мощностью 100 Вт потребляет 1 киловатт-час электроэнергии, если оставить ее включенной на 10 часов. Киловатт — это 1000 ватт, сокращенно кВт. 10 часов x 100 Вт = 1000 кВтч. Обратите внимание на разницу между кВт и кВтч. КВт — это мера мощности, а кВтч — мера того, сколько энергии было использовано в целом.

Яблоко, падающее на метр, делает это с мощностью 1 ватт.

Происхождение: Эван-Амос Автор изображения
Повторное использование: Лицо, связавшее произведение с этим документом, посвятило произведение общественному достоянию, отказавшись от всех своих прав на произведение во всем мире в соответствии с законом об авторском праве, включая все смежные и смежные права в пределах, разрешенных законом. Вы можете копировать, изменять, распространять и выполнять работу даже в коммерческих целях, не спрашивая разрешения

Вы не уверены в киловатт-часах и киловатт-часах? Это уловка.Помните, что ватт — это джоуль / сек. Значит, в ватт или киловатт уже заложено время. Это энергия / время. Это мощность, скорость использования энергии. Но мощность не сообщает вам, сколько энергии было использовано за определенный период времени. Чтобы получить это, вам нужно умножить мощность на время. Затем единицы времени должны быть зачеркнуты. Увы, принято оставлять час на месте — глупо, но так это делается. 1 кВтч = 1 кВт x 1 час.

Вот пример. В моем доме есть фотоэлектрическая система (солнечная электроэнергия), которая в идеальных условиях приятного солнечного прохладного дня рассчитана на выработку 4 кВт.За 4 часа это составит:

4 кВт x 4 часа = 16 кВт · ч электроэнергии. В частично пасмурный день система может работать на половинной мощности или на 2 кВт выходной мощности. При такой скорости мне потребуется 8 часов, чтобы выработать те же 16 кВт · ч, что я сделал в солнечный день; 2кВт x 8 часов = 16 кВтч.

В состоянии покоя типичный человек использует энергию мощностью 80 Вт для обеспечения жизненных функций организма (так называемый метаболизм в состоянии покоя). Взрослый мужчина может съедать около 2000 килокалорий в день. Одна ккал = 1,163 Втч. Таким образом, диета на 2000 ккал обеспечит 2326 Втч или 2 Втч.326 кВтч. Если бы человек просто пролежал в постели 24 часа, он бы сжег 80 Вт x 24 часа = 1920 Вт · ч или 1 920 кВт · ч. Если этот парень останется в постели и продолжит так есть, он в конечном итоге потребляет 2,326 кВтч & acirc; & # 128; & # 147; 1,920 кВтч = 0,406 кВтч больше, чем он использует, и это будет храниться в виде жира. Фунт жира равен примерно 3500 ккал (4 070,5 кВтч). Так что через десять дней он может прибавить еще фунт. Активная поездка на велосипеде использует энергию в размере 200 Вт. Поэтому ему следует подумать о двухчасовой поездке на велосипеде, чтобы оставаться в форме (0.2 кВт для езды на велосипеде x 2 часа = 4,0 кВтч).

Сводка силы, работы и мощности

Сила = энергия, приложенная к объекту (измеряется в ньютонах).

Работа = Сила X Расстояние или количество переданного тепла (Измеряется в Джоулях или калориях) .

Мощность = работа / время (измеряется в ваттах, с)

Различные единицы энергии

1 калория (термохимическая) = 4.184 Дж

1 британская тепловая единица = 251,9958 калорий

1 БТЕ (термохимический) = 1054,35 Дж

1 киловатт-час (кВтч) = 3,6 x 106 Дж

1 киловатт-час (кВтч) = 3412 британских тепловых единиц (IT)

1 терм = 100 000 британских тепловых единиц

1 электрон-вольт = 1,6022 x 10-19 Дж

Электричество и магнетизм

Изолированные провода

Происхождение: Chatama размещено в сообществе Викимедиа https://commons.wikimedia.org/wiki/File:600V_CV_5.5sqmm.jpg
Повторное использование: Этот файл находится под лицензией Creative Commons Attribution-Share Alike 3.0 Непортированная лицензия. Вы можете: делиться — копировать, распространять и передавать произведение для ремикса — адаптировать произведение При следующих условиях: приписывание — вы должны указывать произведение способом, указанным автором или лицензиаром (но ни в коем случае, чтобы предполагает, что они одобряют вас или ваше использование произведения). делиться одинаково — если вы изменяете, трансформируете или расширяете эту работу, вы можете распространять полученную работу только по той же или аналогичной лицензии, что и эта.

Теперь, когда у вас есть хорошее представление об энергии, работе и мощности, пора зарядиться и изучить электричество! Древние имели смутное представление об электричестве из-за своего жизненного опыта.Рыбаки, ловившие разного рода «электрическую рыбу», при обращении с ней подвергались шоку. Другие чувствовали воздействие статического электричества от своей шерстяной одежды. Египтяне видели связь между электрической рыбой и молнией. Но только около 1600 года начались серьезные научные исследования электричества. Усилиями многих исследователей к концу 19 века было разработано хорошее представление об электричестве и о том, как его использовать.

Напомним, что вся материя состоит из атомов.А атомы состоят из нескольких основных частиц: электронов с отрицательным зарядом, протонов с положительным зарядом и нейтронов без заряда. Электричество можно представить как поток электронов через проводник, подобный медному проводу. На самом деле это не поток электронов, а импульс, который проходит по проводу.

Хорошие проводники, как и металлы, легко пропускают электричество. У них есть электроны на внешних орбиталях, с которыми легко вступить в контакт. Плохие проводники называются изоляторами, и они не пропускают беспрепятственный ток электричества.Даже самые лучшие проводники оказывают некоторое сопротивление току электричества. Такое сопротивление измеряется в единицах, называемых Ом. Стекло — хороший изолятор и, следовательно, плохой проводник.

Третий класс соединений — полупроводники. Они реагируют на изменение условий, чтобы включить или выключить подачу электричества. Полупроводники часто содержат смесь кремния и металлов. Пластины из этих полупроводников лежат в основе «микросхем» компьютера, а также являются основой для светодиодных ламп и фотоэлектрических (солнечных) элементов.

Фотоэлектрические панели изготовлены из полупроводников.

Происхождение: Фото Б. Кукера
Повторное использование: бесплатно для повторного использования

Панели фотоэлементов, которые производят электричество из солнечного света, сделаны из полупроводников.

Для подачи электричества должна быть замкнутая цепь. Электроны должны начинать с состояния с высокой энергией и заканчиваться в состоянии с низкой энергией. Ниже представлена ​​схема простой схемы. Обратите внимание, что электричество течет от высокоэнергетического конца батареи через лампу, а затем обратно к низкоэнергетическому концу батареи.Когда выключатель разомкнут, подача электричества прекращается.

Об электричестве просто думать как об электроне (или импульсе размером с электрон), протекающем по проводнику. Но на практике один электрон слишком мал и несет слишком мало энергии, чтобы выполнять какую-либо реальную работу. Тем не менее, стекающие вместе группы электронов могут вызвать большой толчок! Кулон — это 6,24 × 10 18 электронов. А amp — это поток в один кулон в секунду через проводник. Таким образом, ампер измеряет скорость потока электричества.Мы называем поток электричества током.

Не все электричество течет с одинаковой силой. Чтобы понять это, подумайте о давлении или силе воды, выходящей из трубы. Если труба прикреплена к резервуару наверху высокого здания, вода будет иметь гораздо большее давление, чем если бы резервуар был на 30 см выше трубы. То же самое и с электричеством. «Давление» электричества — это электрический потенциал. Электрический потенциал — это количество энергии, доступное для проталкивания каждой единицы заряда через электрическую цепь.Единицей измерения электрического потенциала является вольт. Вольт равен джоуля на кулон. Таким образом, если автомобильный аккумулятор имеет электрический потенциал 12 вольт, он может обеспечить 12 джоулей энергии на каждый кулон заряда, который он подает на стартер. Точно так же, если розетка в вашем доме имеет электрический потенциал 120 вольт, то она может обеспечить 120 джоулей энергии на каждый кулон заряда, который подается на устройство, подключенное к стене. (Примечание: величина «электрический потенциал» иногда называется несколькими разными именами, включая напряжение, разность потенциалов и электродвижущую силу.Для ясности мы всегда будем ссылаться на электрический потенциал, который измеряется в вольтах). Электроны высокого напряжения возвращаются в «основное состояние» с большей энергией, чем электроны низкого напряжения.

А вольт — это сила, необходимая для перемещения одного ампер через проводник с сопротивлением 1 Ом .

Вы думаете: «Кажется, существует связь между усилителями, вольтами и омами» & acirc; & # 128; & # 148; и ты прав! Электрический потенциал = ток x сопротивление.Это закон Ома, который обычно записывается как: E = I x R . E — электрический потенциал, измеренный в вольтах, I — ток, измеренный в амперах, а R — сопротивление, измеренное в омах.

Электроны, проходящие через сопротивление проволоки, совершают работу. Действительно полезны два вида работы, выполняемой током. Если в проводе имеется большое сопротивление, большая часть работы будет выполняться в виде тепла. Подумайте об электрическом тостере, феном или обогревателе.

Второй действительно важный вид работы, выполняемой током, протекающим через провод, — это создание магнитного поля.Надеюсь, в детстве вы играли с постоянными магнитами. Вы знаете, что у магнитов два полюса: один называется северным, а другой — южным. Это название связано с использованием магнитов в компасах для определения направления. Вы знаете, что одинаковые концы магнитов отталкиваются друг от друга, а противоположные концы притягиваются. Теперь, когда электрический ток течет по проводу, он становится похож на магнит в том смысле, что у него есть магнитное поле. Однако, в отличие от постоянных магнитов, магнитное поле можно отключить, остановив ток.Это свойство лежит в основе работы электродвигателей. Ток, проходящий через обмотки проводов в электродвигателе, вызывает включение магнетизма. Затем это заставляет двигатели вращаться, притягиваясь и толкаясь притяжением и отталкиванием электромагнитов.

Работа, совершаемая током с течением времени, называется мощностью. Мощность измеряется в ваттах. Но вы это уже знаете! Напомним, что выше вы узнали, что обычный человек в состоянии покоя сжигает 80 Вт.

На электричество;

1 Ватт = 1 А x 1 Вольт.

Уравнение можно изменить для расчета производимого тока;

1 ампер = 1 Вт / 1 объем т.

Подводя итоги.

Ампер измеряет количество электричества, протекающего во времени (ток).

Ом измерить сопротивление потоку.

Вольт измеряет количество энергии, доступной для проталкивания каждой единицы заряда.

Ватт — это мера мощности или работы, которая выполняется с течением времени.

Вы знаете, что закон Ома устанавливает связь между E, I и R. Но сколько работы уже сделано? Это выражается как Сила. Мощность = Электрический потенциал x Ток, или P = E x I. Эта формула указывает на то, что мощность зависит как от количества поставляемой электроэнергии, так и от силы, стоящей за ней. Например, небольшая солнечная панель может выдавать 18 вольт и 2 ампера. Его мощность составит 18 вольт x 2 ампера = 36 ватт. Теперь можно построить еще одну солнечную панель, чтобы производить 9 вольт и 4 ампер.Его мощность составит 9 вольт x 4 ампера = 36 ватт. Так же, как и другой!

Цепи

Простая схема

Происхождение: Бенджамин Кукер, Университет Хэмптона
Повторное использование: Этот элемент предлагается по лицензии Creative Commons Attribution-NonCommercial-ShareAlike http://creativecommons.org/licenses/by-nc-sa/3.0/ Вы можете использовать это повторно элемент для некоммерческих целей при условии, что вы указываете авторство и предлагаете любые производные работы по аналогичной лицензии.

Пересмотр простой схемы

Происхождение: Бенджамин Кукер, Университет Хэмптона
Повторное использование: Этот элемент предлагается по лицензии Creative Commons Attribution-NonCommercial-ShareAlike http://creativecommons.org/licenses/by-nc-sa/3.0/ Вы можете использовать это повторно элемент для некоммерческих целей при условии, что вы указываете авторство и предлагаете любые производные работы по аналогичной лицензии.

Оборудование, производящее и использующее электричество, подключено в электрическую цепь.Оборудование может быть установлено как последовательно, так и параллельно. Посмотрите на схемы ниже, чтобы увидеть последствия использования последовательной и параллельной схем. Для фотоэлектрических (PV) элементов каждая ячейка может производить только около 0,6 вольт. Поскольку для большинства приложений требуется более высокое напряжение, фотоэлементы должны быть подключены последовательно для получения желаемых результатов.

Последовательная схема

Происхождение: Бенджамин Кукер, Университет Хэмптона
Повторное использование: Этот элемент предлагается по лицензии Creative Commons Attribution-NonCommercial-ShareAlike http: // creativecommons.org / licenses / by-nc-sa / 3.0 / Вы можете повторно использовать этот элемент в некоммерческих целях при условии указания авторства и предложения любых производных работ по аналогичной лицензии.

Параллельная схема

Происхождение: Бенджамин Кукер, Университет Хэмптона
Повторное использование: Этот элемент предлагается по лицензии Creative Commons Attribution-NonCommercial-ShareAlike http://creativecommons.org/licenses/by-nc-sa/3.0/ Вы можете использовать это повторно элемент для некоммерческих целей при условии, что вы указываете авторство и предлагаете любые производные работы по аналогичной лицензии.

Электродвигатели и генераторы

Магнитное поле вокруг провода, по которому течет ток

Происхождение: Бенджамин Кукер, Университет Хэмптона
Повторное использование: Этот элемент предлагается по лицензии Creative Commons Attribution-NonCommercial-ShareAlike http://creativecommons.org/licenses/by-nc-sa/3.0/ Вы можете использовать это повторно элемент для некоммерческих целей при условии, что вы указываете авторство и предлагаете любые производные работы по аналогичной лицензии.

Напомним, что часть работы, совершаемой электричеством, происходит, когда оно проходит через провод для создания магнитного поля.Ганс Кристиан Эрстед обнаружил это в 1820 году. Годом позже Майкл Фарадей показал, что магнитное поле вокруг провода можно использовать для создания электромагнитов, которые могут быть хитроумно скомпонованы для создания электродвигателя.

Электромагнит

Происхождение: Оригинальное фото Джины Клиффорд: https://www.flickr.com/photos/cobalt_grrl/2256696466
Повторное использование: Attribution-ShareAlike 2.0 Generic (CC BY-SA 2.0) Бесплатно: Совместное использование — копирование и распространение материал на любом носителе или в любом формате. Адаптировать — ремикшировать, преобразовывать и дополнять материал для любых целей, даже для коммерческих целей.

Обратите внимание на изображение электромагнита, полученное путем наматывания изолированного провода на железный гвоздь. Железный гвоздь концентрирует магнитное поле, создаваемое током в изолированном проводе. Изоляция предотвращает короткое замыкание цепи железным гвоздем.

На схемах ниже показано, как работает электродвигатель. Обратите внимание, что при каждом половинном обороте контакты в коммутаторе меняют направление тока, чтобы двигатель вращался в том же направлении.

Простой электродвигатель

Происхождение: Изображения созданы или предоставлены для изучения.com защищены авторским правом © Chris Woodford (Объясните, что stuff.com) и опубликованы под этой лицензией Creative Commons. http://www.explainthatstuff.com/electricmotors.html
Повторное использование: Per Creative Commons License: Share — копирование и распространение материала на любом носителе или в формате. Адаптация — ремикс, преобразование и создание материала

.

Простой электродвигатель

Происхождение: Создано Авинашем Синха как оригинальный DIY-файл по лицензии Creative Commons на следующем веб-сайте: http: // www.Instructables.com/file/FW079IPGGC2UDG3/
Повторное использование: В соответствии с лицензией CC разрешено следующее: Совместное использование — копирование и распространение материала на любом носителе или любом формате. Адаптация — ремикс, преобразование и создание материала

.

Генератор постоянного тока

Происхождение: Изображение с www.alternative-energy-tutorials.com, используется с разрешения
Повторное использование: Все учебные пособия и материалы, опубликованные и представленные на веб-сайте учебных пособий по альтернативным источникам энергии, включая текст, графику и изображения, являются собственностью авторских прав или аналогичных права Учебников по альтернативной энергии, представляющих www.Alternative-energy-tutorials.com, если прямо не указано иное. Согласно веб-мастеру AET: Как вы любезно спросили, я не возражаю против того, чтобы вы использовали это изображение как часть своего веб-курса по энергетике бесплатно. Тем не менее, я должен попросить вас правильно ссылаться на мои учебные пособия, изображения и сайт: www.alternative-energy-tutorials.com соответственно в своих презентациях.

Майкл Фарадей не усовершенствовал электродвигатель, но он обнаружил важное свойство электромагнетизма, которое привело к другому великому изобретению — электрическому генератору.Фарадей открыл в 1831 году принцип магнитной индукции. Он обнаружил, что, проводя магнит по проводу, он вызывает электрический ток в замкнутой цепи. Это привело к разработке электрических генераторов. Первые успешные коммерческие разработки появились примерно в 1860 году. Электрогенератор — это, по сути, электродвигатель, который вращается под действием некоторой внешней силы и в ответ производит индуцированный ток. Гибридные электромобили, такие как Toyota Prius, делают именно это. Электродвигатель питается от аккумулятора при нажатии педали акселератора.Когда педаль отпускается, инерция автомобиля действует через вращающиеся колеса, чтобы вращать двигатель, заставляя двигатель работать в качестве генератора, создавая электричество для подзарядки аккумулятора.

Электроэнергия переменного и постоянного тока

Генератор переменного тока

Происхождение: Автор: Федеральное управление гражданской авиации http://www.faa.gov/regulations_policies/handbooks_manuals/aircraft/amt_handbook/media/FAA-8083-30_Ch20.pdf
Повторное использование: Это изображение или файл является произведением Сотрудник Федерального управления гражданской авиации, взятый на работу или взятый на работу в рамках служебных обязанностей этого лица.Это произведение федерального правительства США, изображение находится в общественном достоянии Соединенных Штатов.

До сих пор мы рассматривали только один вид электричества — постоянный ток (DC). Это то, что производят батареи, солнечные панели и генераторы постоянного тока. Для электричества постоянного тока ток всегда течет в одном и том же направлении. Другой вид электричества — это переменный ток (AC). Как видно из названия, ток переключает направление в проводе с регулярным циклом. Электроэнергия переменного тока — это то, что приходит в наши дома через электросеть.Производится генераторами переменного тока. Генератор переменного тока устроен иначе, чем генератор постоянного тока. Помните, что в генераторе постоянного тока или двигателе есть коммутатор или выпрямитель, который переключает направление тока в катушках якоря (той части, которая вращается). В генераторе переменного тока вместо реверсивного коммутатора используются контактные кольца. Таким образом, с каждой половиной оборота генератора индуцированный ток меняет направление.

Выходной сигнал генератора переменного тока генерирует синусоидальную волну при скачках напряжения в цепи.Реверсирование тока происходит быстро. В Соединенных Штатах стандарт для электросети составляет 60 Гц (переключение вперед и назад 60 раз в секунду).

Синусоидальная волна от генератора переменного тока

Provenance: Booyabazooka в английской Википедии
Повторное использование: Этот элемент предлагается по лицензии Creative Commons Attribution-NonCommercial-ShareAlike http://creativecommons.org/licenses/by-nc-sa/3.0/ Вы можете повторно использовать этот элемент в некоммерческих целях при условии указания авторства и предложения любых производных работ по аналогичной лицензии.

На диаграмме справа показана синусоида, генерируемая генератором переменного тока. При напряжении выше 0 вольт электричество течет в одном направлении, а при напряжении ниже 0 вольт — в другом. Ось Y — напряжение, а ось X — время.

Короткое видео о разнице между генераторами и двигателями постоянного и переменного тока

Преимущество использования переменного тока заключается в том, что можно легко повышать или понижать напряжение в различных частях сети системы доставки. Это делают трансформаторы. Трансформатор состоит из двух расположенных бок о бок катушек, большой и малой.Обе катушки имеют общий железный сердечник. Переменный ток, проходящий через небольшую первичную катушку, за счет магнитной индукции создает ток более высокого напряжения в большей вторичной катушке. И обратное также верно: если первичная обмотка больше, вторичная обмотка меньшего размера будет иметь более низкое выходное напряжение.

Трансформатор, используемый для увеличения переменного напряжения

Происхождение: BillC в англоязычной Википедии
Повторное использование: Выпущено под лицензией GNU Free Documentation License.

Зачем вообще увеличивать и уменьшать напряжение? Помните, что V = I x R. Передача электричества на большие расстояния приводит к потере энергии на тепло из-за сопротивления проводов. Чтобы предотвратить это, напряжение увеличивается, что требует меньшего тока и меньших тепловых потерь. Когда вы доберетесь до вашего дома, напряжение снова упадет. По высоковольтным линиям электропередачи может подаваться электроэнергия 765 кВ (то есть 765 тысяч вольт!). То, что получается от розетки, составляет 120 вольт.

Переключение между переменным и постоянным током

Инвертор для переключения с постоянного на переменный ток

Происхождение: Фотография сделана Б.Cuker
Повторное использование: Без копирования и записи, можно использовать для любых целей.

Поскольку мы используем электричество как переменного, так и постоянного тока, важно уметь преобразовывать одно в другое. Эту работу выполняет устройство, называемое инвертором мощности. Многие бытовые приборы работают от сети переменного тока. Холодильники, кондиционеры, лампы накаливания и люминесцентные лампы, пылесосы, фены и стиральные машины — все напрямую используют кондиционер. Электроника, такая как компьютеры, телевизоры и сотовые телефоны, требует постоянного тока.В устройствах обычно инвертор встроен в шнур питания переменного тока. По проводу, идущему от инвертора, проходит постоянный ток, необходимый устройству.
Инверторы

также могут использоваться для преобразования постоянного тока в переменный. Такие устройства позволяют использовать 12 В постоянного тока автомобиля для питания портативного компьютера. Дома, которые используют фотоэлектрические панели для использования солнечной энергии для производства электроэнергии, также должны преобразовывать свою выработку в соответствии с переменным током, если системы подключены к электросети.

Оба типа инверторов используют электронные схемы для перехода на электричество.Теория их действия выходит за рамки этого основного устройства. Но вы должны знать, что силовые инверторы подчиняются второму закону термодинамики. Таким образом, в процессе преобразования энергия теряется на тепло. Но современные инверторы могут достигать КПД до 95%.

Показан силовой инвертор, который преобразует постоянный ток солнечных панелей в переменный ток для фотоэлектрической системы, подключенной к сети.

Хранение и производство электроэнергии с помощью батарей

Схема свинцово-кислотной батареи

Provenance: Ohiostandard в английской Википедии — перенесено с en.wikipedia в Commons от Burpelson AFB с использованием CommonsHelper.
Повторное использование: Разрешено копировать, распространять и / или изменять этот документ в соответствии с условиями лицензии GNU Free Documentation License версии 1.2 или любой более поздней версии, опубликованной Free Software Foundation; без неизменяемых разделов, без текстов на лицевой обложке и без текстов на задней обложке. Копия лицензии включена в раздел под названием GNU Free Documentation License.

Батареи преобразуют потенциальную энергию химических веществ в кинетическую энергию электричества.Бенджамин Франклин ввел термин «батарея» для описания стопки стеклянных пластин с металлическим покрытием, которые он использовал для хранения энергии. Но то, что у него было, сегодня мы назвали бы конденсаторами. Батареи работают за счет соединения двух химических материалов, которые имеют разное сродство к электронам. Материалы анода предпочитают терять электроны, а материалы катода — получать их. Электроды батареи погружены в раствор, содержащий положительно и отрицательно заряженные ионы, называемый электролитом. При включении в цепь электроны текут от анода к катоду.В то же время отрицательно заряженные ионы в электролите перемещаются от катода к аноду для поддержания нейтральности заряда и, таким образом, замыкают электрическую цепь.

В перезаряжаемой батарее реакции на аноде и катоде можно обратить вспять, используя электрическую энергию для подачи тока, который толкает электроны в противоположном направлении — от катода к аноду. Это восстанавливает исходное состояние двух электродов. Ваш портативный компьютер, мобильный телефон и автомобильный аккумулятор — все это примеры аккумуляторных батарей.В современных батареях используются комбинации различных типов металлов и соединений оксидов металлов, образованные из таких элементов, как углерод, кадмий, кобальт, литий, марганец, никель, свинец и цинк для повышения производительности.

Батарея из лимона

Происхождение: Тереза ​​Нотт из Викимедиа: https://commons.wikimedia.org/wiki/File:Lemon_battery.png
Повторное использование: Этот файл находится под лицензией Creative Commons Attribution-Share Alike 3.0 Unported.Вы можете: делиться — копировать, распространять и передавать произведение для ремикса — адаптировать произведение При следующих условиях: приписывание — вы должны указывать произведение способом, указанным автором или лицензиаром (но ни в коем случае, чтобы предполагает, что они одобряют вас или ваше использование произведения). делиться одинаково — если вы изменяете, трансформируете или расширяете эту работу, вы можете распространять полученную работу только по той же или аналогичной лицензии, что и эта.

Простая батарея, использующая кислотные фрукты и два разных металла (бронза и стальные сплавы).

Exercises Exercises for Module 1 (Microsoft Word 2007 (.docx) 17kB Jul12 17)

1. Создайте цепь, используя две последовательно соединенные батареи и лампочку. Используйте цифровой мультиметр (DMM) для измерения электрического потенциала в вольтах между положительной и отрицательной клеммами в цепи. Теперь добавьте в цепь вторую лампочку последовательно с первой. Какова яркость каждой лампочки по сравнению с яркостью, когда в цепи была только одна лампочка? С помощью вольтметра измерьте напряжение между положительной клеммой аккумулятора и проводом сразу после первой лампочки, а затем сразу после второй лампочки.Запишите результаты. Теперь создайте цепь с двумя параллельными лампочками. Запишите яркость и напряжение на каждой лампочке.

Объясните свои результаты.

Простая схема с одной лампочкой

Цепь с двумя последовательно включенными лампочками

Цепь с двумя параллельными лампами

2.Сделайте пять магнитов для выборщиков, каждый с проволокой разной длины, намотанной вокруг железных гвоздей: 10 см, 20 см, 30 см, 40 см и 50 см. В каждом случае на каждом конце провода должно быть по 10 см, чтобы его можно было подключить к батарее. Таким образом, катушка «10 см» будет фактически сделана из проволоки длиной 30 см и так далее. Подключите каждый магнит к батарее и прикрепите как можно больше канцелярских скрепок к магнитной цепочке с кончика ногтя. Запишите максимальное количество скрепок в каждом случае. Затем нарисуйте график зависимости максимального количества удерживаемых скрепок от длины провода, из которого сделаны обмотки.Объясните, почему график выглядит именно так.

3. Соберите простой двигатель из предоставленного комплекта. Обязательно обратите внимание на инструкции по удалению изоляции на противоположных сторонах провода, который контактирует с зажимами аккумулятора.Как только вы заставите свой мотор вращаться, проведите следующие эксперименты.

а. Обратите внимание на направление вращения двигателя. Можете ли вы заставить его пойти в противоположном направлении? Объяснять.

г. Теперь снимите магнит и переверните. Затем перезапустите мотор. Поворачивает ли он в том же направлении, что и раньше? Почему?

г. Теперь переверните аккумулятор и перезапустите двигатель. Направление вращения осталось прежним? Объяснить, почему.

г. Подумайте об электродвигателе как о системе.Определите источник энергии и судьбу этой энергии во вращающейся двигательной системе. В своем ответе используйте следующие термины: электрохимическая энергия, кинетическая энергия (энергия движения) и тепло. Нарисуйте созданную вами схему для запуска электродвигателя. Наденьте шляпу системного мышления.

  • Определите каждый компонент системы.
  • Отследите поток энергии через систему. Обязательно покажите, где он переходит от электрического тока к магнитной энергии, кинетической энергии и теплу.
  • Сделайте снимок вашей диаграммы и включите его в свой отчет.

Является ли электродвигатель закрытой системой (вся энергия остается в системе) или это открытая система (некоторый обмен энергией с окружающей средой)?

4. Из кусочка цитрусовых сделайте батарейку. Положите медный пенни с одной стороны фрукта и стальную скрепку с другой стороны. Измерьте напряжение с помощью цифрового мультиметра. Запишите результат: ______.

Теперь попробуйте использовать фруктовый аккумулятор, чтобы зажечь светодиодную лампочку.Это работает? Объясните, что создает электричество.

Список литературы

Электромагниты и закон Фарадея

Электродвигатель и генератор

Асинхронный двигатель переменного тока

Трансформаторы

Преобразователи переменного / постоянного тока

Как работают батареи

Яркость лампы

Падение напряжения (В)

Первая лампочка

Вторая лампа

Яркость лампы

Падение напряжения (В)

Первая лампочка

Вторая лампа

Яркость лампы

Падение напряжения (В)

Длина провода в бухте (см)

10

20

30

40

50

Макс. нет. скрепок

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *