Минимальная температура теплоносителя в системе отопления: Нормы температуры теплоносителей | Статьи и обзоры «Техноформ»

Содержание

Температура теплоносителя в зависимости от наружной температуры

Температура воды в отопительной системе зависит от температуры воздуха на улице и поддерживается в ней по специальному температурному графику, который рассчитывается специалистами для разных источников теплоснабжения по разному, в зависимости от местных погодных условий.

Данные графики разрабатываются таким образом, чтобы в холодное время года в жилых помещениях поддерживалась комфортная для человека температура, приблизительно 20-22 0С.

Дорогие читатели! Наши статьи рассказывают о типовых способах решения юридических вопросов, но каждый случай носит уникальный характер.

Если вы хотите узнать, как решить именно Вашу проблему — обращайтесь в форму онлайн-консультанта справа. Это быстро и бесплатно! Или позвоните нам по телефонам:

+7 (499) 703-47-59
Москва, Московская область

+7 (812) 309-16-93
Санкт-Петербург, Ленинградская область

8 (800) 511-69-42
Федеральный номер (звонок бесплатный для всех регионов России)!

Температура теплоносителя в системе отопления: нормы

Как уже говорилось, график температур напрямую зависит от температуры воздуха снаружи. Соответственно, чем ниже температура воздуха, тем больше потерь тепла.

Возникает вопрос, какой показатель температуры нужно применять в расчете? Данный показатель уже выведен, и его можно найти в нормативных документах.

В его основе лежит средняя температура пяти самых холодных дней в году. При этом берется период 50 лет, и выбираются 8 самых холодных зим.

По какой причине именно так рассчитывается среднедневная температура?

В первую очередь, это дает возможность быть готовым к низким температурам в зимнее время года, которые бывают один раз за несколько лет.

Также, принимая во внимание этот показатель, можно значительно сэкономить на затратах при создании отопительных систем. Если рассматривать это в объемах массового строительства, то сумма, которую можно сэкономить, будет значительной.

Конечно же, температура отапливаемого помещения будет зависеть от того, какая температура у теплоносителя.

Существует еще несколько факторов, которые также влияют на температуру в помещениях:

  • Чем ниже температура воздуха снаружи, тем она ниже и в помещении;
  • Также на температуру влияет скорость ветра. Чем сильнее ветровые нагрузки, тем больше увеличиваются теплопотери через оконные рамы, входные двери;
  • Насколько герметично заделаны стыки в стенах дома. Например, утепление фасадных стен дома или металлопластиковые окна — это те факторы, которые повлияют на температуру внутри помещения.

На сегодняшний день изменились строительные нормы. Строительные компании увеличивают стоимость своих объектов за счет теплоизоляционных работ, таких как утепление фасадной части дома, подвальных помещений, фундамента, крыши и кровли.

Затраты на утепление дома довольно велики, но это является гарантией того, что в дальнейшем вы будете экономить на отоплении, т. к. данные меры влияют на снижение затрат на покупку топлива.

Насколько это актуально на сегодняшний момент? Безусловно, именно по этой причине, строительные компании идут на увеличение стоимости постройки домов, зная, что меры по утеплению дома, со временем, окупятся с лихвой.

Температура радиаторов

Все о чем говорилось выше, безусловно, важно. Но главное, что влияет на температуру в помещениях – это температура радиаторных батарей. Как правило, температура в центральных системах отопления колеблется от 70 до 90 градусов.

Всем известно, что нужного температурного режима внутри помещения, лишь этим критерием, добиться невозможно, учитывая еще и то, что во всех комнатах температура должна быть разной, т. к. каждое помещение имеет свое предназначение:

  • Если комната угловая, то температурный режим не должен опускаться ниже + 20 0С, а в других комнатах является нормой температура не ниже +18 0С, в душевой комнате не ниже +25 0С. Если температура на улице опустится до -300С или ниже, то все указанные выше показатели повысятся до +22 0С и 20 0С соответственно;
  • В помещениях, предназначенных для детей – от +18 0С до +230С. Но и тут температурный режим зависит от того, для чего это помещение предназначено. В бассейнах – не ниже +300С, а на верандах для прогулки – не ниже +120С;
  • В детских школах — не ниже 210С, а в спальнях интернатов – не ниже 160С;
  • В культурно массовых заведениях температура колеблется от 160С до 210С. Для библиотек – до 180С.

Нормы температурных режимов утверждены для всех помещений в зависимости от того, какое у них предназначение. Выше указана лишь малая часть из огромного перечня.

На норму температурного режима в комнате влияет то, как интенсивно человек двигается внутри нее. Чем меньше движений совершает человек, тем температура в комнате должна быть выше.

На этом основывается распределение тепла. Как доказательство – в спортивных учреждениях, где человек находится в движении, поддерживать на высоком уровне температуру не целесообразно, по этой причине, температурный показатель там не выше +180С.

Факторы, влияющие на температуру батарей:

  • Температура за пределами помещения;
  • Вид отопительной системы. Для однотрубной системы, нормой температурного показателя является +1050С, а для двухтрубной +950С. Разница температур в системе подачи и отвода не должна быть выше 105-700С и 95-700С соответственно;
  • Направленность поступления теплоносителя на радиаторные батареи. Если разводка сверху, тогда разница составляет 20С, а если разводка снизу, тогда 30С;
  • Вид отопительного прибора. У радиаторов и конвекторов разная теплоотдача, а значит, отличается и температурный режим. У радиаторов теплоотдача выше, чем у конвекторов.

Но все равно, все понимают, что теплоотдача, будь то радиатор или конвектор, будет зависеть от температуры на улице.

Если на улице 0 0С, тогда температурный режим для радиаторов должен колебаться в приделах 40-45 0С при подаче и 35-380С при обратке. Что касается конвекторов, то температура при подаче – 41-490С, а при обратке 36-400С.

При морозе в -200С, эти данные для радиаторов будут составлять 67-770С и 53-550С соответственно, а для конвекторов– 68-790С/55-570С соответственно. А уже при 40 градусном морозе, что для конвекторов, что для радиаторов, это данные стандартны – 95-105 на подаче горячей воды и 700С на обработке.

Температурный график подачи теплоносителя в систему отопления

В зависимости от температуры на улице, рассчитываются значения температуры теплоносителя и имеют такие значения (данные показатели температуры округлены для удобства):

Температурные показатели воздуха снаружи, °СТемпературные показатели воды на входе, °СТемпературные показатели воды отопительной системе, °СТемпературные показатели воды после отопительной системы, °С
8525145424034
7555147444135
6575349454336
5595550474437
4615752484538
3645954504739
2666156514840
1696357535041
0716559555142
-1736761565243
-2766962585444
-3787164595545
-4807366615645
-5827567625746
-6857769645947
-7877971656048
-8898072666149
-9928274686349
-10948675696450
-11968677716551
-12988879726652
-131019080746853
-141039282756954
-151059383767054
-161079585787155
-171099786797256
-181129988817456
-1911410190827557
-2011610291837658
-2111810493857759
-2212010694887859
-2312310896878060
-2412510997898161
-2512811298908262
-2612811299918362
-27130114101928463
-28134116103948664
-29136118105968764
-30138120106978867
-31140122108988966
-321421231091009366
-331441251111019167
-341461271121029268
-351491291141049469

Используя табличные данные, можно с легкостью узнать температурные показатели воды в системе панельного отопления.

Для этого вам нужно замерить обычным градусником часть теплоносителя в момент спуска из системы. Данными в 5 и 6 столбцах пользуются для прямой ветки, а 7 столбцом – для обратки.

Стоит обратить внимание, что первые три столбца указывают температуру воды на вводе, то есть не учитываются потери в теплотрассах.

Основанием для перерасчета за услуги централизованного теплоснабжения является несоответствие фактической температуры теплоносителя нормативной.

Также можно еще установить прибор учета тепла, при условии, что все квартиры в доме подключены к системе централизованного отопления. Такие приборы учета необходимо проверять ежегодно.

Дорогие читатели! Наши статьи рассказывают о типовых способах решения юридических вопросов, но каждый случай носит уникальный характер.

Если вы хотите узнать, как решить именно Вашу проблему — обращайтесь в форму онлайн-консультанта справа. Это быстро и бесплатно! Или позвоните нам по телефонам:

+7 (499) 703-47-59
Москва, Московская область

+7 (812) 309-16-93
Санкт-Петербург, Ленинградская область

8 (800) 511-69-42
Федеральный номер (звонок бесплатный для всех регионов России)!

Норма температуры батарей отопления в квартире в 2018-2019 годах

Отопительный сезон наступил, суммы в квитанциях растут, а батареи теплеют. Но во многих квартирах по-прежнему холодно. Это одна из самых болезненных тем — услуга дорогая, и жильцы готовы действовать при малейшем сомнении. Специальные документы четко определяют температуру батарей отопления в квартире и нормы температур воздуха в разных помещениях.

Температура батарей в квартире: нормы по ГОСТу

В первую очередь температура в квартире многоквартирного дома зависит от температуры батарей. Она определяется с помощью специальных расчетов. Температурные графики, определяющие степень ее нагрева, строятся из сопоставления температуры теплоносителя в радиаторах и температуры окружающей среды.

В них рассчитывается, какая температура должна быть в трубах подачи воды и в «обратке» — том, что радиатор в квартире отдает обратно. Температура воды в системе отопления зависит от того, холодно или тепло на улице. С учетом местных условий, графики могут отличаться, но все они исходят из требований, чтобы в холодный период года в жилых комнатах поддерживалась оптимальная температура — 20 – 22°С (об этом мы еще поговорим).

В большинстве городов приняты такие графики

* от крупных ТЭЦ: 150/70°С, 130/70°С или 105/70°С;

* от котельных и небольших ТЭЦ: 105/70°С или 95/70°С.

При расчетах графика учитываются также потери тепла, то есть снижение температуры воды по пути от источника теплоснабжения до жилого дома.

Температурный график соотношения отопления к температуре окружающей среды.

Например, при температуре минус 10°С, температура воды на «обратке» должна быть не менее 51,4 градусов. Это не зависит от того, на каком этаже проводятся измерения — на первом или девятом.

Сначала теплоноситель попадает в устройство смешения — элеватор или насос — и только после этого поступает в радиатор в квартире. Таким образом, температура батарей отопления в квартире, норма подачи, при минус 40°С за окном, будет плюс 95°С — больше нельзя, так как теплоноситель может закипеть.

Есть свои отличия в каждом регионе, но ориентироваться на эти цифры можно — они являются стандартом. Конкретно ваш температурный график утверждается руководителем ресурсоснабжающей организации.

Но все-таки куда важнее не температура батареи, а конечный результат — тепло в квартире. Именно его должны обеспечивать управляющие компании.

В каких случаях исполнитель коммунальной услуги по отоплению производит потребителю перерасчет платы за такую услугу, если температура в помещении потребителя ниже нормативной?

Как рассчитывается отопление в квартире

Есть два вида платы за отопление: только в течение отопительного сезона или равномерно, в течение всего года. Конкретный вариант зависит от региона: правом изменять метод обладают региональные власти. Они могут делать это раз в год, причем обязательно до начала отопительного сезона. Каждое такое решение должно быть опубликовано на официальном сайте в течение пяти дней.

Например, в Москве такой документ — постановление городского правительства № 629-ПП от 29.09.2016.

Управляющая компания использует один из этих двух вариантов в каждом конкретном доме, в соответствии с принятыми нормами в регионе.

Если региональные власти принимают решение о смене метода и публикуют его, то эта схема начинает работать с июля следующего года, если выбран вид равномерной оплаты, или с начала следующего отопительного сезона в случае оплаты только в сезон.

Расчет за отопление в большинстве многоквартирных домов делается по показаниям общедомового прибора учета. В регионах утверждается стоимость одной Гкал, и на ее основе рассчитывается общая сумма оплаты для дома. Если отдельные квартиры оборудованы индивидуальными счетчиками тепла, расчет основывается на них.

Но, к сожалению, индивидуальных счетчиков у нас пока мало — в старых домах, оборудовать такую систему сложно. Счетчики должны стоять во всех помещениях дома, нельзя поставить его в одну квартиру в доме. В новостройках эту проблему решают, заранее предусматривая установку ИПУ тепла.

Но для большинства способ расчета платы за отопление выглядит так: общая сумма на дом делится между помещениями, в зависимости от их площади. Это логично, так как количество тепла напрямую зависит от объема обогреваемого воздуха.

Однако для такого расчета нужен общедомовой счетчик, а это тоже бывает не всегда. Там, где нет общих счетчиков тепла, оплата рассчитывается по региональным нормативам.

Чаще всего жильцы жалуются на управляющую компанию именно из-за нарушений в начислениях на теплоснабжение, ведь в большинстве случаев это самая большая сумма в квитанции, и потребители внимательно следят за тем, как она соотносится с реальным теплом в их квартирах. Любая ошибка — это повод для жалоб и обращений в контролирующие органы. В новостях часто появляется информация об очередном случае, в котором жителям многоквартирных домов возвращают излишне уплаченные ими деньги. Управляющей компании придется не только вернуть лишнее, но и выплатить штраф и пережить проверку, которая обязательно за этим последует.

Срок отопительного сезона

Самостоятельно решать, когда включать батареи, могут только жильцы домов с автономной системой отопления. Все остальные, подключенные к централизованной системе отопления, должны полагаться на решение органов местного самоуправления.

Конечно, они не могут настроить это так же точно, как жильцы одного дома — недаром каждую весну и осень все новостные сайт заполняются статьями «Когда наконец включат/выключат отопление?»

Конкретные сроки в каждом регионе зависят от погодных условий: по нормативам, в отопительный период 2018-2019 года нужно, чтобы среднесуточная уличная температура была ниже 8°C в течение 5 дней подряд. Отопление снова могут отключить, если температура будет выше 8°C также в течение 5 дней.

Кроме этого, есть и небольшой «аварийный запас» по нормам отключения отопления зимой. Его могут отключать, оставаясь в рамках действующих норм, на срок не более 24 часов в сумме, в течение одного месяц. Единовременно отопление могут отключить на срок от 4 до 16 часов, в зависимости от температуры воздуха в жилых помещениях – если в квартире +12°C, на срок не более 16 часов, а если +8 — до 4 часов.

Как измерять температуру в квартире в отопительный сезон

Жильцы могут измерить температуру самостоятельно, бытовым термометром. Нужно соблюсти несложные требования: проверить, нет ли сквозняков, хорошо ли закрыты окна и межкомнатные двери. Температуру следует измерять в метре от радиаторов, стоящих на «уличной» стене, на высоте одного метра от пола.

Лучше это делать вечером или утром — днем солнце, нагревшее комнату, может сильно смазать картину.

Оптимальная температура, которая должна быть в квартире — 20-22 °C.

В ГОСТе прописаны и более подробные нормативы отопления в квартире 2018 года:

* Тип помещения Оптимально, °C Допустимо, °C

* Жилая комната 20-22 / 18

* Кухня 22-23 / 20

* Туалет 19-21 / 18

* Ванная и совмещенный санузел 24-26 / 18

* Помещения для отдыха и учебных занятий 20-22 / 18

* Межквартирный коридор 18-20 / 16

* Вестибюль, лестничная клетка 16-18 / 12

* Кладовые 16-18 / 14

Причем в угловых комнатах температура должна быть выше — минимум 20°C.

Куда обращаться, если температура ниже нормы

Если жильцы самостоятельно фиксирует «недогрев», то есть температура опускается ниже 18°C в жилых комнатах — они имеют право обратиться в управляющую компанию для составления акта. Причем они имеют право обращаться как в письменной форме (написать заявление), так и в устной (позвонить). Дежурный должен зарегистрировать обращение и назначить время проведения проверки. По правилам, проверка назначается не позднее 2 часов с момента обращения о нарушении качества коммунальной услуги, если с обратившимся не согласовано другое время.

Проверка должна проводиться специальным термометром. Требования к нему разъясняются в ГОСТ 30494-2011. Прибор должен быть обязательно с технической документацией — иметь специальный сертификат, который проверяющие обязаны предъявить по первому требованию. Если такого сертификата нет, то владелец квартиры может отказаться от проверки и требовать использования надлежащего оборудования. Температура замеряется в нескольких комнатах.

После проверки составляется акт, который содержит:

* дату;

* параметры жилья;

* список членов комиссии;

* показатели прибора;

* температуру;

* подписи членов комиссии.

Акт составляется в нескольких экземплярах: один остается у обратившегося, другие — у специалистов, проводивших проверку.

Скачать Акт замера температуры

Этот акт — свидетельство нарушений в предоставлении коммунальной услуги. С ним жилец может подавать жалобы и требовать у управляющей компании соблюдения условий оказания коммунальных услуг.

Жалоба в адрес исполнителя коммунальных услуг может содержать требование перерасчета платы за отопление, возмещения вреда или даже требование поставить дополнительные радиаторы отопления — бывают и такие случаи, недавно жителю Твери удалось добиться установки в квартире дополнительных батарей.

Скачать образец жалобы

При подаче жалобы в двух экземплярах, сопровождаемой актом, на одном проставляются входящие номер и дата, второй передается секретарю организации.

Если у обратившегося нет отопления в квартире и после жалобы, он имеет право переадресовать ее в вышестоящие инстанции:

* Региональную жилищную инспекцию;

* Прокуратуру;

* Роспотребнадзор.

Важно помнить, что обращение в вышестоящие инстанции может осуществляться не только после рассмотрения претензии в первичной инстанции. На этом этапе документ может быть отправлен по нескольким адреса параллельно. Кроме этого, имея акт, жилец может обратиться в суд с требованием о возмещении понесенных затрат и компенсации ущерба.

Источник информации: https://www.gkh.ru/article/102625?utm_source=www.gkh.ru&utm_medium=refer&utm_campaign=Rubrcontentblock_articles

#КУ #ИПУ #Жилоепомещение #Правасобственников

Какую температуру выставлять на котле для отопления и горячей воды?

С наступлением холодов на тематических форумах все чаще появляется вопрос, какую температуру выставлять на котле отопления. Ведь владельцы хотят добиться комфортной температуры в жилье, но при этом не платить лишнего за отопление. Конечно же, здесь нет каких-то точных значений, но мы постараемся дать общие рекомендации.

Сразу же скажем, что температурный режим будет зависеть от погодных условий на улице, качества утепления дома, типа и качества окон в доме, а также ряда других объективных факторов, которые нужно учитывать. Поэтому утверждать, что все наши рекомендации подойдут лично вам, мы не можем. Тем не менее, мы должны ими поделиться.

Какую температуру ставить в котле отопления: низкие и высокие значения

Поделимся своим опытом относительно разных температурных режимов.

  1. 40 градусов. Такой режим часто оказывается экономически невыгодным. При такой температуре газовый котел вполне может недогревать до полградуса. Из-за этого циркуляционный насос и нагрев не отключаются. Соответственно, расход газа только увеличивается. В некоторых моделях котлов расход может быть даже выше, чем при установленной температуре 70°С. Кроме того, от такого температурного режима лучше отказаться еще и в случаях нестабильной работы электросети. Теплоноситель за короткое время остынет, в помещении станет холодно уже через несколько часов.
  2. 50 градусов. Большинство тестов показывает, что при установке этой температуры расход газа самый низкий. Однако циркуляционный насос работает довольно долго, что повышает расходы на электричество. Плюс в случае перебоев электросети батареи немного дольше сохраняют тепло. При общих подсчетах такой режим работы системы менее экономичен, чем следующий.
  3. 60 градусов. Это по праву самый экономичный режим. Газа требуется больше, чем при режиме 50 градусов, но заметно снижаются расходы электричества. Суммарные расходы оказываются ниже. Да и помещение обогревается лучше.
  4. 70 градусов. В таком режиме электроэнергия тратится меньше, но расход газа увеличивается. Но более важная проблема в том, что с некоторыми моделями котлов при таком режиме работы возможны скачки температуры воздуха в помещении. Они могут быть как практически незаметными, так и довольно ощутимыми. Дело в том, что радиаторы продолжают сильно греть помещения даже после отключения нагрева в котле, затем остывают, потом вновь сильно разогреваются.

Устанавливать еще более высокую температуру не стоит, если только вы не живете в холодных северных регионах. И причин тому несколько. Главная – в доме просто не нужны такие высокие температуры. И даже если нужно максимально обогреть помещения, лучше устанавливать температуру ниже. При слишком высоких значениях появляется неприятный запах паленой пыли с батарей, полипропиленовые трубы изнашиваются быстрее.

Так какая температура должна быть на котле отопления? Мы рекомендуем около 60-65 градусов, если температура на улице не ниже -10°С. Если ниже, можно увеличить мощность. Если на улице около нуля, больше 50-55 градусов не понадобится.

Какая температура на котле оптимальна для отопления без разницы температур в помещениях?

Часто владельцу жилья важнее не экономия, а равномерный обогрев всех помещений в доме. Котел работает постоянно, не допуская снижения температуры ниже выбранного значения. Конечно, электричества для такого режима нужно больше, но вот на газе можно сэкономить.

40 градусов для комфортного и равномерного обогрева не всегда достаточно. При таком режиме дом будет прогреваться в среднем на 20-20,5 градусов при температуре на улице не ниже -9°С. Если двадцати градусов в помещении вам недостаточно, можно установить 45-50 градусов на котле.

Обратите внимание! Многие говорят, что если установлена температура работы котла меньше 70 градусов, это провоцирует образование конденсата в котле, что вредно для системы. Однако и слишком высокие значения могут со временем портить оборудование. Те же полипропиленовые трубы, о которых мы уже говорили. Потому решая, какую температуру горячей воды выставить на котле, обязательно узнавайте, что по этому поводу говорит производитель конкретной модели. Возможно, им установлена четкая норма.

Какая должна быть температура нагрева котла по актуальным нормам?

В России действует ГОСТ Р 51617-2000, согласно которому норма температуры воздуха в жилых помещениях в отопительный сезон должна быть в пределах 18-25 градусов Цельсия. Соответственно, вы можете попробовать несколько режимов работы котла, изменяя показатель температуры, чтобы выбрать наиболее подходящий.

Рекомендуем не допускать частых и заметных изменений температурного режима. Это плохо сказывается на здоровье и может нарушить работу котельного оборудования. Если вы при этом хотите немного сэкономить, можно поставить комнатный термостат с возможностью настройки графика работы. Например, установить, чтобы в ночное время максимальная температура в помещении не превышала 18-20 градусов, а под утро воздух прогревался сильнее. Регулируя подачу газа, можно неплохо сэкономить за отопительный сезон, не пожертвовав комфортом.

Оптимальную температуру для себя можно подобрать методом проб – просто определите, при каком режиме работы вам комфортно и расходы топлива наиболее рациональные. Также можно получить консультацию у представителя компании-производителя. Или у специалистов «Профтепло». Мы не только продаем и устанавливаем котельное оборудование в Калуге и области, но и можем дать рекомендации по работе с разными видами котлов. Чтобы получить консультацию, обратитесь к менеджеру «Профтепло» по номеру телефона +7 (4842) 75 02 04.

норма обогрева радиаторов для квартиры в Москве

Радиатор — исключительно важный элемент в отопительной системе. Комфорт пребывания жильцов дома зависит от температуры в квартире, регулируемой теплосетями. К сожалению, часто приходится сталкиваться с тем, что температура в батарее не соответствует установленным стандартам. В таком случае важно знать, какая норма температуры воды в батарее отопления на территории РФ, как измерить уровень отопления и как можно самостоятельно отрегулировать подачу тепла.

Когда включают отопление

Содержание статьи

Согласно Постановлению Правительства РФ от 06.05.2011 N 354, отопительный сезон начитается после того, как среднесуточная температура воздуха на улице опустится ниже +8 °С и будет такой на протяжении пяти суток непрерывно. При других условиях начало отопительного сезона может быть отложено.

Следует обратить внимание, что подача отопления начнется лишь на 6-ой день описанных температурных показателей.

На большей части Российской Федерации тепло начинает поступать в квартиру 15 октября, а перестает 15 апреля.

Какая температура должна быть в батареях

В вопросе равномерного распределения тепла в многоквартирном доме исключительно важную роль играют правила установки радиаторов. Если они не были соблюдены, то уровень нагрева в разных квартирах может существенно отличаться. Чтобы не допустить подобного, разработаны нормативы.

Нормы

Согласно постановлению Федерального агентства по строительству и жилищно-коммунальному хозяйству №170 от 27 сентября 2003 года, установлены следующие нормы обогрева радиаторов при подаче воды снизу вверх. Данные нормативы температуры батарей отопления в квартире действуют в городе Москва и на всей остальной территории России.

Для каждой комнаты в квартире, расположенной в многоквартирном строении, имеются свои нормы отопления:

  • жилая комната — +18 °С;
  • угловая квартира — +20 °С;
  • кухня — +18 °С;
  • ванная комната — +25 °С.

Для общедомовых помещений другие нормы:

  • подъезд — +16 °С;
  • лифт — +5 °С ;
  • подвал и чердак — +4 °С.

Замеры производятся на внутренней стене помещения, на расстоянии не меньше 1 метра от наиболее близко расположенной наружной стены и 1,5 метра от пола. В случае отклонения от нормы, можно обратиться в управление теплосети.

Минимальные показатели

Минимальной нормы уровня отопления секций радиатора не существует, по этой причине за ориентир необходимо брать температуру воздуха в помещении, которая должна быть от +18 °С до +25 °С.

Зачастую даже после подачи отопления, воздух в помещении остается холодным, особенно значимо это в период холодной зимы. Одной из причин подобной ситуации может быть наличие воздуха в системе. Чтобы устранить проблему, можно воспользоваться краном Маевского или вызвать мастера.

Цены на краны Маевского

кран маевского

 

Максимальные показатели

Максимальная температура отопительного прибора зафиксирована в СНиП 41-01 от 2003 года.

В документе указаны нормы для внутриквартирных элементов системы отопления:

  • при двухтрубной отопительной системе максимальной будет отметка в +95 °С;
  • для однотрубной системы температурный максимум — +115 °С;
  • оптимальным значением является температура от +85 °С до +90 °С. Нельзя допускать нагрева до +100 °С, т. к. это температура закипания воды, требующая принятия особых мер.

Не стоит постоянно эксплуатировать радиаторы на максимальном температурном пороге: подобные действия приводят к скорой поломке изделия.

Как измерить температуру

Если вы сомневаетесь в добросовестном исполнении своих обязанностей сотрудниками теплосетей, или воздух в вашей квартире недостаточно прогревается, можно самостоятельно произвести замер.

Есть несколько способов:

  • с помощью обычного медицинского градусника, но способ этот не точный: к результату нужно прибавить 1 или 2 °С;
  • использовать инфракрасный термометр, погрешность может быть до 0,5 °С;
  • можно измерить спиртовым термометром, закрытым теплоизолирующей тканью, и примотав его к радиатору;
  • воду из батареи можно набрать в стакан и поместить туда термометр.

В случае отклонения от нормы, нужно отправить заявку в управление теплосетей. После рассмотрения заявления приходит комиссия, которая произведет необходимые измерения и вычисления.

Причины, из-за которых отсутствует тепло к квартире

К сожалению, подача тепла не всегда бывает ровно в срок, как и не всегда длиться без каких-либо заминок и прерываний.

Могут произойти ситуации, возникновение которых приводит к отсутствию теплоснабжения в многоквартирном доме:

  • воздух в трубах;
  • ремонтные работы;
  • поломка в системе отопления.

В первом случае проблему исправит вызов специалиста, который «продует» трубы. В двух других придется ждать устранения текущих неполадок.

В каких случаях подача тепла прерывается

Как было сказано ранее, если на теплотрассе или в системе отопления произошла авария, то радиаторы могут стать холодными на определенное время.

Подача тепла законно может быть приостановлена на следующие сроки:

  • до 24 часов. Минимальная температура в квартире при этом +12 °С;
  • до 8 часов. При температуре воздуха в доме от +10 °С до +12 °С;
  • до 4 часов. В случае снижения температуры до +8 °С.

Промежутки отсутствия тепла в доме должны быть указаны в квитанции. При обнаружении превышения допустимых сроков можно подать жалобу в ответственную организацию.

Что делать, если батареи плохо греют

Если установленные нормы на подачу тепла квартиры не соблюдены, необходимо установить по какой причине возникла данная ситуация. Чтобы это сделать, целесообразно будет пригласить представителей соответствующей службы.

К кому обращаться

Зная нормативную температуру теплоносителя в жилом помещении и сроки подачи отопления, владелец квартиры в состоянии сам определить соответствие установленным стандартам и предпринять меры.

После подачи заявки от собственника в квартиру должен прийти представитель управляющей компании или коммунальной службы. Он производит замер уровня тепла и вносит значения в акт, по которому в дальнейшем будет принято решение об устранении неполадок.

Также на основании акта принимается решение о перерасчете, который проводится в случае установленной температуры воздуха ниже +18 °С. Соответствующая коммунальная служба должна уменьшить плату за отопление на 0,15% за каждый час.

По закону любое заявление от владельца квартиры должно быть рассмотрено в кратчайшие сроки.

Если от управляющей компании не последовало действий, жилец имеет право обратиться в следующие организации:

  1. В жилищную инспекцию. Она контролирует исполнение жилищного законодательства. Подать претензию можно лично в организацию, отправить заказным письмом или в электронном виде.
  2. В Роспотребнадзор. Стоит обращаться, если при взимании полной платы, услуга оказана не в полном объеме. Жалоба подается на официальном сайте, лично при обращении или почтой.
  3. В Прокуратуру . На основании выявленных нарушений прокурор выпишет предписание об устранении такового или обратиться в суд за защитой интересов лица.
  4. В суд. Это последняя инстанция, способная разрешить проблемы собственника жилья. Суд может обязать соответствующую организацию устранить неполадки и произвести перерасчет платы за услугу теплоснабжения.

Как отрегулировать и увеличить степень нагрева

Степень нагрева радиатора зависит от воды внутри него и от объема поступающей жидкости. Поскольку первое — это прерогатива служб, отвечающих за центральное отопление, то самостоятельно регулировать нагрев можно изменением количества воды в приборе.

Наиболее часто регуляторы устанавливается в комнатах с частой сменой температуры, к примеру, на кухне. Но не лишними они будут и в помещениях, где требуется постоянный уровень тепла, например, в спальне.

Изменить уровень с помощью специальных приборов возможно не везде: регулировка радиаторов в доме, где подача жидкости в отопительной системе осуществляется сверху вниз, невозможна.

Для настройки мощности обычно используют следующие приспособления:

  1. Запорные краны. Самое простое устройство, имеющее лишь два положения: открыто и закрыто. В первом случае поступление жидкости полностью блокируется, во втором — в радиатор поступает максимальное количество. Запорный кран не позволяет поддерживать постоянную температуру в помещении, что является минусом использования приспособления.
  2. Ручной вентиль. Подобные приборы могут изменять количество жидкости в батарее, с помощью регулировки диаметра проходного отверстия. Вентиль оснащен шкалой на рукоятке, что позволяет выставить необходимый уровень отопления. Они просты в использовании и доступны по цене.
  3. Автоматические терморегуляторы. Современный тип регулятора, оснащенный температурным датчиком, который меняет диаметр проходного клапана.

Автоматические терморегуляторы в свою очередь делятся на:

  1. Термостатические. Оборудованы термостатической головкой, которая управляет их работой. Чтобы установить постоянную температуру, достаточно переместить рукоятку на соответствующее значение шкалы.
  2. Электронные. В конструкцию терморегулятора входит микропроцессорная схема, а также панель с электронным дисплеем и кнопками. Перемещение запорной головки осуществляется при помощи механического реле с электрическим приводом, что дает возможность максимально точно сохранять заданный уровень тепла. Такой прибор можно запрограммировать на подходящую степень нагрева в различное время дня.

Перечисленные приборы регулировки способны уменьшить мощность нагрева радиатора.

Если вашей целью является ее повышение, вам следует воспользоваться одним из предложенных способов:

  • прочистка труб и фильтров, избавление батареи от воздушных пробок;
  • установка большего количества секций и большего количества радиаторов;
  • смена подключения отопительных элементов с нижнего на диагональное;
  • установка ТЭНа. Можно ли положить теплый пол под линолеум читайте у нас на сайте.

Видео

Из этого видео вы узнаете, как установить терморегулятор для радиатора отопления.

Температурный график системы отопления: нормы, таблицы, работа теплосетей

Для поддержания комфортной температуры в доме в отопительный период необходимо контролировать температуру теплоносителя в трубах тепловых сетей. Работниками системы центрального теплоснабжения жилых помещений разрабатывается специальный температурный график, который зависит от погодных показателей, климатических особенностей региона. Температурный график может отличаться в разных населенных пунктах, также он может меняться при модернизации сетей отопления.

Зависимость температуры теплоносителя от погоды

Составляется график в тепловой сети по простому принципу – чем ниже температура на улице, тем выше должна быть она у теплоносителя.

Такое соотношение является важным основанием для работы предприятий, которые обеспечивают город теплом.

Для расчета был применен показатель, в основе которого лежит среднедневная температура пяти наиболее холодных дней в году.

ВНИМАНИЕ! Соблюдение температурного режима является важным не только для поддержания тепла в многоквартирном доме. Он также позволяет сделать расход энергоресурсов в системе отопления экономичным, рациональным.

График, в котором указывается температура теплоносителя в зависимости от наружной температуры, позволяет самым оптимальным образом распределить между потребителями многоквартирного дома не только тепло, но и горячую воду.

Как регулируется тепло в системе отопления

Регулирование тепла в многоквартирном доме в отопительный период может осуществляться двумя методами:

  • Изменением расхода воды определенной постоянной температуры. Это количественный метод.
  • Изменением температуры теплоносителя при постоянном объеме расхода. Это качественный метод.

Экономным и практичным является второй вариант, при котором соблюдается режим температуры в помещении независимо от погоды. Подача достаточного тепла в многоквартирный дом будет стабильной, даже если отмечается резкий перепад температур на улице.

ВНИМАНИЕ!. Нормой считается температура 20-22 градуса в квартире. Если температурные графики соблюдаются, такая норма поддерживается весь отопительный период, независимо от погодных условий, направления ветра.

При понижении температурного показателя на улице осуществляется передача данных на котельную и автоматически увеличивается градус теплоносителя.

Конкретная таблица соотношения показателей температуры на улице и теплоносителя зависит от таких факторов, как климат, оборудования котельных, технико-экономических показателей.

Причины использования температурного графика

Основой работы каждой котельной, обслуживающей жилые, административные и другие здания, на протяжении отопительного периода является температурный график, в котором указываются нормативы показателей теплоносителя в зависимости от того, какой является фактическая наружная температура.

  • Составление графика дает возможность подготовить отопление к понижению температуры на улице.
  • Также это экономия энергоресурсов.

ВНИМАНИЕ! Для того, чтобы контролировать температуру теплоносителя и иметь право на перерасчет из-за несоблюдения теплового режима, теплодатчик должен быть установлен в систему централизованного отопления. Приборы учета должны проходить ежегодную проверку.

Современные строительные компании могут увеличивать стоимость жилья за счет использования дорогих энергосберегающих технологий при возведении многоквартирных зданий.

Несмотря на изменение строительных технологий, применение новых материалов для утепления стен и других поверхностей здания, соблюдение в системе отопления нормы температуры теплоносителя – оптимальный способ поддержать комфортные жилищные условия.

Особенности расчета внутренней температуры в разных помещениях

Правила предусматривают поддержание температуры для жилого помещения на уровне 18˚С, но существуют некоторые нюансы в этом вопросе.

  • Для угловой комнаты жилого здания теплоноситель должен обеспечить температуру 20˚С.
  • Оптимальный температурный показатель для ванной комнаты — 25˚С.
  • Важно знать, сколько градусов должно быть по нормативам в помещениях, предназначенных для детей. Установлен показатель от 18˚С до 23˚С. Если же это детский бассейн, нужно поддерживать температуру на уровне 30˚С.
  • Минимальная температура, допустимая в школах — 21˚С.
  • В заведениях, где проходят культурно-массовые мероприятия по нормативам поддерживается максимальная температура 21˚С, но показатель не должен опускаться ниже цифры 16˚С.

Для увеличения температуры в помещениях при резких похолоданиях или сильном северном ветре, работники котельной повышают градус отпуска энергии для отопительных сетей.

На теплоотдачу батарей влияет наружная температура, вид отопительной системы, направленность поступления теплоносителя, состояние коммунальных сетей, тип отопительного прибора, роль которого может выполнять как радиатор, так и конвектор.

ВНИМАНИЕ! Дельта температур между подачей на радиатор и обраткой не должна быть значительной. В противном случае будет ощущаться большая разница теплоносителя в разных комнатах и даже квартирах многоэтажного здания.

Главным фактором, все же, является погода, вот почему измерения наружного воздуха для поддержания температурного графика является первоочередной задачей.

Если на улице мороз до 20˚С, теплоноситель в радиаторе должен иметь показатель 67-77˚С, при этом норма для обратки 70˚С.

Если уличная температура нулевая, норма для теплоносителя 40-45˚С, а для обратки – 35-38˚С. Стоит отметить, что разница температур между подачей и обраткой не является большой.

Для чего потребителю нужно знать нормы подачи теплоносителя?

Оплата коммунальных услуг в графе отопление должна зависеть от того, какую температуру в квартире обеспечивает поставщик.

Таблица температурного графика, по которой должна осуществляться оптимальная работа котла, показывает, при какой температуре окружающего мира и на сколько котельная должна повышать градус энергии для источников тепла в доме.

ВАЖНО! Если параметры температурного графика не соблюдаются, потребитель может требовать перерасчет за коммунальные услуги.

Чтобы измерить показатель теплоносителя, необходимо слить немного воды с радиатора и проверить ее градус тепла. Также успешно используются тепловые датчики, приборы учета тепла, которые можно установить дома.

Датчик является обязательным оборудованием и городских котельных, и ИТП (индивидуальных тепловых пунктов).

Без таких приборов невозможно сделать работу отопительной системы экономичной и продуктивной. Измерение теплоносителя осуществляется и в системах Гвс.

Полезное видео

В данном видео даны несколько рекомендаций по созданию комфортной температуры в квартире.

Регулирование температуры в системе отопления

Регулирование системы отопления подразумевает приведение процесса потребления тепловой энергии в соответствие с реальными потребностями в ней. Простой пример: чем холоднее на улице, тем интенсивнее должна работать отопительная система и, наоборот, при повышении температуры воздуха в доме выше предельного значения, температура теплоносителя в приборах отопления должна снижаться.

Самый простой способ регулирования системы отопления состоит в ручном управлении работой котла и отопительных приборов: жарко в доме, можно перекрыть вентиль подачи теплоносителя в прибор отопления, в результате чего обратная вода вернется в котел горячей, что приведет к отключению котла или к уменьшению расхода топлива.

Еще более простой способ регулирования системы отопления состоит во временном отключении котла и включении его в работу при снижении температуры в помещении. На сегодняшний день подобное «ручное управление» устарело и вести о нем речь можно только применительно к приборам отопления, не имеющим систем автоматического контроля, например, к дровяным печам или к некоторым видам дровяных котлов отопления.

Современные системы регулирования отопления решают одновременно две задачи:

  • позволяют создать действительно комфортные условия в доме, поддерживая в нем заданный уровень температуры

  • оптимизируют расход топлива, и, как следствие, снижают затраты на отопление

Регулировка системы отопления производится по одному из двух параметров

Считается, что более комфортные условия в частном доме можно получить при изменении температуры теплоносителя в зависимости от условий внутри помещения. Объясняется это просто: тепловые потери не всегда линейно зависят от температуры наружного воздуха: необходимо учитывать скорость ветра и расположение строения относительно сторон света.

Для многоквартирных домов и систем центрального отопления важнее температура наружного воздуха, позволяющая получать усредненные результаты сразу для всех потребителей тепловой энергии.

Методы регулирования систем отопления

Как было сказано выше, основная задача регулирования системы отопления состоит в поддержании определенного уровня температуры в помещении. Сделать это можно несколькими способами:

  1. Меняя скорость движения теплоносителя через прибор отопления с помощью запорной арматуры или с помощью циркуляционного насоса. При этом происходит изменение количества теплоносителя, проходящего через прибор отопления в единицу времени. Такой метод называется количественным.

  2. Меняя температуру нагрева теплоносителя (изменяя его качество). Такой метод называется качественным.

Следует отметить, что оба метода неразрывно связаны друг с другом и в системах высокого качества используются одновременно.

Практическая реализация метода №1

Самый простой способ управления отоплением состоит в изменении режимов работы циркуляционного насоса в зависимости от температуры в помещении: холодно, насос работает с максимальной скоростью, что обеспечивает наиболее интенсивную теплоотдачу приборов отопления. Стало жарко: скорость движения теплоносителя минимальная. В ночное время или днем, когда все жильцы дома на работе или на учебе, может также использоваться режим экономии тепла, предусматривающий минимальную скорость движения воды в отопительной системе.

Недостатком управления отоплением с помощью циркуляционного насоса является общий подход ко всем помещениям в доме, независимо от реальных потребностей в тепловой энергии.

Более точное, локальное регулирование системы отопления можно получить, управляя работой отдельно взятого радиатора.

Как управлять работой радиатора отопления?

На практике менять расход теплоносителя можно с помощью автоматических головок, в конструкцию которых включается клапан и термодатчик, реагирующий на изменение температуры в помещении. Принцип действия устройства достаточно прост: полость головки заполнена жидкостью, объем которой зависит от температуры: при похолодании объем жидкости уменьшается, клапан открывается, увеличивая при этом расход теплоносителя. При повышении температуры в помещении напротив: объем жидкости увеличивается, клапан закрывается, перекрывая движение теплоносителя.

Недостатком автоматических головок является их невысокая надежность и частый выход из строя. Более совершенным и надежным является способ регулирования отопления с использованием сервопривода, приводимого в движение и перекрывающего подачу теплоносителя в радиатор также в зависимости от температуры в помещении.

И автоматическая головка, и сервопривод рассчитаны на изменение температуры теплоносителя не во всей системе отопления, а лишь в одном отдельно взятом радиаторе. Если в комнате несколько отопительных приборов, оборудовать подобными системами автоматического контроля придется каждый из них. Только в этом случае можно действительно регулировать отопление.

Все приборы отопления в доме могут быть объединены в одну систему автоматического управления отоплением.

Регулировка во время эксплуатации

Также известен и другой способ – эксплуатационное регулирование. Как следует из названия, регулирование системы отопления проводится во время ее работы. Это необходимо, чтобы производить настройку по мере необходимости. К примеру, если есть потребность увеличить количество тепла или уменьшить (в зависимости от температуры воздуха на улице и метеорологических условий). Изменение количества вырабатываемого системой тепла обеспечивается за счет регулировки температуры или же путем изменения расхода теплоносителя. Таким образом, можно условно разделить на «качественный» и «количественный» варианты осуществления контроля системы.

Качественное регулирование проводится прямо на тепловой станции. Бывает местное и групповое. Количественное имеет три подразделения: групповое, индивидуальное и местное.

Индивидуальное регулирование

Данный способ контролирования системы производится вручную при помощи клапанов и кранов, и автоматически при перемене температуры воздуха в квартире. В разветвленных системах необходимо изменить расход теплоносителя – это должно упростить задачу регулировки.

Регулирование системы отопления в частных домах требует знаний об особенностях индивидуального водяного отопления. Основная задача системы заключается в обеспечении оптимального микроклимата для всей семьи. К сожалению, достаточно часто отопление выходит из-под контроля. Чаще всего, неправильная эксплуатация и несвоевременная корректировка параметров ведут к неэффективности показателей. Причинами также могут быть ошибки, допущенные при проектировании отопления, или плохое утепление.

 Как показывает практика, во время проведения системы отопления люди не задаются вопросом расчетов. Специалисты, занимающиеся монтажом, предпочитают делать все оперативно, за счет чего страдает точность. Как результат, в одной комнате может быть прохладно, а в другой – чересчур жарко. Комфорта в таком случае можно не ждать.

При оценке качества работы системы и экономичности ее эксплуатации следует учитывать все параметры и особенности вашего отопления. Независимо от источника питания (электрический котел или газовый), система должна работать отлажено, поэтому правильное регулирование – залог теплого и уютного дома.

Самый простой способ отрегулировать циркуляцию воды – использовать термостат, расположенный на котле. Это своего рода рычажное устройство, которое позволит переключить теплозатраты и в таким образом произойдет снижение температуры в доме. Также при необходимости можно повысить уровень нагрева жидкости и за счет этого повысить температуру воздуха в доме.

Нормы температуры теплоносителей в системе отопления

Сохранение комфортного микроклимата необходимо в жилых, коммерческих и промышленных помещениях. Для этого используют автономные и централизованные системы отопления. В системе участвует котельная или отдельный котел, инженерное оснащение в виде труб для соединения сети, а также теплообменники – радиаторы отопления. По системе циркулирует вода или специальная жидкость – теплоноситель. Управляющие компании, владельцы промышленных объектов и обладатели частных домов обязаны соблюдать определенные показатели температуры теплоносителя, чтобы получить комфортную обстановку в помещениях.

Как регулируется температура теплоносителя в системе?

Не существует законов или постановлений, которые бы указывали точный диапазон допустимой температуры рабочей жидкости в системе обогрева зданий. Применение разных видов и составов жидкостей определяется документами ГОСТ 28084-89 и ГОСТ 33341-2015. Также существуют нормы требуемой минимальной температуры в разных помещениях.

Управляющая компания или владелец частного дома должны самостоятельно регулировать нагрев жидкости-теплоносителя, чтобы достигать нужных температурных показателей.

Основные требования для разных типов помещений:

  • жилые помещения – +18°C — +23°C;
  • кухонная зона, санузел – +18°C — +26°C;
  • коридор между квартирами, подъезд – +16°C — +22°C;
  • лестничная клетка – +14°C — +20°C;
  • детские школы, сады – от +21°C;
  • бассейны – выше +30°C;
  • библиотеки – от +18°C.

Обеспечение комфортной жизни или работы человека возможно только при использовании эффективных систем отопления, применении качественных теплоносителей. Обычная вода часто не подходит для таких задач, так как застывает при 0°C, расширяется при замерзании, кипит при достижении 100°C, показывает малую эффективность теплоотдачи. Температурное расширение приводит к разрушению трубопроводов, созданию аварийных ситуаций. Следует использовать специальные жидкости, подготовленные для систем отопления.

Дополнительные факторы для изменения температуры теплоносителя

Достичь необходимых температурных показателей в промышленном или жилом помещении бывает сложно из-за дополнительных переменчивых факторов. К примеру, температура на улице напрямую влияет на сохранение температурного режима в помещениях. Поэтому теплоноситель придется нагревать больше, как только температуры достигнут минусовых значений.

Стоит выделить и другие дополнительные критерии:

  • ветровые нагрузки на стены – охлаждение стен приведет к необходимости увеличения температуры теплоносителя;
  • качество термоизоляции здания – от этого зависят темпы теплообмена с внешней средой и скорость остывания помещения;
  • тип отопительных приборов – современные биметаллические радиаторы и эффективные теплообменники лучше нагревают воздух в помещении, чем старые чугунные батареи;
  • тип используемого теплоносителя – некоторые жидкости при малом нагреве способны отдавать тепло и нагревать помещение с небольшими потерями собственной температуры.

Используя специально подготовленные теплоносители, вы снижаете объемы тепловой энергии, которые будут затрачены на прогрев жидкости. Также специальные компоненты таких рабочих жидкостей позволяют дольше эксплуатировать металлические элементы инженерной сети, снижать темпы развития коррозии.

Какие теплоносители стоит использовать?

Компания «SVA» производит широкий спектр теплоносителей и охлаждающих жидкостей на основе гликолей. Мы обеспечиваем оптимальные антикоррозийные свойства, широкий спектр рабочих температур, продолжительный срок эксплуатации и полноценную сертификацию каждой партии продукции.

В каталоге производителя присутствуют жидкости для промышленных предприятий, коммунальной сферы, пищевых производств, транспорта, нефтедобывающей отрасли. Каждая марка разработана с учетом требований сферы эксплуатации, продукция отвечает высоким европейским стандартам качества, экологически чистая и безопасная для человека.

Чтобы узнать больше о нормах температуры теплоносителя, а также заказать рабочие жидкости для вашей системы, просто позвоните менеджерам компании.

Нагреватели горячего масла и теплоносители: полное руководство

Теплообмен

Для целей теплообмена описанную конфигурацию можно разделить на три части в соответствии с методом теплопередачи и с учетом требуемых технических ограничений в каждой точке, чтобы достичь энергоэффективности и долговечности благодаря заправке теплоносителя и материалам оборудования. (см. Теплопередача).

На рисунке 3 четко выделены три зоны:

1.Излучение

Оно охватывает практически всю камеру сгорания, точнее, внутреннюю поверхность внутреннего змеевика, и в этой области решающим с технической точки зрения является знание точных значений максимальной температуры, достигаемой обоими. теплоноситель и материал змеевика, потому что, хотя это область с наибольшей теплообменной емкостью, она также подвержена риску превышения максимально допустимых значений. — Рисунок 4 -.

Рисунок 4.Площади котла по способу теплопередачи. В зависимости от достигнутой температуры массы и пленки — см. Температуры-.

Характеристики используемого теплоносителя, топлива, регулирования горения, диаметра пламени, требований к обмену, необходимого минимального циркулирующего потока жидкого теплоносителя и, следовательно, его скорости и диаметра змеевика являются параметрами. которые определяют, что следует считать критическим в конструкции — размер диаметра и длины камеры.

Слишком малый диаметр камеры сгорания обеспечил бы оптимальную передачу тепла, но поставил бы под угрозу полезный срок службы заряда жидкого теплоносителя, а также самого котла, а также вызвал бы потерю заряда дымового контура, что может быть чрезмерным бременем для стандартной горелки.

С другой стороны, слишком большой диаметр камеры сгорания снижает энергоэффективность оборудования.

Длина камеры сгорания также имеет большое значение для надежности оборудования.Камера сгорания, слишком короткая для требуемой мощности, будет иметь необычно высокие температуры в нижней и верхней части камеры, что может привести к частичному разрушению этих элементов.

2. Переходная зона

Включает внутренние поверхности концов внутренней и внешней катушек. В зависимости от настройки горелки он может частично включать внешнюю грань внутреннего змеевика. В этой области излучение и конвекция сосуществуют как процессы теплопередачи, и поэтому в отношении тепла необходимо принимать во внимание как меры предосторожности при обмене посредством излучения, так и ограничения, связанные с обменом посредством конвекции.

Особое внимание следует уделить конструкции изменения направления газового контура в нижней части камеры сгорания, так как должна быть достигнута полная герметичность (в противном случае дымовые газы будут проходить непосредственно из 1-го прохода в дымоход. выход, что дает очень плохую производительность и, что еще хуже, с чрезвычайно высокими температурами в дымоходе, которые могут вызвать его разрушение) вместе с низкой потерей заряда при изменении направления дымовых газов.

3. Зона конвекции

Это соответствует обеим сторонам внешнего змеевика и внутренней поверхности внутреннего змеевика.

Хотя может быть небольшой риск превышения максимальных температур использования теплоносителя и материалов (см. Рисунок 4), основная проблема при проектировании этой зоны заключается в достижении высокого уровня теплопередачи за счет значительной скорости. дымовых газов, но без значительного риска загрязнения в дымоходах 2 и 3 из-за недостаточного размера этих каналов или высокой потери заряда в дымовом контуре (известного как избыточное давление котла), что затрудняет использование стандартных горелок.

Рис. 3. Отдельные области в бойлере с жидким теплоносителем для целей теплообмена

В дополнение ко всем параметрам, обсужденным выше, змеевики также должны быть тщательно спроектированы таким образом, чтобы с точки зрения гидравлики теплоноситель потери заряда контура невелики, что приведет к нестандартным насосам и высокому потреблению электроэнергии, и в то же время гарантирует достаточную скорость теплоносителя для обеспечения удовлетворительных коэффициентов теплопередачи — см. рисунок 5.

Рисунок 5. Скорость теплоносителя / коэффициент теплопередачи. Значения для BP Transcal N. Температура теплоносителя 290 ° C. Другие факторы исключены для лучшего понимания важности скорости

Дифференциал тепла. Количество проходов в змеевиках

Дифференциал тепла , также известный как скачок тепла , представляет собой максимальное повышение температуры теплоносителя, которое котел может получить при номинальной тепловой мощности при расчетном расходе теплопередачи. жидкость.

Наиболее распространенными тепловыми скачками являются 20 ° C и 40 ° C, хотя эти значения имеют некоторый запас в зависимости от используемого теплоносителя и рабочей температуры, поэтому на самом деле мы должны говорить об интервалах между 18-22 ° C в в первом случае и 36-42 ° C во втором случае.

Важно помнить, что один котел не лучше и не хуже другого котла с той же тепловой мощностью, но с другим скачком. При правильной конструкции оба типа котлов будут иметь одинаковые энергетические характеристики и аналогичные рабочие функции.

Причина наличия котлов с разной теплопередачей заключается в том, чтобы обеспечить наилучшую адаптацию котла к характеристикам производственного процесса и, в частности, к потребительским устройствам системы.

Изначально бойлер с скачком тепла на 20 ° C может обеспечить большую однородность температуры в потребляющих устройствах из-за большего циркулирующего потока, хотя при изначально более дорогой установке из-за большего диаметра трубы, большей емкости теплоносителя в системы и более высокое потребление электроэнергии в главном насосе.Однако котел с перепадом тепла 40 ° C может также достичь тех же результатов с помощью контуров рециркуляции с вторичными насосами, которые обеспечивают больший расход в бытовых приборах и, следовательно, большую однородность. Однако в последнем случае стоимость установки теплового дифференциального котла значительно выше, что не является положительным фактором.

Перепады тепла выше 40 или 50 ° C не являются обычным явлением, учитывая, что на срок службы теплоносителя влияют такие высокие и резкие изменения температуры, а конструкция котла должна предусматривать меры по поглощению дополнительных расширений, что делает конструкцию более специализированный и более дорогой.Однако в приложениях для солнечных тепловых электростанций можно найти котлы с теплоносителем с перепадом тепла до 100 ° C.

Мы рекомендуем пользователю связаться с производителем котла, авторизованным установщиком, штатным или внешним инженером, чтобы обсудить, какой перепад тепла будет наиболее подходящим для их процесса.

Мы уже видели, что определение разницы в тепле, в основном по характеристикам потребляющих устройств, определяет расход циркулирующего теплоносителя, необходимый в системе.Но этот расход также должен соответствовать определенным требованиям, обозначенным на котле.

Скорость теплоносителя в змеевиках должна быть достаточно высокой, чтобы обеспечить хороший теплообмен, не превышая при этом температуру пленки используемого теплоносителя, чтобы избежать его быстрой деградации. Но эти высокие скорости циркуляции, которые требуются, также подразумевают значительные потери заряда (потери давления), поскольку потери заряда пропорциональны квадрату высокой скорости, с возможностью использования очень больших насосов с чрезмерно высоким потреблением электроэнергии для достижения гидравлического давления. стабильность в цепи.

Согласование факторов высокой скорости и приемлемых потерь заряда возможно только при точном тепловом и гидравлическом исследовании катушек, диаметра их трубок, их длины и их соединения.

С помощью диаграмм на рисунке 6 и небольшого примера мы постараемся немного прояснить все эти вопросы. Мы упростили возможные варианты гидравлики исключительно в этих трех случаях. На самом деле параллельные проходы катушек могут составлять от 1 прохода до 6, 7 или 8.

Рабочая температура T 1 и его тепловая мощность в кВт одинаковы на всех трех диаграммах на Рисунке 6. Кроме того, общая длина составляющей трубы змеевика одинакова — 4L.

Различия относятся к температурам на входе котла (температура обратки от потребляющих устройств после подачи необходимой энергии), T2, T3 и T4. Расходы циркулирующего потока Q, Q 1 y Q 2 и потери заряда ΔP 1 , ΔP 2 и ΔP 3 также различаются.

Реальный числовой пример

У нас есть бойлер с жидким теплоносителем с перепадом тепла 40ºC и мощностью нагрева 1100 кВт. Его обменная поверхность составляет 54 м. 2 с выходом порядка 86-89% в зависимости от рабочей температуры.

Схема его конструкции — A) на рисунке 6, с двумя последовательными катушками и двумя параллельными проходами на катушку. Расчетный расход для этих условий составляет 52 м 3 / ч с потерей заряда 2,37 бар при рабочей температуре 260 ° C.

Если мы попытаемся эксплуатировать этот котел с тепловым скачком на 20 ° C, расход должен составить 104 м 3 / ч, а ожидаемые потери заряда при той же температуре, что и раньше, 260 ° C, будут 8,17 бар. Придется прибегнуть к очень сложным и дорогим насосам с очень высоким потреблением электроэнергии.

С другой стороны, если мы воспользуемся схемой конструкции B) на рисунке 6 (два змеевика последовательно с тремя параллельными проходами на змеевик) с одинаковым расходом, 104 м 3 / ч, и поверхностью обмена, 54 м 2 , потеря заряда составит 2.62 бар, что приемлемо для обычных насосов.

Этот тип конструкции B) неприменим для котла с перепадом тепла 40 ° C, поскольку при требуемом низком расходе 52 м 3 / ч не возникнет проблем с перепадом давления (всего 0,71 бар) но вместо этого проблема будет заключаться в преодолении температуры пленки жидкости, поскольку она будет примерно на 44 ° C выше, чем рабочая температура.

Как видно из раздела «Температура», максимальная температура пленки обычно на 10-20 ° C выше максимальной рабочей температуры, поэтому в этом гипотетическом случае мы либо испытаем быстрое ухудшение заряда теплоносителя, либо мы были бы вынуждены работать при низких температурах, что может быть неприемлемо для нашей производственной системы.

Конструкция C), с двумя змеевиками, соединенными параллельно, каждая с тремя проходами теплоносителя, соответствует довольно необычной конструкции и типичной для котлов, требующих очень малых перепадов тепла, порядка 10 или 15 ° C. В этих условиях скорость потока, 205 м 3 / ч, очень высока, и если бы эта конфигурация не была выбрана, потери заряда теплоносителя были бы чрезмерно высокими, даже с трехходовой конфигурацией в схеме конструкции B) , учитывая, что это будет около 8.45 бар.

Рисунок 6. Типы подключения катушек. A) Последовательно, два прохода на катушку параллельно. Б) Последовательно, три прохода на катушку параллельно. C) Параллельно, два прохода на змеевик параллельно

Таким образом, мы видим, что требуемый скачок тепла сильно влияет на конструкцию котла и, следовательно, должен рассматриваться как ключевой фактор в проекте установки теплообменника. система передачи жидкости.

Преимущества низкотемпературных систем отопления

Низкотемпературные системы — это то место, куда направляются все домашние системы отопления.Это то, что требуется, если мы хотим установить больше тепловых насосов, но это также дает огромные преимущества для газовых котлов и открывает путь для других более чистых источников.

Что мы подразумеваем под «низкотемпературной системой отопления»?

Ну, мы не имеем в виду, что в доме холодно, мы просто имеем в виду, что комфортная температура в помещении достигается при относительно прохладной системе отопления. Таким образом, вместо радиаторов на 70 ° C, ваши радиаторы могут иметь температуру от 25 ° C до 50 ° C, но при этом обеспечивать комфорт и даже улучшать его.Обычно низкотемпературные системы отопления не превышают 35-55 ° C. Сейчас это абсолютно достижимо для большинства британских систем отопления, однако в этой статье мы говорим о преимуществах работы любой системы при температуре ниже, чем в настоящее время.

Важно отметить, что в идеале они также должны иметь низкие температуры внутри вашего источника тепла. Эти двое не обязательно идут рука об руку.

Есть 3 способа создания низкотемпературной системы отопления.Увеличенные размеры излучателя (радиатора), повышенная изоляция и контроль низких температур. Все они будут работать по отдельности, но лучший способ снизить температуру и извлечь выгоду из всех перечисленных ниже атрибутов — это реализовать их вместе.

Однако самая важная и простая часть — это правильно настроить и использовать регулирующие элементы управления, такие как погодная компенсация или компенсация нагрузки. Это даст вам максимальную отдачу от следующих преимуществ.

Более низкая скорость коррозии

После того, как ваша система запущена и работает, ваша основная борьба с коррозией.В основном это происходит из-за радиаторов, которые загрязняют воду в системе. Это создает такие проблемы, как повреждение насоса и клапанов, образование накипи в главном теплообменнике в случае газовых котлов, проблемы с балансировкой и снижает эффективность эмиттера.

Коррозия — это химическая реакция. Как и в случае любой химической реакции, чем горячее химическое вещество, тем быстрее реакция. Это связано с тем, что при нагревании любая молекула возбуждается и колеблется с более высокой частотой. Это увеличивает его «скорость столкновения» с другими химическими веществами, с которыми он может реагировать, и, в свою очередь, увеличивает скорость химической реакции.

Фактически, существует практическое правило, согласно которому скорость коррозии металла увеличивается вдвое на каждые 10 ° C повышения температуры. Так, если, например, скорость коррозии составляет 10 МПа (мил на год) при 50 ° C, ожидайте, что она составит 20 МПа при 60 ° C.

Основной переменной здесь является уровень кислорода. Кислород является активным ингредиентом коррозии, отсюда и термин «окисление». Это становится очевидным, когда мы сравниваем открытые вентиляционные системы с герметичными.

В открытой вентилируемой системе вода быстро снижает содержание «растворенного кислорода», когда система нагревается выше 80 ° C.Тот факт, что он открыт для атмосферы, означает, что этот кислород может покинуть систему, и поэтому после достижения этой температуры скорость коррозии начинает быстро падать.

В герметичной системе, однако, тот факт, что в ней небольшое давление, увеличивает эту температуру насыщения кислородом, и поэтому кислород остается в воде. Тот факт, что система герметична, также не дает возможности проникнуть кислороду, поэтому скорость коррозии неуклонно возрастает.

Большинство систем в наши дни будут работать при максимальной температуре подачи 80 ° C и возвращении 60 ° C, что даже не приведет к падению коррозии.Фактически, скорость коррозии в открытой вентиляционной системе не упадет, пока температура потока не достигнет почти 90 ° C, и никогда в герметичной системе.

Коррозию невозможно остановить, ее можно только замедлить, и минимизация температуры подачи делает именно это.

Меньше теплового удара для системы

Все материалы подвержены термическому напряжению, однако некоторые из них больше, чем другие. В котлах и отопительном оборудовании выбираются компоненты, выдерживающие высокие температуры, но проблема заключается в том, чтобы снова остыть и снова нагреться.

Повторяющееся нагревание и охлаждение может привести к трещинам в материалах. Особенно, когда контактируют два материала с разными тепловыми характеристиками из-за разной степени расширения. Это одна из причин, по которой некоторым инженерам нравится видеть в котлах всю латунь и медь, а также отказ от возможности создавать композит, выдерживающий одинаковую температуру.

Это нагревание и охлаждение также может вызвать высыхание смазанных механических компонентов и повреждение резиновых уплотнений в соединениях и клапанах.Вы можете заметить аналогичные эффекты и в других материалах, которые оставлены на усмотрение элементов снаружи, особенно в резине.

Конечно, выбираются материалы, которые менее восприимчивы к этому. Но если вы работаете при более устойчивых более низких температурах, это продлит еще больше срока службы до того, как потребуется ремонт, что в реальном выражении повысит эффективность.

Лучше для расширительного бака

Расширительный бак — это то, что принимает на себя тепловое расширение воды при ее нагревании. Они имеют внутреннюю резиновую мембрану и наполнены воздухом, который со временем истощается.

При включении охладителя системы будет меньше воды в системе расширяться в резервуар, и поэтому резервуар будет меньше прогибаться. Это будет означать, что мембрана прослужит дольше до разрыва, а также будет разряжаться медленнее. Сохранение резины при более стабильной и более низкой температуре также полезно из-за термического напряжения, упомянутого выше.

Уменьшает кавитацию и защищает насос системы

Кавитация — это процесс, при котором ваш отопительный насос эффективно кипятит воду на входной стороне из-за низкого давления.Это приводит к бесполезной трате энергии на работу насоса и поломке насоса, что приводит к отказу насоса, а также к шуму.

Понижая температуру теплоносителя, вы сокращаете процесс кипения. Эта кавитация также происходит на фитингах внутри системы. Кроме того, при понижении мощности котла, при условии, что у вас есть внутренний насос бойлера, вы замедляете перекачку, что еще больше снижает кавитацию. Скоро появится статья о кавитации…

Чище и безопаснее Воздух в доме

Несмотря на то, что он называется «радиаторами», большая часть тепла от радиатора на самом деле является конвекционным теплом, а не излучается.Фактически, утверждается, что 80% тепла от радиатора передается конвекцией. В действительности соотношение лучистого тепла и конвективного тепла зависит от температуры радиатора. Эта конвекция втягивает воздух через радиатор и распространяет тепло по комнате, создавая конвекционный поток.

Когда воздух всасывается вверх по поверхности радиатора и проходит через конвекционные ребра радиатора (вы знаете, та область, которая заполнена пылью и паутиной, которую редко когда-либо очищают), он может выбросить в воздух огромное количество аллергенов.

Эти аллергены в основном состоят из омертвевшей кожи, экскрементов пылевых клещей, мертвых пылевых клещей, плесени, волос / кожи / клещей и т. Д., Если присутствуют домашние животные.

Хуже всего являются экскременты пылевых клещей, хотя около 10% населения имеют значительную аллергию на них, что вызывает одни из самых серьезных аллергий и, в частности, детскую астму.

Нагрев при более высокой температуре также имеет тенденцию к высушиванию воздуха, что может усугубить проблемы у людей с экземой или проблемами с дыханием.

Даже небольшое понижение температуры вашего излучателя значительно изменяет способ передачи тепла с конвекции на более лучистое тепло, которое оседает в воздухе. Важный, особенно если домохозяйство имеет уязвимое или чувствительное к аллергенам место проживания.

Меньшие потери через трубы в неотапливаемых зонах

Теплопередача создается за счет DT (перепада температур). Чем шире этот DT, тем эффективнее будет передача тепла. Трубопроводы, проходящие под подвесными полами и чердаками, особенно если они горячие, будут отводить тепло в области, где это не обязательно.

Хотя эти охладители не так эффективны, как изоляция трубопроводов, они снижают тепловыделение. Более того, если прибор понижает скорость, это часто также относительно снижает скорость насоса. Это снижает скорость потока и дополнительно снижает теплопередачу из-за наличия более «ламинарного потока». Еще один очень маленький выигрыш, но все они складываются.

Меньше шума / скрипа в системе

На самом деле это проблема не из-за высоких температур, а из-за отсутствия утеплителя труб и должной осторожности при установке.Но если у вас любопытная, скрипучая система, скорее всего, скрип вызван расширением и сжатием длинных участков труб и хомутов радиатора.

При включении / выключении высокотемпературных систем эти длинные участки труб будут постоянно расширяться и сжиматься, что приводит к трению половыми досками и балками. Более стабильная работа системы и охлаждение минимизируют это движение.

Аналогично радиаторам, которые щелкают при расширении. Они скользят по зажимам, которые удерживают их, вызывая «тикающий шум», опять же, здесь помогает системный кулер.

Комфорт при более низких температурах в помещении

Есть много причин, по которым низкотемпературные системы более удобны, и вам будет трудно найти кого-то, кто живет с одним из них и не согласен с этим. Для этого есть 4 основные причины, самая важная из которых — увеличение лучистого тепла.

Лучистое тепло

Лучистое тепло — странная вещь. Для прохождения через нее не нужен посредник. Фактически, это то, как солнце нагревает землю через космический вакуум.

По сути, это световая волна (инфракрасная).Он движется по прямым линиям, и как только они ударяются о поверхность, они заставляют поверхность вибрировать с частотой, аналогичной частоте источника.

Лучистое отопление в комнате нагревает стены и мебель, которые, в свою очередь, излучают обратно в комнату.

Если вы войдете в комнату с низкой температурой воздуха, вы также можете излучать обратно в эту комнату, заставляя вас замерзнуть. Однако при большем лучистом обогреве стены и излучатели будут излучать обратно к вашему телу и одежде, заставляя вас чувствовать себя теплее, чем если бы у вас просто не было слишком мало лучистого тепла.

Конечно, они уравновешивают определенное количество, но они заметны и также приводят к меньшему количеству сухого воздуха.

Повышенный комфорт за счет уменьшения градиента температуры в помещении и стабильной мощности излучателя.

Еще одним заметным эффектом низкотемпературного отопления в помещении является уменьшение градиента температуры. Когда комната нагревается более холодным излучателем, используется большее количество лучистого тепла, которое, как уже упоминалось, распространяется по прямым линиям.

Инфракрасный свет встречает и нагревает поверхности в комнате, а затем эта поверхность излучается обратно в комнату.В результате комната нагревается более равномерно.

Радиатор с большей конвекцией тепла нагревает воздух до температуры выше комфортной. По мере охлаждения воздух будет падать с другой стороны комнаты, и такие предметы, как диваны и кровати, могут нарушить этот поток.

Природа высокотемпературного включения / выключения нагрева заключается в том, что радиатор также пульсирует. В помещении будет превышена выбранная комнатная температура, а затем она будет ниже, прежде чем отопление снова включится.

Система с более низкой температурой может свести к минимуму этот эффект «превышения или занижения» и даже просто согласовать подвод тепла от системы с требуемым теплом. иметь красивую удобную устойчивую комнату.

Все это означает, что комфорт можно найти при более низких температурах, а уменьшение значения параметра приводит непосредственно к экономии на счетах за топливо.

Безопаснее

Высокотемпературные радиаторы и открытые трубопроводы, несомненно, представляют угрозу безопасности для уязвимых и даже в меньшей степени в случае возникновения каких-либо инцидентов.

Накипь

Накипь в газовых котлах происходит, когда железо из радиаторов или накипь из водопровода холодной воды попадают на горячую поверхность котла. Они могут затвердеть и создать прочный изолирующий слой, который бывает очень трудно удалить.

Считается, что 1 мм шкалы снижает эффективность на 5%. Более тревожный аспект заключается в том, что большинство людей вряд ли даже узнают об этом падении эффективности, пока не столкнутся с проблемами, которые могут возникнуть намного позже.

Более эффективное сгорание / передача тепла и более чистые выбросы (газовые, жидкие и газовые котлы)

Теплопередача является произведением дельты Т (разности температур). Чем шире разница температур между двумя веществами, тем эффективнее теплопередача и менее эффективен любой изолирующий слой между ними.Это называется «коэффициентом теплопередачи».

Котлы работают при температуре от 900 ° ° C до 1200 ° ° C, и чем ниже мы можем получить температуру воды в системе, тем выше коэффициент теплопередачи нашего теплообменника.

Информации о коэффициентах теплопередачи предостаточно, но она выходит за рамки того, что мы здесь рассматриваем.

Кроме того, при использовании плавного регулирования для целевой низкой температуры котел проводит больше времени в модулированном состоянии.Это значительно увеличивает размеры камеры сгорания и теплообменника.

Это дает больше места для эффективного перемешивания горения и создания более чистого горения. Это проявляется в более низких показаниях нежелательного угарного газа, когда инженеры-теплотехники измеряют показатели сгорания при низком огне. (Также может быть из-за увеличенного избытка воздуха)

Это также дает более холодную камеру сгорания и, в свою очередь, снижает вредные выбросы NOx, нежелательного побочного продукта, создаваемого чрезмерно горячим сгоранием. Это модулированное состояние также имеет преимущества в виде меньшего количества остановок / пусков котла, а также целый ряд других преимуществ.Подробнее о преимуществах модулирования котла вы можете прочитать здесь.

Это также дает большую площадь поверхности теплообменника по сравнению с подводимым теплом для поглощения тепла. Это гарантирует, что как можно больше тепла от сгорания будет отведено до того, как газ выйдет наружу. Это снижает потери дымовых газов.

Меньшие потери дымового газа / потери в дымовой трубе (все котлы)

На каждый градус дымового газа выше желаемой температуры в помещении, мы теряем потенциальную энергию, которая могла быть использована в нашей собственности.Для того, чтобы эти температуры фактически выровнялись, потребовались бы совершенно непрактичные размеры радиатора и теплообменника.

Однако, как упоминалось выше, мы можем эффективно добиться этого, регулируя котел. Дать дымовым газам больше времени, чтобы контактировать с теплообменником и отдавать свое тепло.

Современные строительные нормы и правила для теплоизоляции означают, что конструкция радиатора 40 30 (очень низкотемпературная система) не является полностью исключительной. Если это удастся достичь, в промежуточные сезоны мы теоретически можем снизить потери дымовых газов до 1%.

Имейте в виду, что это не учитывает неэффективность цикла котла или неэффективность сжигания, которые рассматриваются в других статьях. На этом графике также представлена ​​чистая стоимость (европейская), а не валовая, которую мы обычно используем в Великобритании.

КПД котла обычно рассчитывается на основе состава топлива, условий горения и «потерь в дымовой трубе». Потери в дымовой трубе представлены любым теплом, которое выходит из котла через дымоход. Существует два типа потерь в дымовой трубе: «Потери сухого дымового газа» и «Потери дымового газа из-за влажности».

При измерении сухих дымовых газов вы измеряете потери «явного тепла». Это вся тепловая энергия, выходящая из дымохода выше температуры окружающей системы или температуры возвратной воды. Он не включает потерю энергии из-за влажности дымовых газов.

«Потеря дымового газа из-за влаги» относится к «скрытой» теплоте дымового газа, которая теряется из-за образования пара / водяного пара (испарения) как части процесса сгорания.

Эти потери дымового газа из-за влажности могут быть уловлены путем повторной конденсации водяного пара обратно в жидкость.Для этого мы используем конденсационные котлы.

Больше отобранной скрытой теплоты от дополнительной конденсации (все котлы)

Если у вас есть конденсационный котел, более низкие температуры теплообменника означают, что котел будет больше конденсировать. Вода, возможно, является неожиданным побочным продуктом горения. Но если мы посмотрим на химическое уравнение горения, это имеет смысл.

Ch5 + 2O2 -> 2h3O + CO2 + Heat

В старых котлах без конденсации эта вода покидала ваш котел через дымоход в виде водяного пара.Создание водяного пара (также известное как испарение) требует до 11% ценной энергии. Если позволить этому пару повторно конденсироваться в старых котлах, это вызовет ржавчину и гниение внутренних частей котла.

С 2005 года современные «конденсационные котлы» стали обязательными в Великобритании.

Эти котлы могут охлаждать дымовые газы до температуры ниже 57 ° c, и когда это достигается, водяной пар снова конденсируется в жидкую воду.

Это изменение состояния с водяного пара на жидкое. Вода повторно выделяет тепло.Чем ниже температура дымовых газов, тем больше скрытой теплоты мы повторно поглощаем.

Каждый литр собранной конденсированной воды содержит дополнительно 0,65 кВт энергии, которая в противном случае осталась бы в атмосфере. Более глубокое объяснение доступно в нашей статье о теории уплотнения.

Это хорошо проиллюстрировано на приведенном ниже графике, показывающем более низкие температуры обратки, связанные с более высоким КПД.

Этот конденсат не только повышает эффективность, но и очищает теплообменник, обеспечивая чистые пути дымовых газов и максимальную теплопередачу.

Следует отметить, что этот график относится только к природному газу. максимальная эффективность конденсации масла, например, составляет 6%. Другие источники также имеют более низкие температуры конденсации, что затрудняет восстановление потерянной энергии.

Улучшенный COP для тепловых насосов

Хотя здесь меньше переменных и сложностей, гораздо больше эффективности можно получить от эксплуатации тепловых насосов при как можно более низкой температуре.

Тепловой насос с радиаторами при температуре 55 ° C может потреблять на 40% больше электроэнергии, чем система при температуре 40 ° C.И все мы знаем, сколько стоит электричество.

Это связано с зависимостью тепловых насосов от температуры / давления. То есть, чем выше давление хладагента, тем выше температура хладагента.

Излучатели и радиаторы меньшего размера или призыв к более высокой температуре для потребности в горячей воде означают, что компрессор должен работать с большей нагрузкой, чтобы повысить температуру газа в холодильнике. Даже небольшое увеличение давления приводит к непропорционально большему использованию энергии из-за правила квадрата, которое мы упоминали в других статьях.

Не забудьте подписаться на нашу рассылку, чтобы получать наши последние статьи!

Как выбрать подходящее оборудование для нагрева теплоносителя

Нагрев теплоносителя — это форма косвенного нагрева. Основная предпосылка заключается в том, что теплоноситель нагревается и циркулирует в замкнутой системе. Это распределяет тепло между одним или несколькими источниками в контуре. Жидкости-теплоносители широко используются из-за их неприхотливости, низкой коррозии, экологической безопасности и точного контроля температуры.Наиболее распространенные теплоносители включают масла, воду, гликоль и водно-гликолевые смеси. Выбор подходящих теплоносителей и нагревательного оборудования для вашего конкретного процесса повысит эффективность и снизит затраты. Это руководство поможет вам выбрать подходящие теплоносители и оборудование для термического нагрева для вашего приложения.

Применения для нагрева теплоносителя

Нагревание теплоносителя используется в самых разных отраслях и сферах применения. Ниже приведены некоторые из наиболее распространенных применений для нагрева теплоносителя:

  • Парогенераторы
  • Генераторы горячей воды
  • Емкости для хранения
  • Ванны
  • Чайники
  • Рулоны
  • Реакторы
  • Прессы
  • Формы
  • Фритюрницы
  • Духовки

Жидкость VS Пар Тепловой нагрев жидкости

Для нагрева теплоносителя в качестве теплоносителя может использоваться жидкость или пар.Для нагрева жидкого теплоносителя обычно используется система с замкнутым контуром. Жидкость остается текучей, пока движется через систему. При паровом нагреве теплоносителя среда начинается как жидкость и испаряется либо внутри системы, либо извне через испарительный барабан. Основное преимущество пара в том, что он обеспечивает более равномерное нагревание всей системы.

Выбор теплоносителя

Четыре наиболее распространенных теплоносителя — это вода, водно-гликолевые смеси, гликоль и масла.Каждый из них лучше всего подходит для определенных условий. Эти жидкости должны быть вязкими, чтобы легко перемещаться по системе, и должны иметь достаточно высокую теплоемкость для этого процесса.

Вода как теплоноситель

Основное преимущество воды как теплоносителя — невысокая стоимость и экологичность. Основным недостатком является то, что вода имеет более низкую температуру кипения, чем ее альтернативы, поэтому она подходит не для всех применений.

Водно-гликолевые смеси для теплоносителей

Смеси гликоля и воды можно использовать для ускорения процесса нагрева и обеспечения более высокой точки кипения, чем сама вода.Это дешевле, чем использование чистых гликолевых жидкостей, и может работать при более высоких температурах, чем вода сама по себе.

Гликолевые теплоносители

Гликолевые теплоносители могут работать при более высоких температурах, чем смеси гликоль-вода или вода сама по себе. Однако это дороже.

Термомасла

Масла

обладают самой высокой точкой кипения и универсальны. Смеси гликоль-вода обычно эффективны при температуре примерно до 300 ° F, тогда как масла могут быть эффективны до 800 ° F.Минеральные масла используются в бытовом, промышленном и технологическом отоплении. Кремниевые и трансформаторные масла используются в технологических процессах и в качестве изолятора для электрических трансформаторов большой мощности.

Что следует учитывать при выборе теплоносителя

Требования к температуре

Выбранная жидкость должна соответствовать температурным требованиям для процесса нагрева. Вы должны учитывать максимальную температуру в объеме, минимальную рабочую температуру и минимальную температуру запуска.Смеси гликоля с водой иногда используются, когда вода не соответствует минимальной температуре запуска. Добавление гликолей помогает ускорить процесс.

Прокачиваемость

Прокачиваемость — важный фактор при выборе подходящего теплоносителя. Это касается не только вязкости, но и рабочих температур. Если ваше приложение работает в условиях замерзания или ниже нуля, жидкость должна выдерживать замерзание, чтобы ее можно было прокачивать через систему.

Тепловой КПД

Низкая вязкость коррелирует с более высокими коэффициентами теплопередачи при умеренных температурах. При работе при низких и умеренных температурах жидкости с низкой вязкостью обеспечивают более эффективный нагрев. Однако для высоких температур может потребоваться добавление более вязкой жидкости или вторичной жидкости.

Рекомендации по выбору размеров оборудования для теплоносителя

Расход и удельная мощность являются двумя основными соображениями при выборе размеров оборудования для нагрева теплоносителя.При выборе размеров следует учитывать ваттную плотность жидкости. В типичных применениях используются нагреватели с фланцами на 6 и 8 дюймов, но есть много таких, которые подходят для нагревателей и сосудов с фланцами до 12 и 14 дюймов. Скорость потока становится основным фактором при рассмотрении размера нагревателя, который вы ищете. В большинстве проектов, связанных с жидкостями, используются системы, смонтированные на салазках, в которых есть все материалы, такие как расширительные баки, нагреватель, элементы управления, насос и различное другое оборудование.Также следует учитывать давление и гравитацию жидкости. Размеры насосов должны соответствовать перепадам давления в системе. Размер расширительного бака будет зависеть от рабочей температуры, выбора жидкости и общего объема системы.

Выбор компонентов и материалов для нагрева теплоносителя

Компоненты, используемые для оборудования для нагрева теплоносителя, будут в основном производиться на основе выбора, процесса и применения теплоносителя. Некоторые из компонентов, которые следует учитывать, включают:

  • Трубопровод
  • Фланцы
  • Прокладки
  • Шпильки
  • Изоляция
  • Клапаны
  • Насосы

Трубопроводы для систем нагрева теплоносителя, например, обычно имеют длину от 3 до 6 дюймов.Это обеспечивает хороший поток с минимальными потерями тепла. Трубы обычно стальные. Сталь — хороший выбор, поскольку она обеспечивает защиту от коррозии, превосходные теплопередающие свойства и более низкие затраты. По этим же причинам сталь обычно используется для фланцев в процессах нагрева теплоносителя.

Меры безопасности при нагревании теплоносителя

Жидкость

Тип используемой жидкости является важным фактором безопасности. Во-первых, жидкость должна соответствовать температурным требованиям, чтобы предотвратить любые проблемы.Кроме того, жидкости должны быть в идеале не ядовитыми и стабильными, это необходимо для защиты окружающей среды и безопасности персонала.

Насос и поток

Правильный поток жидкости обеспечит более длительный срок службы и лучшую целостность системы. Если поток слишком низкий, это может привести к перегреву, ухудшению характеристик жидкости или отказу нагревателя. Чтобы избежать этих проблем, насос должен быть спроектирован для использования с теплоносителями при рабочей температуре и должен быть испытан на подтверждение потока.

Регуляторы температуры

Необходимо использовать соответствующие регуляторы температуры для обеспечения безопасности операторов, среды и самой системы отопления.Следует установить защиту от превышения температуры жидкости, а также установить ограничения по превышению температуры дымовой трубы.

Выберите свой теплоноситель сегодня

Независимо от того, выбираете ли вы теплоносители или оборудование для нагрева теплоносителя, команда Wattco готова помочь. Свяжитесь с представителем Wattco сегодня, чтобы подобрать подходящий теплоноситель и нагревательное оборудование для вашего процесса.

Среда теплопередачи — обзор

Расчет микробной инактивации — кинетика первого порядка

После определения системы упаковки, теплоносителя и оборудования необходимо рассчитать время обработки, необходимое для инактивации желаемого количества микроорганизмов .Таким образом, важно определить цель процесса, то есть наиболее термостойкий нежелательный микроорганизм или фермент в пищевом продукте. Таким образом, проект термического процесса будет рассчитан на основе этой цели, обеспечивая безопасность и качество обработанных пищевых продуктов.

Целью термического процесса может быть вегетативная клетка (как в пиве или пастеризации молока), микробная спора (как в процессах стерилизации малокислотных пищевых продуктов, таких как молоко, кукуруза и тунец), микробный токсин (как при пастеризации пальмового сердца) или ферментом (как некоторые устойчивые пектинолитические ферменты в фруктовых продуктах).Цель процесса должна быть выбрана с целью, в первую очередь, безопасности пищевых продуктов, но, во-вторых, с учетом конечных сенсорных и пищевых характеристик продукта, а также экономических аспектов.

Термическая обработка выполняется для достижения соответствующего десятичного уменьшения ( γ , уравнение [11]) объекта обработки. При этом учитывается начальная концентрация мишени в пище ( C 0 ) и требуемая конечная концентрация ( C f ):

[11] γ = log (C0Cf)

Начальная концентрация Целевой микроорганизм на пище ( C 0 ) определяется подсчетом количества микробов в пище.Требуемая конечная концентрация ( C f ) может быть определена в соответствии с литературными данными или правилами пищевого законодательства, направленными на обеспечение безопасности и стабильности пищевых продуктов. Для коммерческих стерильных продуктов обычно применяется концепция вероятности нестерильных единиц (PNSU).

Значение PNSU описывает вероятность получения единицы, которая имела спору (или вегетативную клетку) в N PNSU обработанных единиц (упаковки), согласно следующему:

[12] PNSU = 1NPNSU

Таблица 3 показаны минимальные значения PNSU, используемые для расчета термического процесса пищевых продуктов.Согласно этим значениям, каждая партия обработанных пищевых продуктов должна содержать не менее 10 9 единиц, чтобы найти одну спору C. botulinum в одной упаковке. В этом случае количество десятичных сокращений может быть выражено уравнением [13], где м food_in_package — масса продукта каждой упаковки:

Таблица 3. Типичные значения вероятности нестерильных единиц (PNSU) для дизайн термической обработки пищевых продуктов

Микроорганизм PNSU
Мезофильный порча 10 -6
Термофильный порча −3 –10 −2
Термофильный порча ( T хранение & gt; 40 ° C) 10 −6
Важные патогены для здоровья населения (как Clostridium ) 10 −9

[13] γ = log (C0Cf) = log (C0 · mfood_in_packagePNSU)

С учетом необходимого γ и По результатам испытаний на проникновение тепла биномиальное время в зависимости от температуры ( t × T ) может быть определено для достижения летальности процесса.Температура процесса определяется на основе устойчивости к микробам, питательных и сенсорных характеристик пищевых продуктов, а также оборудования и физических ограничений. Время процесса определяется с учетом инактивации в самом сложном случае (самая медленная точка нагрева), то есть КС. Время процесса обычно рассчитывается с учетом только стадий нагревания и выдержки; стадия охлаждения считается запасом прочности.

Тепловой процесс, однако, не может быть охарактеризован только их биномом t × T , потому что один и тот же бином может привести к другому десятичному сокращению из-за характеристик пищи (физические свойства, теплопередача за счет конвекции или теплопроводности, габариты, упаковка), теплоносителя (коэффициент конвективной теплоотдачи — х , площадь контакта) и целевых характеристик ( D T ez для оцениваемой пищи).Следовательно, значение стерилизации ( F — ур. [14]) — лучший способ охарактеризовать термическую обработку пищевых продуктов.

Значение стерилизации ( F ) представляет собой эквивалентное время (мин) при эталонной температуре ( T ref ), которое продукт подается во время обработки:

[14] F = tTref = log (C0Cf) · DTref = γ · DTref

Термическая обработка внутри упаковки — это переходный процесс теплопередачи, в котором температура является функцией положения в пищевом продукте ( x , y , z ) и время ( т ).Таким образом, уменьшение количества микробов в продукте не является равномерным. При расчете по формуле [15] F определяется как среднее значение стерилизации ( Fm ) и представляет собой среднее значение микробного снижения в продукте, то есть средневзвешенное значение по объему продукта ( V ) индивидуальных сокращений каждого бесконечно малого объема (d V ):

[15] Fm = 1V∫V0VnDTref · γ (V) dV

Для проводящих пищевых продуктов не существует смеси между регионами с различным микробным снижением, и разработка процесса по значению Fm не может рассматриваться как метод безопасности (т.е., среднее значение не соответствует требованиям безопасности). Следовательно, процесс должен быть разработан для наихудшего случая, то есть для пищевой CS. В этом случае значение F вычисляется с использованием тепловой истории CS и называется Fp .

Определенное микробное снижение наблюдается для каждого интервала времени, в течение которого продукт CS остается при определенной температуре. Следовательно, для получения значения Fp необходимо выполнить оценку сокращения микробов в течение бесконечно малого времени на протяжении всего процесса:

[16] Fp = γ · DTref = DTref · limΔt → 0 (∑t = t0tfΔtDT (t )) = DTref · ∫t0tfⅆtDT (t) = ∫t0tfDTrefDT (t) ⅆt

Заменив уравнение [9] в уравнении [16] следующим образом:

[17] Fp = ∫t0tf10T (t) −Tref

Let L ) определяется как относительное влияние каждой температуры на микробную инактивацию эталонной температуры (уравнение [18]):

[18] L = 10T (t) −Trefz = DTrefDT (t)

Следовательно, Fp можно переписать следующим образом:

[19] Fp = ∫t0tfL (t) ⅆt

Наконец, Fm (уравнение [15]) можно описать следующим образом:

[20] Fm = 1V∫V0VnDTref · γ (V) ⅆV = 1V∫t0tf∫V0VnL (t, V) ⅆVⅆt = 1V∫t0tf∫V0Vn10T (t, V) −TrefzⅆVⅆt

Значения Fm могут быть получены экспериментально, используя DT . десятичные сокращения микробов, используя уравнение [14]. Fp может быть получен путем мониторинга тепловой истории CS, получения данных о температуре через короткие промежутки времени (Δ t ; как можно меньше; ∼1–5 с для конвективных пищевых продуктов или ∼10–60 с для проводящих пищевых продуктов) . Следовательно, применяя правило трапеции для решения уравнения [17], значение Fp можно определить с помощью уравнения [21]:

[21] Fp = ∫t0tf10T (t) −Trefzⅆt≅∑t0tf10TPF (t) −TrefzΔt

Следовательно, значения стерилизации, связанные с процессом, могут быть определены с помощью исследований проникновения тепла.Используя эти данные, необходимое время устанавливается при температуре процесса, что гарантирует желаемое десятичное сокращение ( γ ).

Учитывая важность C. botulinum для термической обработки пищевых продуктов, термическое сопротивление его спор обычно используется для выражения процесса стерилизации, чтобы гарантировать минимальную безопасность для коммерческого использования. Используя температуру 121,1 ° C и термостойкость C. botulinum , вычисленное значение Fp затем называется F 0 . F 0 рассчитывается на основе значений D 121 ° C = 0,21 мин (Таблица 1) и минимального сокращения 12 логарифмических циклов ( γ = 12). Используя уравнение [14], минимум F 0 для пищевой промышленности составляет 2,52 мин. Однако по соображениям безопасности применяются более высокие значения F 0 .

В некоторых случаях окончательный процесс будет значительно более радикальным, чем тот, который требуется для обеспечения безопасности продукта.Это происходит, например, с мясными продуктами, которые обрабатываются термически, в тех случаях, когда требуется более строгий процесс, чтобы гарантировать правильное приготовление продукта. По этой причине высокие значения Fp и Fm наблюдаются (полученные из Clostridium sporogenes ) на Фигуре 6 для термически обработанных коммерческих продуктов.

Влияние температуры объема и температуры пленки на теплоносители

Влияние температуры массы и пленки на теплоносители



Передача тепла обычно происходит от объекта с высокой температурой к объекту с более низкой температурой.Обычно при нормальной работе теплоносителей передача тепла осуществляется всеми тремя способами — конвекцией, теплопроводностью и излучением. Первый — принудительной конвекцией теплоносителя циркуляционным насосом. Конвекция — это передача тепла за счет массового движения жидкости, когда нагретая жидкость движется от источника тепла или нагревателя, перенося с собой энергию к источнику, на который она нацелена на нагрев. Второй — за счет передачи тепла от нагревающей жидкости через стенку трубы к нагреваемой среде.Наконец, за счет излучения, от тепла, испускаемого стенкой трубки, которая нагревается теплоносителем для нагрева целевой среды.

Расход теплоносителя или среды используется для определения максимальной температуры, возникающей в системе отопления. Эта температура возникает в нагревателе. Важно поддерживать высокий расход за счет конвекции внутри нагревательной трубки. Это уменьшит разницу между температурой пленки стенки / трубки и температурой в объеме теплоносителя, сохраняя при этом высокий коэффициент теплопередачи пленки.

Максимальная температура в объеме — это самая высокая средняя температура теплоносителя, которая обычно имеет место на выходе из нагревателя жидкости. Термическое разложение теплоносителя будет удваиваться на каждые 18–20 ° F увеличения температуры жидкости в объеме. Это может привести к сокращению срока службы теплоносителя вдвое, если он будет работать почти на 20 ° F выше максимальной номинальной температуры в объеме. Понижение температуры в аналогичных градусах снизило бы скорость разложения жидкости вдвое.Следовательно, небольшие изменения температуры могут иметь большое влияние на срок службы теплоносителя при повышенных температурах. Очень важно понять, почему важно точно определить предел термической стабильности для жидкости, а также работать при соответствующей температуре объема теплоносителя.

Кроме того, температура пленки является важным аспектом скорости термического разложения теплоносителя. Максимальная температура пленки — это самая высокая температура, которую жидкость испытывает в системе.Максимальная температура пленки обычно находится рядом со стенкой трубки на поверхности нагрева и обычно на 50 ° F (10 ° C) выше, чем температура жидкости в объеме.

В типичных системах от 15 до 25% общего разложения теплоносителя происходит в области пленки. Учтите также, что если расход теплоносителя уменьшается, а подвод тепла остается постоянным, температура пленки и массы увеличится. Это также приводит к тому, что меньшая масса жидкости доступна для отвода тепла, передаваемого стенке трубы.А поскольку коэффициент пленки почти линейно зависит от скорости, температура пленки будет увеличиваться из-за снижения эффективности теплопередачи. Это приведет к термической деградации теплоносителя по мере того, как он достигнет и превзойдет температуру пленки системы.

В заключение, важно понимать правильную рабочую температуру жидкости в объеме, а также ее максимальную температуру пленки. Работа, близкая к любому условию или превосходящая его, может привести к более быстрой деградации вашего теплоносителя.

Для получения дополнительной технической поддержки звоните в MultiTherm® TechTeam по телефону 800-225-7440.

Ключевые моменты в этом выпуске:
  • Четко определите рабочую температуру жидкости в объеме и максимальную температуру пленки.
  • Срок службы теплоносителя сокращается вдвое при работе на 18–20 ° F выше максимальной температуры в объеме.
  • Срок службы жидкости можно увеличить вдвое, работая на 18–20 ° F ниже максимальной температуры в объеме.
  • От 15 до 25% разложения жидкости происходит в диапазоне температур пленки.Уменьшение потока теплоносителя может привести к перегреву и ухудшению качества масла, поскольку оно превышает максимальную температуру пленки.
  • MultiTherm® представляет новую стойкую к окислению HTF с высокой температурой вспышки и более низким давлением пара.
  • MultiTherm® представляет новую экономичную HTF с высокой температурой вспышки и более низким давлением пара
  • Не забудьте проводить ежегодный анализ жидкости для теплоносителя.
MultiTherm® представляет новое экономичное масло для теплоносителя

MultiTherm® предлагает новую экономичную альтернативу для пользователей теплоносителя.MultiTherm IG-1® — это минеральное масло высокой степени очистки, прошедшее гидроочистку Группы II, предназначенное в первую очередь для использования в закрытых системах теплопередачи. MultiTherm IG-1® разработан для использования в системах с обратной связью, которые оснащены расширительными баками, предохранительными клапанами и азотной подушкой. В правильно спроектированных системах он обеспечивает бесперебойное и продолжительное обслуживание конечного пользователя.

MultiTherm IG-1® является отличным теплоносителем на многих рынках, ищущих экономичную альтернативу для своих промышленных производственных процессов.Общие заявки на

MultiTherm IG-1®; теплообменное оборудование, используемое в производстве битумной черепицы и кровельных смесей, оборудования для укладки дорог, литья под давлением, на рынках бумаги и ДСП. MultiTherm IG-1® обеспечивает превосходную теплопроводность при высоких температурах; низкое давление пара; и высокая температура воспламенения, а также сопротивление тепловому пробою и длительный термический срок службы в системах с замкнутым контуром.

Если вы ищете экономичный жидкий теплоноситель, вам необходимо рассмотреть MultiTherm IG-1®.

MultiTherm® представляет новое стойкое к окислению теплообменное масло

MultiTherm® предлагает следующее поколение теплоносителя для нашей растущей базы пользователей теплоносителя. MultiTherm OG-1® — это базовое масло гидрокрекинга в сочетании с новейшим запатентованным ингибитором / стабилизатором окисления. MultiTherm OG-1® был разработан для удовлетворения растущих и требовательных требований к жидкофазной теплопередаче в открытых системах.

MultiTherm OG-1® обеспечивает превосходную теплопроводность при высоких температурах; низкое давление пара; и высокая температура воспламенения.Термическая стабильность благодаря преимуществам стойкости к окислению снижает эффективность таких компонентов, как отложения кокса и твердых частиц.

Наконец, более длительный срок службы масла означает меньшие затраты на техническое обслуживание; меньшее время простоя технологического процесса, меньшее количество утилизации масла и сокращение экологических отходов

Итак, если у вас есть система с открытым контуром или ваш расширительный бак открыт для атмосферы, тогда MultiTherm OG-1® — это продукт для вас.

Не забудьте проводить ежегодный анализ жидкости

Разработайте программу профилактического обслуживания нагревателя для горячего масла, ежегодно проводя анализ жидкости для теплоносителя.MultiTherm TechTeam® может помочь вам по телефону 800-225-7440.


Основное руководство по промышленным водогрейным котлам

Теперь, когда мы знаем разницу между промышленными паровыми котлами и системами водогрейных котлов, давайте более подробно рассмотрим типы систем водогрейных котлов. Как уже упоминалось, основное различие между системами водогрейного котла — это температура. Следовательно, названия дают некоторое представление о температуре, связанной с системой. В этом разделе мы объясним три типа водогрейных котлов: высокотемпературные водогрейные, среднетемпературные водогрейные и низкотемпературные водогрейные котлы.Мы дадим определение этих котельных систем из ASME, а также то, как они обычно выглядят в применении.

Высокотемпературные водогрейные котлы (HTHW)

Согласно ASME, высокотемпературный водогрейный котел является энергетическим котлом ASME, раздел I и включает любой котел с максимальной температурой, превышающей 250 ° F и / или максимальным давлением, превышающим 160 фунтов на кв. Дюйм, ман. В применении системы HTHW относятся к конструкциям, в которых температура превышает 350 ° F. Обычно система HTHW работает с максимальным рабочим давлением менее 300 фунтов на кв. Дюйм.Эти системы идеальны для более крупных систем, таких как централизованное теплоснабжение и отопление кампуса, из-за больших тепловых нагрузок, разветвленных сетей трубопроводов и общего размера объектов. Крупные технологические процессы также идеально подходят для систем водогрейных котлов с высокой температурой из-за требований к высокой температуре, которые не могут быть достигнуты в системах с низкой и средней температурой.

Среднетемпературные водогрейные котлы (MTHW)

Среднетемпературные водогрейные котлы — это котлы с температурой в диапазоне от 250 ° F до 350 ° F с максимальным рабочим давлением 150 фунтов на квадратный дюйм.Это означает, что для системы MTHW может потребоваться котел ASME Section I для одних конструкций и котел ASME Section IV для других. Каждую конкретную систему необходимо сравнить с ASME BPVC, чтобы убедиться, что котел для этой системы спроектирован в соответствии с применимыми разделами. Системы, в которых используется среднетемпературный водогрейный котел, — это районные и университетские энергетические контуры, жилые и гостиничные комплексы, а также небольшие технологические процессы, требующие среднего диапазона температур.

Низкотемпературные водогрейные котлы (LTHW)

Согласно разделу IV ASME, отопительный котел включает любой котел с максимальной температурой ниже 250 ° F и максимальным давлением ниже 160 фунтов на кв.В применении системы LTHW относятся к конструкциям, в которых температура ниже 250 ° F. Обычно система LTHW работает с максимальным рабочим давлением менее 30 фунтов на кв. Дюйм. Это означает, что в системе LTHW обычно используется котел, построенный в соответствии с правилами раздела IV ASME. Эти котлы обычно используются в небольших зданиях и даже в жилых домах. В большинстве домов используется принудительная воздушная система для отопления и охлаждения, но змеевики могут быть размещены в воздухообрабатывающем устройстве, используя горячую воду для обогрева в холодные месяцы.В других домах и зданиях, в которых установлен низкотемпературный водогрейный котел, используются радиаторы для распределения тепла от воды для кондиционирования различных жилых и жилых помещений.

Различия между тепловым нагревателем жидкости и паровым нагревателем

В производственных процессах, где прямой нагрев невозможен, используется теплоноситель. Раньше единственным выбором был пар, поскольку вода была легко доступна по низкой цене и приводила к очень небольшим экологическим проблемам. При передаче тепла паром используется скрытая теплота, т.е.е. тепло, необходимое для превращения жидкости в пар без изменения его температуры. Температура, при которой происходит передача тепла, определяется давлением парообразования или насыщения. Для процессов, требующих более высоких температур, давление в паровой системе также должно быть выше. Например, для получения 350 градусов Цельсия 662 градуса по Фаренгейту требуется давление 2610 фунтов на квадратный дюйм / 180 бар. Эти возрастающие требования к давлению означают, что трубы теплообменника, которые используются в паропроводах, должны быть толще и специально сконструированы, а также необходимо использовать насосы высокого давления, что в конечном итоге приводит к более высоким затратам на строительство и эксплуатацию.

С другой стороны, теплоноситель, используемый в качестве теплоносителя, намного более эффективен по сравнению с паром. Например, при температурах до 662 градусов F / 350 градусов C требования к давлению для систем теплопередачи обычно составляют всего до 150 фунтов на квадратный дюйм / 10,3 бар, а расчетное давление редко превышает 300 фунтов на квадратный дюйм / 20,6 бар. Насосы, которые используются в этом процессе, менее дороги, чем насосы, используемые для пара высокого давления, а технологические линии могут быть изготовлены из более тонких материалов, поскольку они не должны выдерживать высокое давление, как в паропроводах.

Операционная эффективность

Установлен фильтр горячего масла 15 г / м

Известно, что эффективность нагревателей теплоносителя выше, чем у обычных паровых систем. Потери при мгновенном испарении в типичной паровой системе могут составлять от 6% до 14%. Добавьте к этому потери на продувку до 3% и потери в деаэраторе до 2%. Очевидно, что разница в эффективности двух систем очевидна, поскольку системы теплоносителя не страдают ни одной из этих потерь и могут работать до 30% эффективнее.

Сравнение коррозии
Одной из распространенных проблем паровых систем является коррозия. Горячая вода, воздух и соль образуют твердые частицы и вызывают коррозию металла. Накипь и другие минеральные отложения усиливают коррозию. Теплоносители не вызывают коррозии и обеспечивают высокую степень защиты поверхности металла. При проектировании резервуаров и трубопроводов для систем нагрева жидким топливом часто учитывается небольшой допуск на коррозию, хотя это и не требуется.

Эксплуатация и обслуживание
Для паровых систем, работающих под давлением, закон (во многих регионах страны) требует, чтобы они эксплуатировались штатными лицензированными инженерами по эксплуатации котлов.С другой стороны, системы теплоносителя работают при более низком давлении и сбрасываются в атмосферу в конце расширительного бака. Давление в этих системах нагрева жидким топливом ограничено и редко требует наличия лицензированных операторов.

Паровые системы требуют серьезного обслуживания. Сифоны, клапаны, насосы для возврата конденсата и компенсаторы требуют постоянного внимания. Тепловые системы безопасны и эффективно работают в течение многих лет при минимальном техническом обслуживании. Как и все продукты на нефтяной основе, теплоноситель имеет длительный срок службы и со временем может загрязняться и разлагаться очень мелкими частицами углерода.Установка тонкого микронного фильтра для удаления этих частиц углерода может помочь продлить срок службы теплоносителя. Рекомендуется проводить регулярные анализы жидкости для контроля ее состояния.

Окружающая среда

Высокотемпературные клапаны

В паровых системах вода подвергается химической обработке для уменьшения коррозии. Эта химически очищенная вода не может быть сброшена в канализацию из-за опасных химикатов и высоких температур технологической воды.Теплоноситель легче утилизировать, и его можно комбинировать с другими использованными смазочными материалами, отправлять на местный завод по переработке промышленных масел и перерабатывать в полезные продукты.

Контроль температуры
Паровые системы полагаются на контроль давления и температуры, но по мере старения системы и возникновения коррозии становится все сложнее контролировать и поддерживать точную и постоянную температуру, необходимую для всех производственных процессов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *