Система отопления с естественной циркуляцией: Система отопления с естественной циркуляцией: схемы, устройство, монтаж

Содержание

Что собой представляет отопление с естественной циркуляцией

Содержание статьи:
Как работает отопление с естественной циркуляцией теплоносителя
Преимущества и недостатки системы с естественной циркуляцией теплоносителя
Тонкости и нюансы естественной системы отопления

Несмотря на современные достижения в области отопительной техники, водяное отопление с естественной циркуляцией теплоносителя упорно не желает сдавать свои позиции и в некоторых регионах довольно успешно конкурирует с нынешними принудительными системами. Это обусловлено тем, что такое отопление отлично справляется с обогревом помещения без помощи электричества. Кроме того, для своей работы отопление с естественной циркуляцией может использовать практически любой энергоноситель. Именно эту систему, ее особенности, монтаж и тонкости эксплуатации мы и рассмотрим вместе с сайтом stroisovety.org в этой статье.

Отопление с естественной циркуляцией фото

Как работает отопление с естественной циркуляцией теплоносителя

Работа такой системы отопления основана на элементарных законах физики: при нагревании плотность жидкости изменяется (она становится меньше) и ее потоки поднимаются вверх. Менее холодная жидкость соответственно устремляется вниз – получается так, что холодная вода выталкивает нагретую. Именно на этих свойствах жидких веществ и основан принцип естественной циркуляции – помещенная в замкнутый контур и подогреваемая в одном месте вода создает непрерывно движущийся поток в направлении к горячему источнику.

Система отопления с естественной циркуляцией теплоносителя является достаточно капризной штукой – для ее правильной работы в процессе монтажа необходимо соблюдать массу требований, которые призваны улучшить циркуляцию жидкости и заставить такую систему отопления быстрее прогреваться. Вообще долгое прогревание этой системы многие относят к ее недостаткам, но этот мнимый отрицательный момент можно с легкостью отнести и к преимуществам. Ровно настолько, насколько долго естественное отопление прогревается, оно и остывает. В отличие от него, современные принудительные системы отопления охлаждаются в несколько раз быстрее.

Система отопления с естественной циркуляцией

Преимущества и недостатки системы с естественной циркуляцией теплоносителя

В принципе, подходя к вопросу выявления отрицательных моментов этой системы отопления, следует понимать, что они являются несущественными и выражаются исключительно в некоторых неудобствах эксплуатации. По большому счету, на работу отопления они практически не влияют. К этим недостаткам можно отнести следующее:

  1. Во-первых, масса нюансов при сборке. Не владея ими, собрать полноценную и качественно работающую систему естественного отопления не получится.
  2. Во-вторых, необходимость постоянного контроля жидкости – водяное отопление с естественной циркуляцией не является закрытой системой, и вода быстро испаряется.
  3. В-третьих, сравнительно небольшой радиус действия. Такую систему невозможно собрать в большом доме – она хорошо работает только в помещениях, габариты которых не превышают 25-30м и высотой до 7м. Следует понимать, что чем больше и разветвленнее данная отопительная система, тем больше ей необходимо времени и энергии для прогрева.
  4. В-четвертых, эстетический вид. Как правило, все трубопроводы располагаются в видимой зоне – подача горячего теплоносителя размещается под потолком, а обратка над полом. Такое положение дел не позволяет вести разговор о какой-либо эстетике помещения. Можно, конечно, разместить подачу отопления на чердаке, но тогда ее придется качественно утеплять. Да и от стояков в данном случае избавиться не получится.

Схема отопления с естественной циркуляцией

Тонкости и нюансы естественной системы отопления

Существует несколько схем отопления с естественной циркуляцией – верхняя и нижняя разводка. И в том и другом случае принцип прокладки магистральных трубопроводов не меняется. Но начнем по порядку – самым главным звеном любой отопительной системы является котел, а что касается данной системы, так это его местоположение. В соответствии все с теми же законами физики, естественное отопление работает лучше, когда котел находится в самой нижней точке. Его следует расположить в подвале, а если такового нет, то в специально оборудованном приямке. Для чего это нужно? Чтобы обеспечить легкий сток воды с обратных трубопроводов, которые располагаются под уклоном на всем протяжении от батарей до котла.

Куда поставить котел при отоплении с естественной циркуляцией

Об уклонах следует поговорить более подробно – без них не обойтись, поскольку они обеспечивают вывод воздуха из труб и облегчают ток жидкости в системе. Как правило, этот уклон варьируется в пределах от 7 до 100мм на каждый погонный метр трубы. Следует понимать, что независимо от их назначения, под уклоном должны располагаться все горизонтальные трубопроводы (лежаки). Подача имеет уклон, направленный в сторону от котла, а обратка, соответственно, к котлу. Таким способом обеспечивается не только легкая и быстрая подача теплоносителя к батареям, но и отток от них охлажденной жидкости.

Как сделать отопление дома с естественной циркуляцией

Немаловажным моментом в системе отопления дома с естественной циркуляцией является так называемый главный стояк – это вертикальная труба, непосредственно связанная с котлом. Она служит для разгона нагретой жидкости – по ней теплоноситель поднимается на максимально возможную высоту, после чего по наклонным трубам устремляется к отопительным приборам.

Здесь есть несколько нюансов – во-первых, это диаметр главного стояка, а во-вторых, расширительный бак, который, как правило, располагается в самом верху этого стояка. По сути, расширительный бак располагается в самой верхней точке отопления, служит для вывода воздуха из системы и обеспечивает хранение расширившейся при нагревании жидкости. Что касается диаметра главного стояка, то он не должен быть меньше, чем имеющийся на котле патрубок выхода нагретого теплоносителя. Больше можно, но это не означает, что отопление с естественной циркуляцией будет работать лучше – здесь все зависит от мощности котельного оборудования.

Монтаж водяного отопления с естественной циркуляцией

Раз уж пошел разговор о диаметрах труб, то следует рассказать и о принципе построения всей системы. Чтобы улучшить ток воды и обеспечить равномерное распределение теплоносителя, монтаж естественной системы отопления выполняется трубами разного диаметра. Здесь принцип такой – чем дальше от котла находится отопительный прибор, тем меньшего диаметра трубы используются для подачи к нему воды.

Чтобы было понятно, приведу пример. Допустим, в доме имеется 10 батарей. К первым двум подача теплоносителя осуществляется по магистралям диаметром 2″, к двум следующим вода подводится по трубам 1,5″ к следующей паре ток осуществляется по 1,1/4″, потом по дюймовой трубе, далее по трехчетвертной и в конце используется полудюймовая труба. Точно такая же схема используется и при прокладке обратного трубопровода. Если подходить к этому вопросу более серьезно, то необходимо выполнять комплексный расчет естественной циркуляции отопления. А здесь без знаний, которыми обладают инженера, не обойтись.

Водяное отопление с естественной циркуляцией

Следующей немаловажной особенностью системы отопления с естественной циркуляцией является правильная установка батарей. На данном этапе уклоны также никто не отменял. Имеется два варианта установки отопительных приборов. В первом случае они оснащаются кранами Маевского для сброса воздуха и монтируются так, чтобы эти краны располагались в верхней точке батареи. Во втором случае верхней точкой является сторона, к которой подсоединяется патрубок подачи теплоносителя – при такой постановке вопроса воздух будет выгоняться в расширительный бак через подающие трубопроводы.

В общем, из выше написанного можно сделать только один правильный вывод – отопление с естественной циркуляцией является достаточно сложной системой, монтаж которой невозможен без знания всех этих тонкостей и нюансов. Если уж вы решились на установку такой системы, то лучше обратиться к специалистам.

Автор статьи Дмитрий Ворохов

Система отопления с естественной циркуляцией

При отсутствии или нестабильной подаче электроэнергии системы отопления частных домов часто организуют на базе схемы с естественной циркуляцией теплоносителя. Такая схема является полностью энергонезависимой, способна обеспечить нужды отопления небольших домов площадью до 60 – 70 м2. Материал статьи описывает принцип работы, устройство и виды системы с гравитационной циркуляцией, дает рекомендации по выбору материалов и монтажу.

Принцип работы схемы с естественной циркуляцией

Принцип работы самотечной системы отопления базируется на теплофизических свойствах воды. При нагреве жидкость приобретает меньшую плотность и соответственно – массу. Горячий теплоноситель, нагретый в котле, поднимается по вертикальному трубопроводу, часто называемому разгонным коллектором.

Освободившееся пространство естественным образом занимает более холодный теплоноситель, имеющий более высокую плотность и массу, сосредоточенный в нижней части системы. За счет образования разницы плотностей холодного и горячего теплоносителя возникает постоянный цикл движения воды в системе отопления.

Гравитационная составляющая циркуляции улучшается сооружением трубопроводов системы с нормативным уклоном, который составляет не менее 2 мм на 1 погонный метр длины. Уклон ориентирован в сторону движения теплоносителя.

Вода в процессе работы системы имеет малую скорость движения, на качество циркуляции отрицательно влияют любые гидравлические сопротивления. Схема работает без наличия насосного оборудования и потребления электрической энергии.

Устройство системы с естественной циркуляцией

Базовый элемент системы отопления – котел – располагается в нижней точке системы. От теплогенератора поднимается вертикальный разгонный коллектор. Рекомендуемая высота коллектора – от 2,5 метров, диаметр трубопровода – не менее 50 мм.

На верхней точке разгонного коллектора, в месте поворота трубопровода к радиаторам, располагают расширительный бак открытого типа. Расширительный бак по желанию оборудуют линией перелива, соединенной с канализацией. Через нее излишки воды, образовавшиеся при нагреве и расширении, переливаются в канализацию.

Расширительный бак может оборудоваться линией подпитки, соединенной с системой водопровода. В отсутствии линии подпитки пополнение системы водой производится вручную. Расширительные баки при размещении в неотапливаемом помещении должны качественно утепляться.

 Экспанзомат, кроме функций компенсации теплового расширения и подпитки, выполняет функцию естественного воздухоотводчика. Трубопроводы монтируются с уклоном таким образом, что пузырьки воздуха не уносятся в систему, так как вода имеет малую скорость, а поднимаются в верхнюю точку, на которой установлен РБ.

Из верхней точки разгонный коллектор меняет направление на горизонтальное и с нормативным уклоном прокладывается к радиаторам отопления. Система отопления в части обвязки радиаторов имеет 2 разновидности:

  1. Однотрубная;
  2. Двухтрубная.

Однотрубная система с естественной циркуляцией обладает свойством снижения температуры на каждом последующем радиаторе в ряду.

Однотрубная система отопления с естественной циркуляцией

Сооружение байпасов для улучшения качества регулирования создает излишнее гидравлическое сопротивление, поэтому система чаще всего сооружается по простейшему принципу – радиаторы подключают к трубопроводу подачи последовательно, с последнего радиатора выходит обратный трубопровод и подсоединяется к котлу.

Наиболее эффективным по теплоотдаче считается диагональное подключение радиатора, менее качественными – боковое (при вертикальной разводке) и нижнее. Несовершенство однотрубной системы – снижение температуры на радиаторах – можно частично компенсировать увеличением числа секций на последних радиаторах.

Двухтрубная схема системы отопления более удобна в регулировании. Здесь радиаторы подключены к подающему и обратному трубопроводу параллельно.

Двухтрубная система отопления с естественной циркуляцией

Для монтажа системы этого типа требуется большее количество трубы, соответственно схема имеет большее гидравлическое сопротивление. Регулирование температуры на радиаторах производится 2 методами:

  1. Принудительное, с помощью запорной арматуры;
  2. Естественное, за счет поэтапного изменения диаметра трубопроводов.

Принудительное регулирование можно производить шаровыми кранами, имеющими полнопроходное сечение. Регулирующие вентили малопригодны для этой задачи, так как обладают высоким гидравлическим сопротивлением и имеют сниженное проходное сечение.

Поэтапное изменение диаметра производится по принципу постепенного уменьшения диаметра подачи к последнему радиатору и постепенному расширению обратки от него к котлу. Выполнение такой схемы требует тщательного расчета, выполнить самостоятельно который довольно трудно.

Оба метода регулирования в любом случае значительно повышают гидравлическое сопротивление системы в целом, что отрицательно влияет на качество циркуляции и может привести к ее остановке. Поэтому большей популярностью пользуется все же однотрубная система, даже со своим недостатком – разницей температур в начале и в конце контура отопления.

Для систем отопления с естественной циркуляцией, предназначенных для отопления домов площадью не более 70 м2, падение температуры на последнем радиаторе может составлять 5 – 100С. Обычно этот недостаток частично нивелируется увеличением числа секций последних в ряду приборов отопления. Кроме того, однотрубные схемы часто модернизируют установкой циркуляционного насоса.

В систему отопления с естественной циркуляцией иногда интегрируется бойлер косвенного нагрева. Его рекомендуется устанавливать в верхней точке разгонного коллектора, трубопровод выхода теплоносителя с бойлера направляют в горизонтальном направлении с уклоном к радиаторам. Работа бойлера в самотечной схеме не отличается высоким качеством – температура воды в нем не регулируется, температура воды напрямую зависит от температуры теплоносителя.

Подключение контуров теплых полов к системам гравитационного типа не производится. Это обусловлено тем, что отдельные контуры водяных теплых полов имеют большое сопротивление, циркуляция возможна только с помощью циркуляционного насоса. Установка насоса в точках подключения полов к системе с гравитационной циркуляцией внесет резкий гидродинамический дисбаланс и может нарушить принципы естественного циркулирования.

Материалы и оборудование системы отопления

Монтаж комплекса отопления рекомендуется производить с соблюдением следующих правил:

  1. Котел следует размещать в нижней точке системы;
  2. Уклон трубопроводов должен быть не менее 2 мм на 1 погонный метр длины;
  3. Система монтируется с минимумом гидравлических сопротивлений – поворотов, сужений, минимальным числом запорной арматуры.

Напольный котел отопления

В качестве теплогенераторов для систем гравитационного типа применяются в основном напольные котлы, имеющие увеличенные диаметры подключения и размеры теплообменника по сравнению с настенными моделями.

Основным видом приборов отопления для самотечной схемы являются чугунные радиаторы. Они обладают увеличенным проходным сечением секций устройства.

Чугунный радиатор в системе с естественной циркуляцией

Другие виды радиаторов (а также конвекторы) имеют малое внутреннее сечение и создают излишнее сопротивление.

Зачастую системы с естественной циркуляцией выполняются вообще без приборов отопления – по периметру помещений прокладываются стальные трубы. В этом случае циркуляция имеет лучшие параметры, но для достижения требуемой величины поверхности теплообмена может требоваться увеличение диаметра трубопроводов. К тому же такая конфигурация отопления малопривлекательна внешне, занимает много места.

Для монтажа отопления применяются в основном стальные трубы.

Трубопроводы для отопления из стали

Разгонный стояк в любом случае сооружается из стали, так как температура в зоне котла достигает высоких значений. Несколько реже применяются трубы из стабилизированного полипропилена. Рекомендуемый диаметр трубопроводов – 32 мм и больше.

 Другие полимерные трубопроводы – металлопластик, трубы из сшитого полипропилена – применять не рекомендуется. Фитинги этих систем значительно снижают проходное сечение и создают излишнее гидравлическое сопротивление, препятствующее естественной циркуляции.

Прокладку трубопроводов отопления следует производить открыто. Скрытая прокладка подразумевает значительное увеличение числа соединений и поворотов.

Достоинства и недостатки системы с естественной циркуляцией

Достоинствами схемы с гравитационным движением теплоносителя являются следующие показатели:

  1. Полная энергонезависимость;
  2. Простота устройства и эксплуатации.

Система с естественной циркуляцией обладает и массой недостатков:

  1. Сложность регулирования;
  2. Неравномерное распределение тепла;
  3. Непривлекательный внешний вид;
  4. Ограничения по тепловой мощности;
  5. Сложность самостоятельного монтажа – требуется привлечение сварщика.

Система отопления с естественной циркуляцией используется сейчас больше как вынужденная мера. Главная причина строительства гравитационного водяного отопления – серьезные перебои в электроснабжении. Тем не менее, в некоторых ситуациях сооружение гравитационного отопления является единственно возможным техническим решением для обогрева частных домов и дач.

(Просмотров 4 363 , 3 сегодня)

Рекомендуем прочитать:

Система отопления с естественной циркуляцией

Обустраивая отопление небольшого загородного домика или коттеджа, в первую очередь задумываются об экономичности, простоте и максимальной надежности. Чаще других встречается система отопления с естественной циркуляцией, удовлетворяющая всем вышеназванным критериям.

Принудительная циркуляция теплоносителя по трубным магистралям осуществляется посредством работающего насоса, который устанавливается на участке теплотрассы. Благодаря такому взаимодействию обеспечивается постоянное и более быстрое перемещение жидкости. Недостатком становятся затраты на дополнительное оборудование.

Содержание статьи:

Подробнее о естественной циркуляции

Чтобы обустроить отопительную систему с естественной циркуляции, в насосе нет никакой необходимости. Плотность нагретой воды ниже чем у холодной, за счет чего происходит выталкивание одной жидкости другою. Теплоноситель, двигаясь по магистрали, отдает часть тепла радиаторам и постепенно остывает, возвращаясь обратно и вытесняя более теплую и легкую воду в трубы. Цикл повторяется снова.

Данный процесс нельзя будет остановить до тех пор, покуда котел греет. Систему с естественной циркуляцией можно в любой момент времени оснастить насосом и запускать его по мере необходимости для равномерного и быстротечного прогрева помещений.

Вводное видео

Основные плюсы

Одно из достоинств, которыми обладают подобные системы, является экономичность. Затраты на обустройство и обслуживание сводятся к минимуму.

Присутствие насоса повлечет за собой дополнительные траты за электроэнергию. Его отсутствие наоборот даст возможность сэкономить. Такие системы абсолютно бесшумны и не вызывают лишних вибраций.

Среди других преимуществ можно выделить:

  • Способность к саморегулированию
  • Тепловая устойчивость
  • Продолжительный срок безотказной работы – 30 лет
  • Высокая ремонтопригодность

Типовая схема

Если рассматривать более подробно контур с естественной циркуляцией теплоносителя, он будет содержать следующий набор элементов:

  1. Расширительный бачок, который располагают в самой верхней точке
  2. Отопительные радиаторы
  3. Трубопровод (двойной, одинарный)
  4. Котельное оборудование, нагревающее теплоноситель

Сила и скорость, с которыми теплоноситель будет циркулировать по отопительной системе, зависят от веса, объема и плотности горячей жидкости. Немаловажную роль оказывают внутренние поверхности труб, от которых зависит коэффициент сопротивления, и высота расположения отопительных батарей относительно котла.

Особые требования предъявляются к горизонтальным трубопроводам. Они должны иметь обязательный уклон около 5 мм на метр по направлению движения. Только в этом случае остывшая жидкость будет стремиться обратно к котлу.

Необходимо постараться, чтобы на пути теплоносителя было меньше элементов, способных увеличить сопротивление. Многочисленную запорную арматуру, разветвления и изломы приходится компенсировать большим диаметром трубы.

Возможно вас так же заинтересует оригинальный способ отопления производственных помещений

Рассчитываем мощность своими силами

Начиная обустраивать систему отопления с естественной циркуляцией теплоносителя, необходимо определить мощность устанавливаемого котла отопления. Провести расчеты можно одним из двух методов:

  1. По объему
  2. По площади

Следует сказать, что оба варианта расчета дают приблизительные результаты при идеальных условиях. Если дом не утеплен, необходимо приобретать оборудование с небольшим запасом. В свою очередь для энергосберегающих построек достаточно принять значение мощности 60 Вт на квадрат.

Рассчитываем мощность по объему

Наиболее точным является расчет по объему отапливаемого помещения. Вначале необходимо высчитать данную величину и умножить на 40 Вт. Далее вводятся поправочные коэффициенты:

  1. Для частного дома, граничащего с улицей сверху и снизу, рекомендуется умножать результат на 1.5
  2. Если комната располагается около утепленной стены, значение умножается на 1.1, около неутепленной – 1.3
  3. Для каждой двери, выводящей на улицу, прибавляется 150-200 Вт
  4. Для каждого окна прибавляется 70-100 Вт в зависимости от его размера

Рассчитываем мощность по площади

Самая простая методика рассчитать мощность котла, который рекомендуется в СНиП – по площади. Предполагается, что на каждые 10 кв. м. необходимо 1 кВт мощности. Таким образом общую площадь дома следует умножать на 0.1.

Необходимо принимать во внимания коэффициенты для различных территориальных районов:

  • Крайний Север – 1.5-2
  • Средняя полоса – 1.2-1.4
  • Южные районы страны – 0.8-0.9

Выбираем схему разводки для систем с естественной циркуляцией

Существует огромное множество схем, согласно которым можно реализовать естественную регуляцию. Но все они делятся на 2 категории:

Двухтрубная схема

Несмотря на более сложный монтажный процесс, распространение получила именно двухтрубная схема отопления с естественной циркуляцией теплоносителя. Жидкость транспортируется по двум трубам: одна прокладывается вверху и по ней течет разогретая вода, вторая внизу и течет остывшая вода.

Чтоб самостоятельно соорудить простой двухтрубный контур, можно придерживаться следующей инструкции:

  • Вначале выбирается место, в котором будет размещаться накопительный агрегат
  • Над котлом устанавливается расширительный бачок, вместе они соединяются вертикальной трубой, которую оборачивают в теплоизоляционный материал
  • На уровне 1/3 расширительного бочка происходит врезание верхней трубы для транспортировки разогретого теплоносителя

  • Замеряв расстояние от пола до самой верхней точки, необходимо на высоте примерно 2/3 сделать врезание к разводке
  • Ближе к верху расширительного бачка врезается вторая труба – переливная, посредством которой в канализацию будет происходить удаление излишков
  • Затем необходимо пустить трубы к радиаторам
  • Батареи соединяются с нижним водопроводом, прокладка которого должна вестись параллельно верхнему

Необходимо постараться максимально точно расположить трубы в системе отопления с естественной циркуляцией и обеспечить оптимальную разницу высот между радиаторами и котлом. Последний следует располагать ниже батарей, поэтому предпочтение отдается напольным устройствам, которые размещают в специальном углублении или подвале.

Чердачное помещение придется утеплить. Если в нем будет слишком холодно, возможно замерзания жидкости в трубах.

Рассмотрим еще несколько правил, которых следует придерживаться:

  1. Верхнюю трубу рекомендуется пускать с незначительным уклоном – 6-7 градусов
  2. По возможности, котел устанавливают значительно ниже отопительных приборов
  3. Нужно выбирать трубы из металлопласта или на основе полимеров с внутренним диаметром 32 мм

Балансировать двухтрубное отопление, если трубы подобраны правильно, не требуется. Тем не менее установить на подводках к каждой батарее дроссели следует в обязательном порядке. Также стоит отметить высокие первоначальные затраты на прокладку сразу двух контуров и продолжительность затраченного времени на проведение работ.

Однотрубная схема

Чтобы сократить монтажные затраты, выбирают вариант с прокладкой всего одной трубы. В этом случае получается циклический замкнутый контур, соответствующий следующим условиям:

  1. Радиаторы должны врезаться параллельно основному кольцу, а не разрывать его в определенных точках
  2. Необходимо снабдить воздушником каждую из батарей. Такое решение предоставит возможность стравливать воздух на одном конкретном участке
  3. Для выравнивания температуры рекомендуется устанавливать термоголовки и дроссели

Популярностью пользуется закрытая однотрубная система отопления с естественной циркуляцией. В конкретном случае можно будет пренебречь расширительным бачком, полностью изолировав теплоноситель.

Что влияет на скорость циркуляции ?

Если в принудительной системе скорость циркуляции теплоносителя по трубам зависит от производительности насоса, здесь дела обстоят иначе. Чтобы ее увеличить, необходимо придерживаться ряду правил:

  • Следует оптимально подбирать запорную арматуру и следить за переходами диаметров труб
  • Многообразные повороты могут становиться непреодолимым препятствием, поэтому их количество сводят к минимуму, стараясь сделать все участки прямолинейными

  1. Наиболее подходящий внутренний диаметр труб – 32-40 мм
  2. Внутренняя поверхность труб должна быть идеально ровной и не скапливать на себе отложения, стальные изделия рассматривать не стоит

Видео рабочей системы

В заключении

Обустройство отопительных систем с естественной циркуляцией требует определенной подготовки, умений и знаний. Но чтоб оставаться уверенным в ее работоспособности, стоит осуществить врезание насоса, включение которого будет происходить в случае необходимости.

Страница не найдена — Familie

Все категорииUncategorizedКотлы отопленияНастенные Газовые котлыГазовые настенные котлы Navien ACEГазовые котлы AristonГазовые котлы Ariston HS XГазовые котлы Ariston ALTEAS XCLAS EVOGenus PremiumGenus Premium HPНапольные Газовые КотлыНапольные газовые котлы Navien GTD GasНапольные газовые котлы Navien GA, GSTГорелки газовые KituramiAriston BS IIГазовые баллоныГазовые горелкиГазо-воздушные (ручные)Riello (Италия)Прямого горенияПаровыеИспарители электрическиена базе DAGESна базе FASна базе TorrexxКонтрольно-измерительные приборыСчетчики газа ГРАНД (Россия)Сигнализаторы газаТелеметрическая информационная системаГазовые котлыAriston (Италия)Rinnai (Япония)Насосы для газаCorken (США)Газобаллонные установкиГазобаллонный установки (рампы)Регуляторы давлениядля горелок (газосварка)RegO (США)Pietro Fiorentini (Италия)GOK (Германия)SRG (Германия)Уровнемеры (процентомеры)Газовые водонагреватели (бойлеры, колонки)Bosсh (Германия)Gorenje (Словения)Запорно-предохранительная арматураКраны,клапаныШланги, трубы и фитингиЦокольный вводна базе ZimmerHajdu (Венгрия)Zanussi (Швеция)Газовое оборудование (газгольдеры)На базе Jinu(Южная Корея)На базе Gurbong Hanjin(Южная Корея)RigaLotteKituramiRinnaiEcoflamELCOCronosГазгольдеры (емкости для газа)Реал Инвест(Россия)РеставрированныеПневматикаРоссия Санкт-ПетербургЭлектрокотлыZotaФанкойлы NavienЭлектроводонагревателиКоспелAristonHuchS-Tank SolarMetalacИспарителиВодонагревателиИспарители водогрейныеНа базе Gurbong Hanjin(Южная Корея)HWA YoungРулеткиМанометры(напорометр)VansVans STS HighJeil STS BoilerОбогревателиВодяные тепловентиляторыТепловые завесыКомплектующиеWingVolcanoALTEAS ONE NETБанные печиПечиКомплектующиеЭлектросауныZota VizaНасосыЦиркуляционные насосыZota RingZota Ring с однофазным двигателемZota Ring с трехфазным двигателемZota EcoRingZota InLineZota LuxZota BalanceZota “MK-S”Zota PromОчагStarkКелетКелетProthermProthermProthermИндустриальные котлыProthermТвердотопливные котлыЖидкотопливные котлыProthermProthermJeil STS BoilerVaillantVaillantVaillant

Искать

Система отопления естественной циркуляцией — ExpertSamoStroy

Сегодня я постараюсь Вам объяснить принцип работы отопления с естественной циркуляцией теплоносителя. Обычно теплоносителем является вода, но существуют примеры, когда применяют в качестве теплоносителя и масло, так как масло дольше держит в себе температуру на выходе из котла.

 

Система отопления естественной циркуляцией

Известен случай, когда применяли и пенообразователь в качестве теплоносителя. Но стоит обратить внимание на пожаро- и взрывоопасность данных теплоносителей, а также стоимость их. Всетаки масло и пенообразователь намного дороже воды, что ведет к удорожанию самой системы отопления с естественной циркуляцией.

Система отопления с естественной циркуляцией использовалась еще в довоенное время, поэтому это надежный и проверенный метод обогрева помещений, а также простой и понятный.

В наше время система отопления с естественной циркуляцией в основном применяют в загородных домах или дачах. Так как обычно в таких домах очень часто отключают электроснабжение (в целях экономии, эх матушка Русь), а без электроэнергии система отопления с принудительной циркуляцией не может работать, насосы без электроэнергии не работают.

Существует два вида отопления с естественной циркуляцией. Системы с “верхней” и “нижней” подачей воды. Особо больших различий между ними нет, но рассмотрим каждый по отдельности.

Система отопления с естественной циркуляцией при “верхней” подаче воды

Система отопления естественной циркуляцией

Теплоноситель (по умолчанию – это вода), нагретый в котле подается по трубопроводу в верхнюю часть нашей системы отопления. Обычно подающая труба имеет диаметр больше, чем разводящие трубы к радиаторам. Это позволяет нам создать большее сопротивление теплообменника.

Горизонтальная труба устанавливается таким образом, чтобы был соблюден минимальный уклон, обычно 10 мм. на 1 м.п. При “верхней” подачи теплоносителя в самой верхней (извините за товталогию) точке нашей системы отопления с естественной циркуляцией необходимо установить бак, который будет выполнять две функции:

  • при нагревании, как известно, вода испаряется и наш бак будет содержать избыточный теплоноситель. Так называемый бак запаса воды.
  • при нагревании вода расширяется, а куда ей расширятся, если ситема герметична? Для этого и должна быть наша емкость, для приема избыточного теплоносителя, при разширении. Надеюсь Вы уже догадались, что наш бак не должен быть полным и герметичным.

Далее, после того, как нагретый теплоноситель распределился по подающей трубе, он (теплоноситель) распределяется по вертикальным стоякам, которые в свою очередь подводят воду к радиаторам. Хочу обратить ваше внимание на то, что самым эффективным подключением радиаторов будет – диагональное подключение радиаторов.

После того, как вода отдала свое тепло через радиаторы помещению, она возвращается в котел по специальной трубе, которая называется обраткой. И все повторяется в том же порядке снова.

Особое внимание стоит уделить расположению котла, который должен располагаться в самой низкой точке нашей системы отопления с естественной циркуляцией.

Обычно котлы устанавливают в подвальном помещении, если нет возможности установки котла в подвале, тогда ,в так называемой, котельной. Котельная должна располагаться таким образом, чтобы котел стоял ниже уровня радиаторов нашей системы отопления с естественной циркуляцией.

Система отопления с естественной циркуляцией при “нижней” подаче теплоносителя

Система отопления естественной циркуляцией

Такую схему подключения используют в тех случаях, когда нет чердачного помещения или нет доступа к нему. Цикл работ тот же. Отличие лишь в том, что трубы разводятся внизу, под радиаторами.

Но расширительный бак все таки необходим в самой высокой точке ситтемы. Обычно его устанавливают на стене под потолком в каком-то техническом помещении или в котельной.

Какую систему отопления с естественной циркуляцией применить у себя? Выбирать Вам, исходя из своих возможностей.

Естественная циркуляция в системе отопления дома

В большинстве отопительных систем движение теплоносителя по трубам под определенным напором обеспечивается за счет работы циркуляционных насосов. Но наличие такого насоса не является обязательным: даже без него можно обеспечить перемещение теплоносителя от котла к отопительным приборам (конвекторам или радиаторам).

Системы, которые функционируют без использования насосов, называют самотёчными или гравитационными. У них есть свои особенности, кроме того, для таких систем характерен уникальный набор преимуществ и недостатков. Их мы и проанализируем в нашей статье.

Принцип работы систем с естественной циркуляцией

Функционирует система с естественной циркуляцией теплоносителя довольно просто. В основу ее работы положен физический принцип расширения жидкости при нагревании.

Алгоритм работы отопительной системы:

  • Котел отопительной системы выполняет нагрев определенного количества воды. Теплоноситель увеличивается в объеме, и за счет меньшей плотности вытесняется вверх более холодной водой.

  • В процессе циркуляции теплоноситель с высокой температурой постепенно двигается по трубам, постепенно отдавая энергию помещениям посредством радиаторов либо конвекторов.

  • После того как теплоноситель достигает наиболее высоко расположенной точки отопительной системы, он уже достаточно остывает. После этого остывшая вода продолжает циркуляцию, в итоге возвращаясь к котлу.

Обратите внимание! Иногда в такие системы все же встраивают циркуляционные насосы в качестве дополнительного оборудования. При включении такой насос активизирует циркуляцию теплоносителя, но и при отключении устройства система сохраняет работоспособность.

Регуляция работы отопительной системы

Ключевой особенностью самотечных систем специалисты считают их саморегуляцию. Проще говоря, чем ниже опускается температура в доме, тем интенсивнее циркулирует теплоноситель, и тем больше тепла передается от котла к радиаторам отопления.

Работает система таким образом:

  • За движение теплоносителя отвечает так называемый циркуляционный напор. Он обеспечивается вытеснением более плотной холодной жидкостью менее плотной горячей воды в участки трубопровода, расположенные выше.

  • Чем больше разница в температурах (а значит, и плотностях) жидкостей, тем интенсивнее будет вытеснение, и тем выше будет циркуляционный напор. Таким образом, при быстром остывании воды в радиаторах циркуляция будет ускоряться – а это значит, что температура в помещениях довольно быстро поднимется, ив вода будет остывать уже не так быстро.

  • Кроме того, играет роль и разница в высоте расположения радиаторов относительно котла. Чем больше этот вертикальный зазор (перепад высоты между выходом из последнего радиатора и входом в котел), тем интенсивнее будет циркулировать теплоноситель.

Чтоб влияет на скорость циркуляции?

Интенсивность, с которой теплоноситель будет циркулировать в самотёчной отопительной системе, зависит не только от циркуляционного напора. На скорость движения горячей воды также влияют:

  • Диаметр элементов трубной разводки. Чем меньше диаметр труб, тем больше будет гидравлическое сопротивление, а значит, тем ниже будет интенсивность движения теплоносителя. Чтобы избежать потерь тепла, для формирования отопительных контуров используют трубы достаточно большого диаметра. Если же необходимо встроить в систему коллекторный узел – используют Valtec VT,VAR30.G 1 1/4″  или аналогичное изделие с диаметром выходов в дюйм с четвертью.

  • Материал, из которого изготовлены трубы. Здесь все очевидно: со временем на стальных трубах внутри формируются отложения, которые повышают гидравлическое сопротивление. Полипропиленовые трубы для отопительных систем лишены этого недостатка.

  • Конфигурация системы. Чем больше в контурах отводов и поворотов, чем больше запорной арматуры и обособленных веток – тем сложнее теплоносителю перемещаться по ней. В идеале монтируется кольцевая разводка (одно- или двухтрубная) с общей длиной контуров не более 30м.

Плюсы и минусы самотечных систем отопления

Плюсы

Системы отопления, работающие по принципу естественной циркуляции, пользуются определенной популярностью. Эта популярность объясняется их преимуществами:

  • Энергонезависимость. Отопительная система эффективно работает даже при отключении электричества, поскольку циркуляционный насос для ее функционирования не обязателен. Так что если у вас твердотопливный или газовый котел, то вы получаете практически полную автономность.

  • Простота в обустройстве. Если правильно рассчитать основные параметры системы, то смонтировать ее будет относительно несложно.

  • Отсутствие шума и вибрации. Работающий насос может создавать определенный дискомфорт, но здесь этот недостаток отсутствует.

  • Саморегуляция, о которой мы говорили выше.

Минусы

К сожалению, самотечную систему нельзя назвать универсальной ввиду ее недостатков:

  • Суммарная длина отопительных контуров ограничена, потому монтировать такую систему можно только в небольших домах.

  • При монтаже нужно строго соблюдать уклон труб, облегчая циркуляцию теплоносителя.

  • В системе должен обязательно присутствовать расширительный бак достаточного объема.

  • КПД отопительной системы относительно невысок, потому экономия на электроэнергии оборачивается повышенным расходом энергоносителей, которые используются для нагрева воды.

  • Наконец, трубопроводы с медленно движущимся теплоносителем могут промерзать.

Впрочем, несмотря на эти минусы, в ряде случаев самотечная система отопления будет оптимальным решением. Естественно, ее эффективность будет зависеть и от того, насколько правильно будет выполнен монтаж, и от того, какие комплектующие вы подберете. В обоих случаях вам помогут специалисты компании «Альфатэп» — для получения консультации или оформления заказа достаточно позвонить по контактному номеру 8 (495) 109-00-95.

Система отопления с естественной циркуляцией

Несмотря на то, что сейчас распространены передовые технологии обогрева помещений, система отопления с естественной циркуляцией весьма востребована. В первую очередь это связано с тем, что она проста в монтаже, а если еще и учитывать нестабильность обеспечения частного сектора электричеством, то становится понятна популярность такой автономной системы отопления.

Как это работает

Схема гравитационной системы отопления

Сразу стоит сказать, что благодаря особому устройству, система работает без принудительной циркуляции теплоносителя. Движение воды в трубах происходит за счет того, что при охлаждении плотность воды увеличивается, и она стекает к котлу по трубам, установленным под уклоном, выталкивая из него подогретую воду.

Хотя система отопления с естественной циркуляцией может работать без насоса, всё же его лучше поставить. При включенном насосе теплоноситель быстрее проходит по трубам, следовательно, помещение прогревается быстрее.

При выходе из котла вода поступает в разгонный коллектор, доходит по нему до верхней точки и по трубам, установленным под уклоном от котла, охлаждаясь, продолжает свой путь по кругу.

Недостатки и преимущества

Приходится долго ждать

Вначале поговорим о недостатках. Такой подход поможет определиться, подойдет ли вам такая система отопления.

  • Если в системе нет насоса, то нужно довольно долго ждать, пока горячая вода достигнет батарей и пройдет по ним.
  • Неравномерный разогрев радиаторов отопления. Связано это с тем же нюансом – сверху горячая вода, а снизу холодная.
  • Монтаж выполняется более дорогими трубами большого диаметра.
  • Необходима установка открытого расширительного бачка, вследствие чего вода испаряется и ее периодически нужно доливать в систему. Установка расширительного бачка закрытого типа может ухудшить работу системы.
  • Страдает дизайн помещения.
  • Нельзя нарушать уклон труб, даже если нужно обойти двери.
  • В системе должно быть как можно меньше поворотов.
  • При планировании системы отопления без насоса, нужно правильно определить уровень расположения батарей, расширительного бачка и котла, который должен быть установлен в самой нижней точке.

Преимущества

  • Электронезависимость. Даже если установлен насос, то при отключении электроэнергии (или при выходе насоса из строя), система отопления продолжает работать.
  • Монтаж и дальнейшее обслуживание не требует особых навыков.
  • Бесшумность работы.

Виды систем

Самотечная система

Как уже говорилось, в самотечной системе отопления не должно быть перепадов по высоте, иначе она просто не будет работать. По этой причине может быть сделано несколько контуров.

Одноконтурная

Схема подключения с естественной циркуляцией

Здесь всё предельно ясно – одна труба идет от котла, а другая к нему, а между ними подключаются батареи. Представленная схема поможет в этом разобраться.

Одноконтурная система может быть и однотрубной, только в этом случае нужно учесть тот фактор, что каждая последующая батарея в самотечной системе будет чувствительно холоднее предыдущей.

Двухконтурная

Двухконтурная система

Двухконтурные системы могут отличаться направлением движения теплоносителя:

  1. Со встречным движением.
  2. С попутным движением.

Выбор способа монтажа труб с учетом направления движения теплоносителя, в основном зависит от того, где в помещении расположены двери или есть другие нюансы, из-за которых монтаж обратки в этом месте невозможен.

Независимо от выбранной системы, угол уклона труб не изменяется.

Как рассчитать мощность батарей и котла отопления

Как рассчитать мощность радиатора

Говорить о точных результатах не приходится, так как каждый дом индивидуален и может отличаться по многим параметрам, учесть которые в общей схеме невозможно, да и в этом нет необходимости. При идеальных условиях принято считать, что для обогрева 1 м2 достаточно 60 Вт мощности радиатора. Вполне понятно, что если дом не утеплен, в нем установлены простые деревянные окна, то потребуется установить более мощные батареи.

Чтобы потом не заниматься переделкой, важно еще на этапе планирования выяснить, какой должна быть мощность батареи (или батарей), которая будет установлена в конкретном помещении. Для этого можно воспользоваться одним из двух методов.

По объему

Более точные данные можно получить, учитывая объем помещения. Выполняем замеры и, получив данные по высоте, ширине и длине комнаты, перемножаем их между собой, а результат умножаем на 40 Вт. Учитывая особенности строения, вводим поправочный коэффициент. Для:

  • одноэтажного частного дома с неутепленным чердаком – 1,5;
  • комнаты с утепленной стеной – 1,1;
  • комнаты с неутепленной стеной – 1,3;

Важно учитывать количество дверей и окон.

  • Если в помещении есть входная дверь, то к полученной цифре нужно добавить еще 150–200 Вт.
  • Если окна небольшие и энергоемкие, то для каждого потребуется еще по 70 Вт.
  • Для больших или неутепленных окон нужно добавить по 100 Вт.

По площади

Площадь помещения

Рассчитывая количество батарей по площади помещения, используется усредненный показатель – 1 кВт на 10 м2. По такому же принципу высчитывается мощность приобретаемого для дома котла отопления.

Рассмотрим на примере, как можно произвести расчеты.

  • Имеется дом с внутренними габаритами 9×8 м. Умножаем ширину на длину и получаем площадь – 72 м2.
  • 72 м2 разделим на 10 (1 кВт на 10 м2), и получим 7,2 – это мощность котла в кВт.
  • Теперь узнаем мощность батареи для помещения 2×4 м.
  • Площадь получилась 8 м2.
  • Пользуясь теми же расчетами, что и для котла, получим цифру 0,8 – мощность батареи в кВт.

Теперь внесем поправки по климатическим зонам. Рассмотрим коэффициенты:

  1. В Южных регионах – 0,8–0,9.
  2. Для Крайнего Севера – 1,5–2.
  3. В зоне Средней полосы – 1,2–1,4.

В нашем примере требовался котел мощностью 7,2 кВт. С учетом коэффициента рассчитаем окончательные данные для Средней полосы:

  • 7,2×1,4=10,08.
  • Учитывая, что котел должен иметь запас мощности, приобретаем отопительный прибор мощностью 12–15 кВт.
  • Таким же образом подходим к подсчетам мощности батареи для использованного в примере помещения: 0,8×1,4=1,12 кВт. Округляем в большую сторону и получаем 1,2 кВт.

Мощность батареи указана в паспорте изделия. Если не уверены в правильности своих расчетов, то приобретите более мощный радиатор, установив на него терморегулятор.

Монтаж

Монтаж самотечной системы

  • Как уже упоминалось, котел должен быть установлен в самой нижней точке.
  • Ни одна труба не должна находиться ниже уровня входа обратки в наш отопительный прибор. Пренебрежение этим требованием приведет к существенному ухудшению работы отопительной системы.
  • На стенах делается разметка расположения труб и радиаторов.
  • Выполняется навешивание радиаторов – их положение проверяется строительным уровнем.
  • От трубы подачи котла монтируется разгонный коллектор. Это должна быть труба большого диаметра.

Расширительный бак для системы отопления дома

  • В верхней точке устанавливается открытый расширительный бачок. Если он будет находиться на чердаке, то емкость и трубопровод нужно основательно утеплить.
  • Трубы крепятся с уклоном в 1 см на погонный метр трубы. Если нет возможности придерживаться этой нормы, то можно уменьшить перепад до 0,5 см, но не меньше. Нужно учитывать, что с уменьшением уклона трубы, уменьшается КПД всей системы отопления.
  • В нужном месте выполняется врезка трубы, идущей к радиатору. В металлическом трубопроводе отвод может быть приварен или подключен через тройник. При работе с пластиковыми трубами нужно пользоваться фитингами, спаивая их, не забывая про краны и терморегуляторы (если их установка предусмотрена).
  • В нижней точке системы (обычно это возле котла) нужно установить отвод с краном – через него вода будет заливаться в систему.

Планируя изготовление самотечной системы в двухэтажном доме, нужно учесть, что подача теплоносителя выполняется на второй этаж, а потом он по стоякам опускается в радиаторы, установленные на первом этаже.

Осталось заполнить систему водой, и, проверив ее на наличие протечек, обогревать помещение, не беспокоясь о том, что могут отключить электричество.

Видео

Посмотрите видео о том, как выполнить расчет отопления с естественной циркуляцией:

В этом видео демонстрируется пример отопления с естественной циркуляцией:

Котельные циркуляционные системы: естественная и принудительная циркуляция

Как для паровых барабанных систем, так и для прямоточных парогенераторов (OTSG) мы должны иметь непрерывный поток воды по трубам, чтобы система могла непрерывно генерировать пар.

В системе OTSG вода проходит только один раз (за один проход) через трубы котла, прежде чем превратиться в пар и направить в паротурбинный генератор для производства электроэнергии.С другой стороны, в системах с паровым барабаном вода должна пройти много раз (несколько проходов) по трубам, прежде чем она уйдет в виде пара.

Основываясь на двух основных типах циркуляции, паропроизводящие котлы высокого давления (ВД) могут быть классифицированы как:

Котлы с естественной или тепловой циркуляцией и
Котлы с принудительной или насосной циркуляцией

Котлы с естественной (или тепловой) циркуляцией

Ссылаясь на рисунок-1 (a), в сливном стакане (труба, через которую поток направлен вниз) отсутствует пар, и секция трубы A-B не нагревается.Подвод тепла приводит к образованию пароводяной смеси в секции B-C, обычно называемой стояком (труба, по которой поток направлен вверх). Из-за того, что пароводяная смесь на участке BC менее плотная (поскольку она более горячая) по сравнению с водой участка AB, термосифонический эффект (сила тяжести) заставит воду течь вниз на участке AB и вверх на участке BC. к паровому барабану.

Типовая схема естественной и принудительной циркуляции

В котлах с естественной или тепловой циркуляцией скорость циркуляции сильно зависит от разницы плотностей между ненагретой водой и нагретой пароводяной смесью.Общая скорость циркуляции (расход) в системах естественной циркуляции в основном зависит от следующих факторов:
Высота котла — Более высокие котлы дают большую разницу давлений между нагретой и неотапливаемой секциями и, как следствие, большую скорость потока.
Рабочее давление котла — Более высокое рабочее давление дает пар более высокой плотности, а также пароводяные смеси более высокой плотности. Это имеет тенденцию к уменьшению общей разницы в плотности между нагретым и ненагретым сегментами, поскольку плотность жидкой воды остается неизменной, независимо от рабочего давления.Следовательно, более высокое давление снижает расход производимого пара.
Скорость подводимого тепла — Более высокая мощность подводимого тепла помогает снизить среднюю плотность в нагретой секции и тем самым увеличить общий расход.

Описание систем принудительной (или насосной) циркуляции

Насос добавляется в замкнутую систему контура потока, показанную в разделе A-B на рисунке 1 (b). Разница давлений, создаваемая насосом (напор насоса), помогает контролировать расход воды. Устройство понижения давления (отверстие или подобное) также обычно используется в качестве дополнительного механизма управления.

Естественная циркуляция — обзор

16.9.1 Введение

Теплогидравлический контур с естественной циркуляцией (NCL) является важным аспектом конструкции, эксплуатации и безопасности всех концепций Gen IV. Некоторые концепции полагаются на естественную циркуляцию для нормальных рабочих условий и нестандартных условий безопасности. Другие зависят от естественной циркуляции только в пассивных ненормальных условиях безопасности. Целью пассивных систем безопасности с естественной циркуляцией является поддержание системы в безопасном отключенном состоянии в течение длительных периодов времени без необходимости вмешательства оператора или наличия электроэнергии.

Пассивные системы безопасности на основе естественной циркуляции предназначены для обеспечения максимального теплоотвода в случае нарушения нормальной работы системы охлаждения реактора. Из-за его критической важности фундаментальное понимание свойств и характеристик гидродинамики естественной циркуляции, тепловых откликов и термодинамики в сложном инженерном оборудовании энергетических систем ядерных реакторов имеет важное значение. Для систем поколения IV, которые основаны на естественной циркуляции в нормальных рабочих состояниях, также необходимо хорошо понимать свойства и характеристики в установившихся условиях.

В целом потоки с естественной циркуляцией, встречающиеся на атомных электростанциях, будут связаны с замкнутыми контурами, состоящими из трубопроводов, проточных каналов различной формы и нескольких компонентов оборудования. Петли обычно закрыты, но отказ трубопровода, составляющего петлю, может нарушить естественную циркуляцию и сделать систему непригодной для использования по назначению. Вторичная сторона парогенераторов (ПГ) для заводов, использующих естественную циркуляцию для нормальной работы, характеризуется как НКП с пропускной способностью; ввод питательной воды из конденсатора и отбор пара на выходе из ПГ для питания турбин.Все эти системы будут иметь области, в которых поток идет по параллельным каналам, таким как тепловыделяющие стержни и пучки тепловыделяющих элементов, в активной зоне и трубы в SG и HEX.

Потоки с естественной циркуляцией вокруг контуров и потоки в параллельных каналах подвержены как отклонениям от установившегося режима работы, так и переходам в колебательные и потенциально нестабильные состояния. Таким образом, энергетические системы ядерных реакторов поколения IV сочетают в себе тип потока жидкости и геометрию, которые, как известно, потенциально могут привести к нежелательным состояниям.В частности, следует избегать нежелательных колебательных состояний при установившемся режиме работы. Вся система и связанный с ней рабочий диапазон предназначены для предотвращения нестабильных состояний.

Обсуждения в следующих разделах будут сосредоточены на теплогидравлических свойствах и характеристиках потоков в параллельных каналах и NCL. Будет кратко рассмотрена литература по общим аспектам аналитического, экспериментального, математического моделирования, численным методам решения и вычислительным аспектам этих потоков.Эти аспекты, связанные с конкретными системами Gen IV, также будут обсуждаться.

Естественная циркуляция | Определение и условия

Это явление имеет ту же природу, что и естественная конвекция , но в данном случае коэффициент теплопередачи не является объектом исследования. В этом случае основной поток через контур является объектом исследования. Это явление является скорее гидравлической проблемой , чем проблемой теплопередачи, хотя в результате естественная циркуляция отводит тепло от источника и переносит его к радиатору, что имеет первостепенное значение для безопасности реактора.Естественная циркуляция в замкнутом контуре

Условия, необходимые для естественной циркуляции

Аналогично естественной конвекции , естественной циркуляции по существу не работает на орбите Земли. Естественная циркуляция происходит в петле только при определенных условиях. Даже после того, как естественная циркуляция началась, устранение любого из этих условий приведет к остановке естественной циркуляции . Условия естественной циркуляции следующие:

  • Наличие собственного ускорения. Естественная циркуляция может происходить только в гравитационном поле или при наличии другого надлежащего ускорения, такого как ускорение, центробежная сила.
  • Наличие источника тепла и радиатора . Требуются источник тепла и теплоотвод, поскольку естественная циркуляция создается разницей плотности жидкости, возникающей из-за разницы температур. Жидкость, поступающая в источник тепла, получает тепло и в результате теплового расширения становится менее плотной и поднимается вверх. Решающую роль играет тепловое расширение жидкости.Процесс в теплоходе противоположен, тепло получает тепло, и жидкость становится плотнее. Разница в плотности является движущей силой естественного циркуляционного потока. Для продолжения естественной циркуляции необходимо поддерживать разницу температур. Добавление тепла от источника тепла должно происходить в зоне с высокой температурой. В области низких температур должен существовать непрерывный отвод тепла радиатором. В противном случае температуры в конечном итоге выровнялись бы, и дальнейшая циркуляция прекратилась.
  • Правильная геометрия . Наличие и величина естественной циркуляции также зависят от геометрии задачи. Наличие градиента плотности жидкости в гравитационном поле не гарантирует существования естественных конвективных течений. Естественная циркуляция в замкнутом контуре, заполненном жидкостью, достигается путем размещения радиатора в контуре на высоте, превышающей источник тепла. Циркулирующая жидкость отводит тепло от источника и переносит его в раковину. Поток может быть однофазным или двухфазным, в котором пар течет вдоль жидкости.Для продолжения естественной циркуляции необходимо поддерживать разницу температур. Добавление тепла от источника тепла должно происходить в зоне с высокой температурой. В области низких температур должен существовать непрерывный отвод тепла радиатором. В противном случае температуры в конечном итоге выровнялись бы, и дальнейшая циркуляция прекратилась. Можно иметь естественную циркуляцию в двухфазном потоке, но, как правило, поддерживать поток труднее.
  • Контактные жидкости .Эти две области должны соприкасаться, чтобы между ними был возможен поток. Если путь потока заблокирован или заблокирован, естественная циркуляция невозможна.

Естественная циркуляция — скорость потока

Естественная циркуляция Скорость потока в контуре в установившемся режиме определяется из баланса между , приводящим , и силами сопротивления . Движущая сила возникает из-за разницы в плотности между горячим и холодным участками петли.Напор, необходимый для компенсации потерь напора, создается градиентами плотности и перепадами высоты.

Тепловая приводная головка

Тепловая приводная головка — это сила, которая вызывает естественную циркуляцию . Это вызвано разницей в плотности между двумя телами или областями жидкости. Рассмотрим два равных объема жидкости одного и того же типа. Если два объема имеют разную температуру, тогда объем с более высокой температурой также будет иметь меньшую плотность и, следовательно, меньшую массу.Известно, что плотность газов и жидкостей зависит от температуры, обычно уменьшаясь (из-за расширения жидкости) с повышением температуры. Поскольку объем при более высокой температуре будет иметь меньшую массу, на него также будет оказываться меньшая сила тяжести. Эта разница в силе тяжести, действующей на жидкость, будет приводить к тому, что более горячая жидкость поднимается, а более холодная жидкость опускается. Тепловая приводная головка может быть просто рассчитана с использованием разницы гидростатических давлений:

Как можно видеть, чем больше разница температур между горячей и холодной областями жидкости, тем больше тепловая приводная головка и результирующая скорость потока.

Плотность воды как функция температуры

Плотность воды как функция температуры

Гидравлическая сила сопротивления

Как было написано, определяется скорость потока естественной циркуляции , В, в контуре, в условиях устойчивого состояния от баланса между движущей силой и сопротивляющимися силами. Как и трение в трубе, общие потери давления равны пропорционально квадрату расхода , и поэтому их можно легко интегрировать в уравнение Дарси-Вайсбаха .Инженеры часто используют коэффициент потери давления , PLC . Обозначается K или ξ (произносится как «xi»). Этот коэффициент характеризует потерю давления в определенной гидросистеме или части гидросистемы. Его легко измерить в гидравлических контурах. Коэффициент потери давления может быть определен или измерен как для прямых труб, так и особенно для местных (малых) потерь . Поскольку коэффициент трения Дарси является функцией скорости (в числе Рейнольдса), то расчет коэффициента потери давления является итерационным процессом.

Естественная циркуляция в реакторной технике

Естественная циркуляция в замкнутом контуре

В реакторной технике естественная циркуляция является очень желательным явлением, поскольку она способна обеспечить охлаждение активной зоны реактора после потери ГЦН (например, после потери внешнего питания — LOOP). В реакторах PWR конструкция станции предусматривает перепад высот , ч , примерно 12 метров между осевой линией парогенератора и осевой линией активной зоны реактора.Компоновка системы должна обеспечивать возможность естественной циркуляции после потери потока, чтобы обеспечить охлаждение без перегрева активной зоны. Кроме того, соединительный трубопровод от корпуса высокого давления реактора к парогенераторам должен быть неповрежденным, без препятствий, таких как неконденсирующиеся газы (например, паровые карманы). Таким образом, естественная циркуляция будет гарантировать, что текучая среда будет продолжать течь, пока реактор будет горячее, чем теплоотвод, даже когда мощность не может быть подана на насосы.

RCP обычно не являются «системой безопасности» в соответствии с определением. После выхода из строя RCP (например, после потери внешнего питания — LOOP) реактор должен быть немедленно остановлен, так как RCP медленно выбегают до нулевого расхода. В этом случае достаточный и безопасный отвод остаточного тепла обеспечивается естественной циркуляцией потока через реактор. При отсутствии принудительного потока теплоноситель в активной зоне начинает нагреваться. Повышение температуры охлаждающей жидкости вызывает снижение плотности охлаждающей жидкости, которая, в свою очередь, перемещает охлаждающую жидкость в парогенератор.Следует отметить, что естественной циркуляции недостаточно для отвода тепла, выделяемого при работе реактора.

В современных конструкциях реакторов используется естественная циркуляция, что является очень важным элементом безопасности . Многие системы пассивной безопасности в современных конструкциях реакторов работают без использования каких-либо насосов, что обеспечивает повышенную безопасность, целостность и надежность конструкции при одновременном снижении общей стоимости реактора.

Индикаторы естественной циркуляции

В PWR можно использовать различные параметры для индикации или проверки наличия естественной циркуляции.Это зависит от типа установки и систем установки. Например, для PWR выбранные параметры, которые могут быть использованы, следующие:

  • В идеале, расход может быть измерен в каждом из контуров.
  • ΔT ( T Горячий — T Холодный ). Разница температур между горячими и холодными ногами должна составлять 25-80% от значения полной мощности и должна быть постоянной или медленно уменьшаться. Это указывает на то, что остаточное тепло удаляется из системы с достаточной скоростью для поддержания или снижения внутренней температуры.
  • Температура горячих и холодных ног должна быть постоянной или медленно снижаться. Опять же, это указывает на то, что тепло удаляется, а тепловая нагрузка распада, как и ожидалось, уменьшается.
  • Давление пара парогенератора (давление вторичного контура) должно соответствовать температуре системы теплоносителя реактора. Это подтверждает, что парогенератор отводит тепло от охлаждающей жидкости RCS.

Специальная ссылка: Естественная циркуляция на атомных электростанциях с водяным охлаждением, IAEA-TECDOC-1474.МАГАТЭ, 2005. ISBN 92–0–110605 – X.

ПЕТЛИ ПРИРОДНОЙ ЦИРКУЛЯЦИИ, ТЕРМОСИФОНЫ

Контуры естественной циркуляции (термосифоны) представляют собой проточные системы, нагреваемые снизу и охлаждаемые сверху, так что теплоотвод находится выше источника тепла. Эта конкретная конфигурация создает градиент плотности, который создает движущую силу. Термосифоны появляются в геофизических и геотермальных системах и используются во многих приложениях в различных системах преобразования энергии, таких как солнечные нагревательные устройства, абсорбционные холодильники, ребойлеры в химической промышленности и охлаждение различных двигателей.Одно из наиболее важных применений термосифонов — это аварийное охлаждение активной зоны ядерных реакторов. Этот вопрос вызвал больший интерес после восстановления реактора после аварии на Три-Майл-Айленд (TMI) в 1979 году, когда было продемонстрировано, что естественная циркуляция является единственным эффективным способом отвода остаточного тепла.

Естественные циркуляционные потоки часто делятся на одно- и двухфазные контуры. Обзоры термосифонов написаны Звириным (1981) и Грейфом (1988).Краткое изложение последних достижений опубликовано в D’Auria and Vigni (1990) и Knaani и Zvirin (1993).

Теоретические методы были разработаны для моделирования различных контуров, вывода законов масштабирования для экспериментов и объяснения физических явлений, включая характеристики устойчивости. Математические модели основаны на связанных уравнениях сохранения, что делает задачу нелинейной. Уравнение неразрывности в одномерных моделях приводит к тому, что скорость v является функцией только времени (и неизвестной константой для стационарного состояния).Распределение температуры T получается через v путем решения уравнения энергии. Для секций двухфазной петли получается качество x, а для петель с двойной диффузией соленость S находится из уравнения диффузии. Уравнение импульса интегрируется по замкнутому контуру, чтобы получить v. Аналитические решения существуют для простых контуров. Численные методы необходимы для более сложных и переходных расчетов. Характеристики устойчивости были получены с помощью линейного анализа устойчивости, а также с помощью методов конечных амплитуд; численные решения используются для обоих.(См. Также Нестабильность, Двухфазность.)

В литературе имеются данные о естественной циркуляции для всего диапазона масштабов, от больших рабочих систем до лабораторных экспериментов. К первым относятся ядерные реакторы (например, TMI после аварии и многие другие испытания), солнечные энергетические системы и ребойлеры. Последние обычно представляют собой простые геометрические петли для изучения различных явлений и проверки компьютерных кодов.

Экспериментальные и теоретические исследования дали информацию, необходимую для понимания, предсказания и моделирования поведения термосифонов.Взаимодействие участвующих физических сил сложное и нелинейное; сила тяжести, трение и инерция зависят от характеристик тепломассопереноса. Это приводит к нескольким интересным особенностям конвективных течений.

В общем, установившиеся петлевые потоки (SF) устанавливаются для определенного диапазона чисел Рэлея Ra, выше некоторых пороговых значений и ниже критических пределов нестабильности. Эти потоки могут быть достигнуты либо за счет возмущения состояния покоя (проводящий раствор), либо за счет выбега из принудительного потока.Для двухфазных термосифонов кривая расхода в зависимости от количества контура имеет локальный максимум. Переходные процессы, приводящие к SF, могут быть монотонными или колебательными. Для диапазона Ra SF неустойчивы (нарастающие колебания). Это может привести к бифуркации (множественные SF), длительному периодическому течению и хаотическому поведению. Эти явления наблюдались также в системах с параллельными контурами и термосифонами со сквозными потоками.

Наконец, еще не существует общего набора корреляций теплопередачи и трения для контуров естественной циркуляции, и в теоретических и численных исследованиях часто используются корреляции принудительного потока с некоторой потерей точности.Другие приближения также были сделаны в случаях, когда отсутствует более точная информация, например, линейные профили паровой фракции.

ССЫЛКИ

D’Auria, F. and Vigni, P., (Eds.) (1990) Proc. Eurothem Seminar Nr. 16: Естественная циркуляция в промышленных приложениях, Пиза, Италия.

Грейф Р. (1988) Петли естественной циркуляции. Дж. Теплообмен . Vol. 110, 1243–1258.

Кнаани А., Звирин Ю. (1993) Бифуркационные явления в двухфазных петлях естественной циркуляции.Int. J. Многофазный поток. Vol. 19, 1129–1151 DOI: 10.1016 / 0301-9322 (93)

-5.

Звирин Ю. (1981) Обзор контуров естественной циркуляции в реакторах с водой под давлением и других системах. Nucl. Engng. & Des. , т. 67, 203–225. DOI: 10.1016 / 0029-5493 (82) -X

Список литературы
  1. D’Auria, F. и Vigni, P., (Eds.) (1990) Proc. Eurothem Seminar Nr. 16: Естественная циркуляция в промышленных приложениях, Пиза, Италия.
  2. Грейф Р. (1988) Петли естественного кровообращения. Дж. Теплообмен . Vol. 110, 1243–1258.
  3. Кнаани А., Звирин Ю. (1993) Явления бифуркации в двухфазных петлях естественного кровообращения. Int. J. Многофазный поток. Vol. 19, 1129–1151 DOI: 10.1016 / 0301-9322 (93)
  4. -5.

  5. Звирин Ю. (1981) Обзор контуров естественной циркуляции в реакторах с водой под давлением и других системах. Nucl. Engng. & Des. , т. 67, 203–225. DOI: 10.1016 / 0029-5493 (82) -X

Количество просмотров: 24007
Статья добавлена: 2 февраля 2011 г.
Последнее изменение статьи: 3 февраля 2011 г.
© Авторское право 2010-3921
К началу

Mitsubishi Power, Ltd.| Барабанные котлы

Обзор

В барабанном котле циркуляция воды осуществляется за счет разницы плотностей воды в нисходящей трубе и пароводяной смеси в топочных трубах. В котлах низкого давления, где эта разница плотностей велика, сила циркуляции велика и может быть обеспечен большой объем циркуляции, но поскольку становится трудно поддерживать достаточный объем циркуляции, когда разница плотностей между двумя уменьшается из-за более высокого давления, насос (BCP) установлен в нижней части трубы для увеличения циркуляционной силы.Тип, который обеспечивает циркуляцию воды с использованием только разницы в плотности, называется котлом с естественной циркуляцией, а тип, который включает в себя насос, называется котлом с принудительной циркуляцией.

Схема протока жидкости в котле с естественной циркуляцией

Схема прохождения жидкости в котле с принудительной циркуляцией

Отчет о доставке

  • Котел с принудительной циркуляцией
    Заказчик BLCP
    Завод (деревня) Электростанция BLCP (Таиланд)
    Выход 717 МВт
    Максимальный продолжительный номинал 2,285 т / ч
    Условия пара Температура основного пара 538 ° С
    Температура подогрева пара 538 ° С
    Давление основного пара 16.7 МПаА
    Топливо Уголь каменный
    Начало работы 2006
  • Котел с естественной циркуляцией
    Заказчик Каирская компания по производству электроэнергии
    Завод (деревня) Западная Каирская электростанция, блоки 7 и 8 (Египет)
    Выход 350 МВт
    Максимальный продолжительный номинал 1094т / ч
    Условия пара Температура основного пара 541 ° С
    Температура подогрева пара 541 ° С
    Давление основного пара 18.1 МПаА
    Топливо Природный газ, мазут
    Начало работы 2011 г.

Моделирование и моделирование водотрубного парового котла с естественной циркуляцией

Описание кода

RELAP5 в основном используется для проектирования и анализа безопасности атомных станций, современных жидкостных систем и экспериментов [25, 26]. Целью разработки кода RELAP5 с самого начала было создание кода, который включает важные эффекты первого порядка, необходимые для точного прогнозирования переходных процессов в системе [27].RELAP5 позволяет моделировать вероятные теплогидравлические переходные процессы в ядерных установках при большом разнообразии постулируемых аварийных условий, таких как потеря теплоносителя, потеря потока, скачок мощности, а также эксплуатационные переходные процессы и другие постулируемые переходные процессы [28]. Кроме того, он может быть использован для моделирования широкого спектра теплогидравлических переходных процессов на неядерных установках с использованием смесей пара и воды; это очень общий код [29]. Шесть двухфазных неоднородных и неравновесных шести уравнений используются в качестве основы для гидродинамической модели и формулируются с помощью усредненных по объему и времени параметров и решаются быстрым частично неявным численным методом конечных разностей [30].Код включает несколько общих моделей, позволяющих моделировать различные типы компонентов установки [27], таких как трубы, насосы, турбина, клапаны, тепловые конструкции, сепараторы и системы управления. Моделирование системы состоит, во-первых, в ее разбиении на контрольные объемы, соединенные между собой проточными узлами; это для удобства INPUT [30].

Нодализация парового котла

Моделирование промышленных установок, таких как паровой котел, требует тщательного и детального знания всех его компонентов; а также все физические явления, происходящие в системе.С помощью RELAP5 / MOD3.2 разработана детальная модель водотрубного котла с естественной циркуляцией, включая все основные компоненты (парогенератор, барабан, теплообменники, трубопровод пара и питательной воды, а также систему регулирования и управления). Модель парового котла была разработана на основе задокументированного проекта установки, справочных данных о производительности и персонала [22]. Стратегия моделирования парового котла основана на следующих этапах:

  • Подготовка геометрических, теплогидравлических и технических данных, описывающих всю систему.

  • Нодализация гидродинамической схемы установки на контрольные объемы, соединенные переходами.

  • Моделирование систем управления и регулирования.

  • Моделирование граничных и начальных условий установки, давления, температуры, массового расхода и теплового потока в теплообменниках и камере сгорания.

  • Проверка и квалификация теоретических результатов кода по сравнению с рабочими данными для котла в установившемся режиме.

Подготовка и сбор данных требует значительных усилий из-за большого количества данных и информации по каждому компоненту, который необходимо включить в модель. Нодализация — это первый шаг моделирования парового котла.Он направлен на определение всех гидравлических характеристик установки, таких как геометрические данные, диаметры, отметки, шероховатость стенок трубы, длина, коэффициенты сосредоточенных или распределенных потерь и т. Д. Следует отметить, что были предприняты дополнительные усилия для преодоления некоторых трудностей, возникших во время этого исследования, таких как недоступность некоторых геометрических данных.

Ниже представлены основные компоненты RELAP5, используемые при нодализации котла:

  • ТРУБА: для тех частей системы без ответвлений.

  • ФИЛИАЛ: для моделирования взаимосвязанных трубопроводных сетей.

  • ОБЪЕМ, ЗАВИСИМЫЙ ОТ ВРЕМЕНИ: для введенных термодинамических данных (давление и температура), а также когда известны скорость или массовый расход жидкости.

  • КЛАПАН: используется для регулирования, безопасности и изоляции.

  • НАСОС: для моделирования центробежного насоса.

  • СОЕДИНЕНИЕ: используется для соединения других компонентов, например, двух труб.

  • СИСТЕМА ОТКЛЮЧЕНИЯ И УПРАВЛЕНИЯ: используется для выполнения таких действий, как открытие или закрытие клапана и остановка насоса.

  • ТЕПЛОВАЯ СТРУКТУРА: для моделирования теплообмена между жидкостью и стенками трубок.

  • ОБЩАЯ ТАБЛИЦА: для задания плотности теплового потока.

Основные характеристики разработанной модели кратко изложены ниже:

  • Количество контрольных объемов: 582.

  • Кол-во пересадок: 589.

  • Количество тепловых структур: 142.

  • Количество узлов в тепловых конструкциях: 2840.

  • Количество зависящих от времени томов: 7.

  • Количество логических отключений: 17.

  • Количество управляющих переменных: 39.

Парогенераторная часть моделируется 188 контрольными объемами, 191 стыком и 69 тепловыми конструкциями.Барабан, также называемый верхним резервуаром, является местом многих физических явлений, таких как разделение воды и пара и конденсация пара. Поэтому очень важно следовать некоторым передовым методам нодализации, чтобы воспроизвести все эти явления. Подход, используемый для моделирования этого резервуара, включает разделение его на четыре компонента «BRUNCH»: 010, 015, 020 и 025. Коллекторы питательной воды и водно-паровой эмульсии моделируются с использованием десяти компонентов «BRUNCH»: 030, 035, 040, 045 , 050, 055, 060, 065, 070 и 075.ТРУБА 100 представляет собой четыре водосточные трубы, питающие печь, а ТРУБА 110 — центральная водосточная труба, питающая задний проход. Трубчатые экраны, составляющие топку и задний проход, моделируются с помощью компонента «ТРУБА», испарительные трубы переднего и заднего экранов камеры сгорания сгруппированы и моделируются компонентами 115 и 120 «ТРУБА» соответственно, а для боковые экраны у трубы 135. Трубки испарителя заднего прохода моделируются компонентами 130 и 125 «ТРУБА».Трубы, которые подают в барабан питательной водой, выходящей из экономайзера, моделируются ТРУБАМИ 172 и 173. Трубки водяной / паровой эмульсии, выходящие из переднего и заднего прохода, идущие к барабану, моделируются ТРУБАМИ 150, 155, 160 и 165. 20 трубок насыщенного пара, выходящих из барабана и идущих в пароперегреватели, моделируются с помощью ТРУБЫ 174. На барабане установлено три предохранительных клапана, они моделируются компонентами «TRIP-VALVE» 007, 008 и 009, соответственно подключенными. компонентами «Объем, зависящий от времени» 700, 800 и 900, чтобы наложить атмосферные условия [31].Нагревательная труба моделируется компонентом теплопередачи (тепловой структурой), поддерживаемым с постоянной скоростью нагрева, в качестве граничного условия. Схема нодализации парогенератора представлена ​​на рис. 5.

Рис. 5

Нодализация парогенератора

Парогенератор содержит пять теплообменников, среди которых два пароперегревателя работают на высоких и низких температурах соответственно в дополнение к двум. ребристые экономайзеры и гладкий. Эти три экономайзера объединены в одну трубу и узловыми компонентами 171 «ТРУБА» с использованием 41 контрольного объема, 40 соединений и 20 тепловых структур.Впускной и выпускной коллекторы моделируются, соответственно, компонентами 070 и 075 «BRUNCH». Низкотемпературные и высокотемпературные перегреватели моделируются компонентами 176 и 180 «PIPE» соответственно, каждый из которых использует 20 тепловых структур, 16 регулирующих объемов и 15 потоковых соединений. Впускной и выпускной коллекторы каждого пароперегревателя моделируются, соответственно, компонентами «BRUNCH» 083, 084, 085 и 086; труба промежуточного перегревателя моделируется компонентом 178 «ТРУБА». На рис. 6 показана типичная узловая диаграмма теплообменников.Секция пароохладителя в части трубы, которая соединяет основную линию питательной воды и линию промежуточных перегревателей, где регулирование температуры перегретого пара осуществляется путем нагнетания питательной воды. Этот пароохладитель моделируется компонентами 320, 321, 322, 324 и 325 «ТРУБА» и 284 «ОТВОДА» (фиг. 7). Запорный клапан на линии пароохладителя моделируется компонентом 004 «TRIP-VALVE».

Рис. 6

Нодализация теплообменников

Рис.7

Схема узловой системы парового котла

Основная линия питательной воды включает сборный резервуар (моделируется компонентом «BRUNCH» 200), два центробежных питательных насоса (моделируются компонентами «НАСОС» 151 и 152), трубы, по которым подается пар. Генератор через питательную воду моделируется компонентами «ТРУБА» с 201 по 218 и компонентами «ВЕТКА» 080, 081 и 082, а также регулирующими и запорными клапанами. Эта линия моделируется 157 контрольными объемами и 150 пересечениями. Заслонки, которые находятся на выходе насоса и на входе парового котла, а также на линии пароохладителя, моделируются соответственно компонентами «ОБРАТНЫЙ КЛАПАН» 215, 216, 219 и 323.Компонент 003 «TRIP-VALVE» используется для моделирования запорного клапана на входе экономайзера. Регулирующие клапаны уровня воды в барабане моделируются компонентами 011 и 010 «СЕРВО-КЛАПАН».

Основная линия перегретого пара моделируется компонентами «ТРУБА» с 301 по 311, а пароизоляционные клапаны моделируются с помощью компоненты 001 и 002 «TRIP VALVE». Предохранительные клапаны, установленные на главном паропроводе, моделируются компонентами TRIPE-VALVE 005 и 006, которые подключены к компонентам 500 и 600 TMDPVOL соответственно.Регулирующие клапаны температуры перегретого пара моделируются с помощью компонентов «СЕРВО-КЛАПАН» 013 и 012, а заслонка моделируется с помощью компонента 391 «ОБРАТНЫЙ КЛАПАН».

Регулирование играет жизненно важную роль в работе и предотвращении промышленные предприятия. Для достижения стабильной и безопасной работы энергетической системы рекомендуется использовать автоматический контур управления, чтобы поддерживать стабильность установки при нормальной и ненормальной работе. Паровой котел регулируется для подачи перегретого пара с температурой 487 ° C и давлением 73 бара; поэтому системы управления в установке включают в себя два контура регулирования, один для температуры перегретого пара, а другой для уровня воды.

Назначение контроллера — довести уровень воды в барабане до заданного значения 860 мм и поддерживать его при желаемой паровой нагрузке. Компонент «FEEDCTL» используется для моделирования регулирования уровня воды в барабане. Он рассчитывает сигнал положения регулирующего клапана питательной воды, который моделируется компонентом 011 «СЕРВО-КЛАПАН». Фактически, регулирование контролирует уровень воды в барабане, приводя в действие главный клапан, комбинируя на основе трех параметров: поток питательной воды, потока перегретого пара и уровня воды в барабане.

Целью регулирования температуры перегретого пара является поддержание постоянного значения температуры (487 ° C) на выходе парового котла путем впрыска воды для пароохладителя в коллектор между пароперегревателями с использованием двух идентичных резервных клапанов пароохладителя. Моделирование систем и контуров регулирования возможно с использованием специальных компонентов кода RELAP5, таких как компонент «STEAMCTL», который используется для управления температурой перегретого пара. В процессе регулирования средняя температура пара на выходе из пароперегревателя HTS сравнивается с заданным значением (487 ° C), и генерируемый сигнал используется для управления открытием клапанов 013 и 012.

Теплогидравлические условия, связанные с жидкостью, устанавливаются с помощью компонентов «TMDPVOL» и «TMDPJUN», подключенных к границам контура. Давление и температура жидкости на входе и выходе парового котла определяются компонентами 400 и 300 TMDPVOL соответственно.

Явления теплопередачи в паровом котле моделируются с использованием процесса моделирования тепловых структур RELAP5. Конструкции, имитирующие теплопередачу в паровом котле, соединены трубами 130 и 125 для заднего прохода, с трубами 135, 120 и 115 для топки и с трубами 180 (HTS), 176 (LTS) и 171 (Eco). для теплообменников соответственно.Рабочие данные, представленные ранее в таблицах 1 и 2, используются для оценки общей мощности, вырабатываемой в паровом котле, а также тепла (Q), передаваемого через каждую зону теплопередачи. Внешняя поверхность теплопередачи (S) используется для расчета плотности теплового потока с использованием соотношения q = Q / S [20]. Плотности теплового потока между внешними поверхностями трубы и горячими газами задаются в таблице. Таблица теплового потока вводится как правильные граничные условия для моделирования радиационной теплопередачи для печи.Теплообмен экономайзеров и пароперегревателей передается конвекцией остальным пароперегревателям и экономайзерам с использованием тепловой энергии дымового газа, выходящего из печи. Плотность теплового потока в теплообменниках определяется с использованием баланса энергии дымовых газов между входом и выходом каждого теплообменника, как показано на рис. 8

$$ {\ text {Q}} = {\ text {m }} _ {\ rm gas} {\ text {Cp}} _ {\ rm gas} \ left ({{\ text {T}} _ {\ rm out} — {\ text {T}} _ {\ rm inl}} \ right) $$

(1)

Q fur — тепло, передаваемое в камере сгорания, рассчитанное по формуле:

$$ {\ text {Q}} _ {\ rm fur} = {\ text {Q}} _ {\ rm Tot} \, {-} \, \ left ({{\ text {Q}} _ {\ rm Eco} + {\ text {Q}} _ {\ rm HTS} + {\ text {Q}} _ {\ rm LTS}} \ справа) $$

(2)

В то время как Q HTS , Q LTS и Q Eco — это тепло, передаваемое в высокотемпературном пароперегревателе, низкотемпературном перегревателе и экономайзерах соответственно, а Q Tot — это общая передаваемая мощность, вычисленная по соотношению [20 ]:

$$ {\ text {Q}} _ {\ rm Tot} = {\ text {m}} _ {\ rm fuel} {\ text {LCV}} + {\ text {m}} _ { \ rm air} {\ text {Cp}} _ {\ rm air} {\ text {T}} _ {\ rm air} \, {-} \, {\ text {m}} _ {\ rm gas} {\ text {Cp}} _ {\ rm gas} {\ text {T}} _ {\ rm gas} $$

(3)

, где m fuel и m air — соответственно массовые расходы топлива и воздуха, LCV — низкокалорийная теплотворная способность природного газа, Cp gas и Cp air — соответственно теплоемкость газов и воздуха. , T air — температура входящего воздуха, а T gas — температура выхлопных газов.В таблице 3 показаны рассчитанные плотности теплового потока, связанные с поверхностями нагрева каждого экрана.

Рис.8

Энергетический баланс парового котла

Таблица 3 Плотность теплового потока на поверхности, контактирующей с дымом

Повышение теплопередачи с использованием CO2 в контуре естественной циркуляции

Реферат

Контур естественной циркуляции (NCL) является высоконадежным и бесшумным устройством теплопередачи благодаря отсутствию движущихся компонентов. Рабочая жидкость, используемая в контуре естественной циркуляции, играет важную роль в улучшении теплопередачи контура.Это экспериментальное исследование исследует докритические и сверхкритические характеристики теплопередачи контура естественной циркуляции (NCL) с CO 2 в качестве рабочего тела. Рабочие давления и температуры изменяются таким образом, чтобы жидкость контура оставалась в заданном состоянии (переохлажденная жидкость, двухфазная, перегретый пар, сверхкритическое состояние). Вода и метанол используются в качестве внешних жидкостей в холодных и горячих теплообменниках для температур выше нуля и ниже нуля (в ° C) соответственно, в зависимости от рабочей температуры.Для циркуляционных жидкостей производительность CO 2 сравнивается с водой при положительных температурах и с рассолом при отрицательных температурах. Кроме того, также изучается влияние рабочего давления контура (35–90 бар) на производительность системы. Для температуры на входе горячего теплообменника (от 5 до 70 ° C) и температуры на входе холодного теплообменника (от -18 до 32 ° C) было отмечено, что максимальные скорости теплопередачи в случае докритического пара, подкритической жидкости, двухфазной и сверхкритические системы на основе CO 2 на 400%, 500%, 900% и 800% выше, чем системы на основе воды / рассола соответственно.

Тематические термины: Машиностроение, гидродинамика

Введение

Контуры теплопередачи (вторичные контуры) подразделяются на контур принудительной циркуляции (FCL) и контур естественной циркуляции (NCL). Контур принудительной циркуляции — это активная система, для которой требуется насос или компрессор для управления потоком жидкости, тогда как контур естественной циркуляции (NCL) представляет собой простую систему, в которой поток жидкости происходит из-за градиента плотности, вызванного наложенной разницей температур.

В NCL радиатор расположен выше источника тепла. Это устанавливает градиент плотности в системе, из-за которого более легкая (более теплая) жидкость поднимается вверх, а более тяжелая (более холодная) жидкость движется вниз. Следовательно, тепловая энергия может передаваться от высокотемпературного источника к низкотемпературному поглотителю без прямого контакта друг с другом, а также без использования какого-либо первичного двигателя.

NCL предпочтительнее контура с принудительной конвекцией, где безопасность является превыше всего.Он также обеспечивает бесшумную и необслуживаемую работу. NCL является многообещающим вариантом для многих инженерных приложений, таких как ядерные реакторы 1 , химическая экстракция 2 , 3 электронная система охлаждения 4 , солнечные нагреватели 5 10 , геотермальные приложения 11 , 12 , системы криогенного охлаждения 13 , охлаждение лопаток турбины 14 , термосифонные ребойлеры 15 , 16 , а также охлаждение и кондиционирование воздуха 17 и т. Д.По сравнению с системами с принудительной конвекцией скорость теплопередачи в системах с естественной конвекцией находится на более низком уровне, и ее улучшение является сложной задачей. Исследователи пытаются разными способами улучшить скорость теплопередачи, например, используя различные рабочие жидкости / наножидкости. Misale и др. . 18 и Наяк и др. . 19 экспериментально сообщил об увеличении скорости теплопередачи на 10–13% с наножидкостью (Al 2 O 3 + вода) по сравнению с NCL на водной основе.

Выбор рабочих жидкостей для NCL обычно осуществляется на основе некоторых благоприятных теплофизических свойств. Обычно используемые рабочие жидкости можно разделить на водные и неводные. Водные растворы, как правило, представляют собой продукты на основе соли или спирта. Они обладают одним или несколькими неблагоприятными эффектами, такими как коррозионная активность, токсичность, высокое значение pH и т. Д. Неводные растворы представляют собой коммерчески доступные химические вещества.

В последние годы CO 2 приобрел популярность в качестве петлевой жидкости в NCL благодаря своим превосходным теплофизическим свойствам и экологичности (отсутствие потенциала разрушения озонового слоя и незначительный потенциал глобального потепления) и использовался для различных приложений, таких как солнечное тепло. коллектор 20 , тепловой насос 21 , геотермальная система 22 и т. д.Пригодность CO 2 в качестве циркуляционной жидкости была изучена Kiran Kumar et al . 23 для NCL, а также Ядав и др. . 24 для контура принудительной циркуляции.

Любые жидкости, работающие в области, близкой к критической, показывают очень хорошие характеристики теплопередачи и потока жидкости благодаря своим благоприятным теплофизическим свойствам. Углекислый газ имеет преимущество низкой критической температуры (~ 31 ° C) и вполне разумного критического давления (73.7 бар).

Swapnalee и др. . 25 провели экспериментальные исследования по изучению статической нестабильности сверхкритических СО 2 и НКЛ на водной основе с нагревателем в качестве источника тепла. Kiran и др. . 26 провели эксперименты и изучили поведение теплопередачи NCL с использованием докритического CO 2 с ограниченным диапазоном температуры и давления.

Хотя доступность экспериментальных исследований очень ограничена из-за риска, связанного с работой с CO 2 при высоком рабочем давлении, достаточно большое количество численных исследований поведения теплопередачи для NCL на основе CO 2 доступно в открытая литература 27 29 .

Киран Кумар и др. . 27 выполнили численное исследование стационарного анализа однофазных прямоугольных NCL с параллельными потоками теплообменников типа «труба в трубе». Ядав и др. . 28 выполнили переходный анализ контура естественной циркуляции (NCL) на основе диоксида углерода с торцевыми теплообменниками. Басу и др. . 29 направлена ​​на разработку теоретической модели для моделирования стационарных характеристик прямоугольного однофазного контура естественной циркуляции и исследования роли различных геометрических параметров в поведении системы.Ядав и др. . 30 провели трехмерное исследование CFD и заявили, что скорость теплопередачи на ~ 700% выше в случае докритической жидкости, а также сверхкритического CO 2 по сравнению с водой. Двумерный анализ при 90 бар для различных температур источника тепла показал нестабильность, связанную со сверхкритическим потоком 31 , 32 .

Обширные численные исследования 27 29 на CO Доступны 2 NCL на основе с различными конфигурациями.Однако в литературе сообщается об очень небольшом количестве экспериментальных исследований из-за риска, связанного с обращением с CO 2 при более высоком рабочем давлении. Как и в большинстве инженерных исследований, имеющих практическое значение, экспериментальные исследования являются эталоном. Экспериментальные исследования NCL с использованием сверхкритического / докритического CO 2 с концевыми теплообменниками в широком диапазоне температур, охватывающем отрицательную температуру, ограничены. Чтобы заполнить эту критическую пустоту, в этом экспериментальном исследовании представлено исследование поведения теплопередачи субкритических / сверхкритических НКЛ на основе CO 2 с торцевыми теплообменниками для широкого применения в диапазоне от минусовых (-18 ° C) до плюсовых (70 ° C) температуры.Исследование также включает явление теплопередачи в однофазном (жидкость и пар) и двухфазном CO 2 на основе NCL. Далее сравниваются скорости теплопередачи воды (для положительной температуры) и рассола (для отрицательной температуры) в NCL.

Детали эксперимента

Полное изображение испытательной установки приведено на рис. Испытательная установка состоит из резервуара CO 2 , теплообменников типа «труба в трубе» (горячего и холодного) с вертикальными трубами (стояка и сливного стакана).

Схема НКУ с торцевыми теплообменниками. (1) Цилиндр резервуара CO 2 , (2) Термостатическая ванна для HHX, (3) Термостатическая ванна для CHX (4) Система сбора данных, (5) Увеличенная часть внутренней конструкции термопары (гайка и наконечник).

Термопары Т-типа соответствующей длины подключаются для измерения температуры текучей среды контура (CO 2 / вода / солевой раствор) и внешней текучей среды (вода / метанол), которая течет внутри внутренней трубы и кольцевого пространства, соответственно, как показано на рис..

Фотографический вид действующего объекта представлен на рис. Контур естественной циркуляции 2 × 2 м изготовлен из нержавеющей стали (SS-316), имеет внешний диаметр 32 мм, внутренний диаметр 26 мм, толщину 3 мм и выдерживает давление до 250 бар. Для контроля теплопередачи от контура к окружающей среде весь контур изолирован асбестовым тросом и изоляционным материалом из вспененной ленты толщиной 3 мм каждый. Теплообменники длиной 1600 мм, наружным диаметром 51 мм и толщиной 3 мм.

Экспериментальная установка. (1) Термостатическая ванна — 1 (HHX), (2) DAQ, (3) Компьютер для чтения данных DAQ, (4) Термостатическая ванна -2 (CHX), (5) Манометр, (6) Ротаметр, (7) Датчик перепада давления, (8) предохранительный клапан, (9) цилиндр CO 2 , (10) вакуумный насос.

Две термостатические ванны (Thermo Scientific PC200) с мощностью нагрева / охлаждения 2 кВт подают внешнюю жидкость (воду / метанол) с фиксированной температурой в теплообменники. Массовый расход внешних жидкостей измеряется с помощью двух калиброванных ротаметров (диапазон 2–20 л / мин) с клапаном, подключенных отдельно к HHX и CHX.

Манометр Бурдона с диапазоном 0–150 бар подключается для измерения давления в линии контура в центре правой ноги. Шесть термопар Т-типа используются для контроля температуры CO 2 в различных местах вдоль контура, термопары соединены в прямом соединении с жидкостью внутреннего контура CO 2 , как показано на рис. Увеличенной части гайки и наконечника. договоренность. Система сбора данных (DAQ, Keighley — модель 2700) используется для регистрации различных температур контура.Геометрические характеристики испытательного стенда указаны в таблице. Рабочие параметры и их рабочий диапазон представлены в таблице для всего эксперимента.

Таблица 1

Геометрические параметры экспериментальной установки.

4

петля

внешней стенки теплообменника

Детали петли Размер (мм)
Наружный диаметр петлевой трубы (d) 32
Внутренний диаметр петлевой трубы 26
3
Длина петли левой или правой ноги (L1) 1800
Длина изгиба петли (внешняя) 157
Длина изгиба петля (внутренняя)122.5
Расстояние от теплообменника до изгиба контура 100
Детали теплообменника
Внешний диаметр теплообменника (D) 51 Толщина
4
Длина теплообменника (L2) 1600
Межтрубное расстояние (радиальное) 5,5

Таблица 2

Диапазон рабочих параметров, учитываемых во время учиться.

18

± 0,0

Параметры Диапазон Диапазон погрешности (%)
Температура горячей воды на входе ( T H ) −10–70 ° C
Температура холодной воды на входе ( T C ) −18–32 ° C ± 0,05
Давление в системе 35–90 бар ± 2,5
Внешняя жидкость расход (м) 5 л / мин ± 5.0

Методология

Холодный и горячий теплообменники испытываются на герметичность при давлении до 10 бар, а контур — на герметичность при давлении 150 бар. Позже весь контур естественной циркуляции откачивается, и необходимое количество CO 2 загружается в контур из цилиндра CO 2 . Зарядка CO 2 прекращается, как только давление жидкости в контуре достигает необходимого рабочего состояния. Внешняя жидкость заставляется течь внутри кольцевой трубы обоих теплообменников с заданными массовым расходом и температурами.Когда внешняя жидкость начинает течь, температура контура начинает изменяться с небольшим изменением давления контура. Для поддержания заданного рабочего давления CO 2 передается в / из цилиндра, в котором поддерживается рабочее давление. Эта практика продолжается до тех пор, пока цикл не достигнет установившегося состояния. Считается, что контур достигает установившегося состояния, если переходные колебания всех температур и давлений составляют менее 0,5%.

При заданном рабочем давлении состояние CO 2 подтверждается мониторингом температуры во всех точках контура (однофазная, двухфазная или сверхкритическая фаза).Как только вся система достигает устойчивого состояния, результаты записываются. Чтобы сравнить результаты CO 2 в качестве жидкости контура, рассол используется как жидкость контура для приложений с более низкими температурами, тогда как вода используется для приложений с температурой выше нуля. Метанол используется в качестве внешней жидкости для приложений с более низкими температурами (ниже 0 ° C) и вода в качестве внешней жидкости для приложений с более высокими температурами (выше 0 ° C).

Чтобы обеспечить условия турбулентного потока для внешней жидкости, массовый расход 0.083 кг / с (5 л / мин) поддерживается как в CHX, так и в HHX.

Скорость теплопередачи (Q) рассчитывается по формуле

Q = m × cp − HHX × ΔTHHX = m × cp − CHX × ΔTCHX

1

где m = массовый расход внешней жидкости в кг / с

c p HHX = удельная теплоемкость HHX в Дж / кг-K

c p CHX = удельная теплоемкость CHX в Дж / кг-K

ΔT HHX = разница температур HHX между входом и выходом

ΔT CHX = разница температур CHX между входом и выходом

Средняя температура рассчитывается по

, где T C = температура CHX на входе в ° C

T H = температура HHX на входе в ° C

Результаты и обсуждение

Это экспериментальное исследование охватывает широкий спектр применения в диапазоне температур от –18 ° C до 70 ° C и рабочего давления от 35 до 90 бар.Скорость теплопередачи, перепад давления и распределение температуры однофазной (сверхкритической, жидкой и паровой) и двухфазной НКЛ на основе CO 2 по сравнению с контуром естественной циркуляции на основе воды / рассола при тех же рабочих температурах. Рабочее давление воды и рассола в качестве жидкости контура поддерживается на уровне 1 атм, поскольку изменение теплофизических свойств воды с рабочим давлением незначительно (менее 1%), что, в свою очередь, не влияет существенно на скорость теплопередачи 33 .

Сверхкритический CO

2 как контурная жидкость

В CHX и HHX вода является внешней жидкостью. Для фиксированной температуры воды на входе (чуть выше критической температуры CO 2 ~ 31,2 ° C) температура на входе HHX изменяется от 40 ° C до 70 ° C с шагом 10 ° C. На рисунке показано изменение температуры во всем контуре при 90 бар. Изменение температуры также регистрируется для всех рабочих давлений, чтобы гарантировать, что жидкость контура находится в сверхкритическом состоянии по всему контуру.

Для сверхкритического CO 2 : ( a ) Температура в разных точках по контуру, ( b ) Изменение скорости теплопередачи для воды и CO 2 при разных давлениях, ( c ) Падение давления сравнение воды и CO 2 при разных давлениях, ( d ) Разница температур между левой и правой ветвями относительно рабочего давления.

Влияние давления CO 2 на скорость теплопередачи и перепад давления изучается путем его изменения от 75 до 90 бар в сверхкритической зоне, как показано на рис.. Скорость теплопередачи сравнивается с широко используемой циркуляционной жидкостью, то есть с водой при атмосферном давлении (1 атм) при тех же температурах HHX и CHX. На рисунке показано влияние давления на разницу температур жидкости контура между центром левой ноги и центром правой ноги. Результаты ясно показывают, что по мере увеличения давления разница температур уменьшается, что происходит из-за увеличения удельной теплоемкости при более высоком давлении при определенной средней рабочей температуре (T ср. = 46 ° C, T H = 60 ° C), как показано в таблице.При более высоких температурах уменьшение вязкости приводит к меньшему падению давления в контуре (рис.). Был проведен анализ неопределенности (ошибки) (показан после результатов и части обсуждения), и ошибки включены в расчет теплопередачи для всех случаев.

Таблица 3

Сравнение свойств сверхкритического CO 2 при разных давлениях с водой при атмосферном давлении для разных рабочих температур 33 .

9018 9018 9018

Давление CO 2 (бар) Сред.Температура, T ср. (° C) Коэффициент плотности, ρ CO2 / ρ Вода Коэффициент удельной теплоемкости, C p_CO2 / C p_Water Коэффициент теплопроводности, k CO2 k Вода Отношение вязкости, μ CO2 / μ Вода Отношение объемного коэффициента β CO2 / β Вода
75 0,29 0273 0 .75 0,05 0,03 56,68
46 0,21 0,59 0,05 0,03 37,89
8

9018 9018 0,128 9018 9018

80 41 0,27 1,05 0,06 0,03 83,50
46 0,24 0,72 0.05 0,04 48,29
51 0,22 0,58 0,05 0,04 33,70
90 41 9018
46 0,33 1,27 0,07 0,04 91,65
51 0,28 0,83 0.06 0,04 51,69

Влияние рабочего давления на скорость теплопередачи при различных температурах на входе HHX (T H ) для фиксированного T C показано на рис. Скорость теплопередачи максимальна при рабочем давлении 90 бар. Средняя рабочая температура (~ температура жидкости контура) 41 ° C (полученная в данном случае) близка к псевдокритической точке (40,2 ° C) CO 2 при 90 бар, что приводит к максимальной скорости теплопередачи при этом давление из-за очень высокого коэффициента объемного расширения CO 2 по сравнению с водой (~ 240 раз).Эксперименты также проводятся для средних рабочих температур 46 ° C и 51 ° C.

В этом случае максимальная скорость теплопередачи NCL на основе CO 2 дает примерно в 8 раз (800%) больше, чем NCL на водной основе, как показано на рис. При более высокой температуре на входе HHX преобладает эффект плавучести, увеличивающий скорость теплопередачи.

Докритический пар CO

2 в качестве жидкости контура

С водой в качестве внешней жидкости как в CHX, так и в HHX, при фиксированной температуре на входе в CHX (= 32 ° C) температура на входе в HHX изменяется от 40 ° C до 70 ° C для значений с шагом 10 ° C.Данные собираются для различных рабочих давлений CO 2 (от 40 до 70 бар). На рисунке показано изменение температуры вдоль контура, влияние рабочего давления на скорость теплопередачи, перепад давления в / с рабочего давления и разность температур между левой и правой ветвями в / с рабочего давления для случая субкритического пара. На рисунке показано изменение температуры во всем контуре при 60 бар. Наблюдается, что с увеличением температуры горячей жидкости на входе скорость теплопередачи увеличивается из-за увеличения температурного градиента между CO 2 и водой в HHX.С увеличением давления в системе увеличивается и скорость теплопередачи. В этом случае максимальная скорость теплопередачи NCL на основе CO 2 дает примерно в 4 раза (400%) больше, чем NCL на водной основе (1 атм) для тех же рабочих температур, как показано на рис. Разница в падении давления оказывается незначительной для рабочего давления в диапазоне 40–70 бар, как показано на рис. 4, что происходит из-за постоянного отношения вязкости (показано в таблице). Результаты показывают уменьшение разницы температур между левой и правой ветвями по мере увеличения рабочего давления, как показано на рис..

Для субкритического CO 2 пар: ( a ) Температура в различных точках вдоль контура, ( b ) Изменение скорости теплопередачи для воды и CO 2 при разных давлениях, ( c ) Давление сравнение падения воды и CO 2 при разных давлениях, ( d ) Разница температур левой и правой ветвей относительно давления.

Таблица 4

Сравнение свойств субкритического пара CO 2 при разных давлениях с водой при атмосферном давлении для разных рабочих температур 33 .

9018 9018 9018 9018 9018 9018 9018 9018 9018

9018 9018 0,018

90.04

Давление CO 2 (бар) Сред. Температура, T ср. (° C) Коэффициент плотности, ρ CO2 / ρ Вода Коэффициент удельной теплоемкости, C p_CO2 / C p_Water Коэффициент теплопроводности, k CO2 k Вода Отношение вязкости, μ CO2 / μ Вода Отношение объемного коэффициента β CO2 / β Вода
40 41 0273.08 0,30 0,03 0,03 16,11
46 0,08 0,29 0,03 0,03 13,83 12,08
50 41 0,11 0,35 0,04 0,03 20,56
46 0,1133 0,04 0,03 17,17
51 0,11 0,32 0,04 0,03 14,67
41128 27,92
46 0,14 0,40 0,04 0,03 22,27
51 0,14 0,318 0273 0,03 18,39
70 41 0,20 0,59 0,05 0,03 42,45
46278 9018 9018 9018 9018 9018 9018 9018 9018 9018 9018 9018
51 0,17 0,45 0,04 0,03 24,09

CO

2 в виде петли температуры C

) таких приложений, как холодильники, солнечный водонагреватель для холодной погоды и т. д.В CHX и HHX в качестве внешней жидкости используется метанол, поскольку вода становится твердой при минусовой температуре. Температура на входе CHX поддерживается постоянной, а температура HHX варьируется. Чтобы сравнить скорость теплопередачи жидкого CO 2 на основе NCL, мы провели эксперименты с использованием солевого раствора (широко используемой жидкости для отрицательных температур) в качестве жидкости контура. На рисунке показано изменение температуры вдоль контура, скорость теплопередачи для различного рабочего давления, перепад давления в / с рабочего давления и разность температур между левой и правой ветвями в зависимости от рабочего давления для случая докритической жидкости.Чтобы обеспечить жидкую фазу (CO 2 ) во всем контуре, температуры в различных местах регистрируются, как показано на рис. Поскольку вязкость рассола выше, чем у воды, мы, безусловно, получим более низкую скорость теплопередачи с рассолом. Однако мы достигли максимальной скорости теплопередачи на 500% в этом случае жидкого CO 2 по сравнению с NCL на основе рассола, как показано на рис. Как объяснялось ранее, на рис. Показаны аналогичные тенденции падения давления и разницы температур для увеличения рабочего давления соответственно.Стол . показано сравнение свойств субкритического жидкого CO 2 при разных давлениях с рассолом при атмосферном давлении для разных рабочих температур, при этом соотношение вязкости CO 2 и рассола незначительно.

Для субкритического жидкого CO 2 : ( a ) Температура в разных точках контура, ( b ) Изменение скорости теплопередачи для рассола и CO 2 при разных давлениях, ( c ) Давление сравнение падения рассола и CO 2 при разных давлениях, ( d ) Разница температур левой и правой ветвей относительно давления.

Таблица 5

Сравнение свойств субкритического жидкого CO 2 при разных давлениях с рассолом при атмосферном давлении для разных рабочих температур 33 .

9018 9018 16,52

−18

9018 9018 9018 9018 9018 9018 9018 0,20

Давление CO 2 (бар) Сред. Температура, T ср. (° C) Отношение плотностей, ρ CO2 / ρ рассол Отношение удельной теплоемкости, C p_CO2 / C p_ рассол Коэффициент теплопроводности, k CO2 / k рассол Отношение вязкости, μ CO2 / μ рассол Отношение объемного коэффициента β CO2 / β рассол
35 − 73

18.5 0,89 0,64 0,25 0,004 16,19
−14,5 0,89 0,64 0,25 0,004 0,70 0,21 0,002 19,48
−9 0,86 0,66 0,23 0,003 17,34
0,64 0,23 0,004 16,30
45 -2,5 0,84 0,69 0,21 0,003 0,002 21,27

Двухфазный CO

2 в качестве жидкости контура

В этом исследовании метанол используется в качестве внешней жидкости как в CHX, так и в HHX для достижения двухфазного состояния при более низких температурах (ниже -нулевая температура).Рабочие параметры, учитываемые при проведении экспериментов, представлены в таблице. Результаты получены для различных рабочих давлений CO 2 , то есть 50, 55, 60 и 65 бар. Как и в случае с жидкостью, мы провели эксперименты с использованием солевого раствора в качестве циркуляционной жидкости для сравнения скорости теплопередачи двухфазного НКЛ на основе CO 2 . На рисунке показано изменение температуры вдоль контура, скорость теплопередачи для различного рабочего давления, перепад давления в / с рабочего давления и разница температур между левым и правым коленами в / с рабочее давление для двухфазного CO 2 корпус (жидкость + Пар).В этом случае довольно сложно добиться двухфазности внутри контура, поддерживаемого при высоком давлении. С непрерывной записью температур в разных точках контура, мы достигли двухфазного CO 2 путем сравнения температуры насыщения при заданном давлении (показано на рис.).

Таблица 6

Рабочие параметры для двухфазного CO 2 .

  • двухфазный CO 2 состояние ( a ) Температура в разных точках вдоль контура, ( b ) Изменение скорости теплопередачи для рассола и CO 2 при разных давлениях, ( c ) Сравнение перепада давления рассола и CO 2 при разных давлениях, ( d ) Разница температур левой и правой ветвей по отношению к давлению.

    По мере того, как контур перемещается в двухфазную область, возникает большой эффект плавучести, вызывающий увеличение массового расхода CO 2 , что, в свою очередь, увеличивает коэффициент теплопередачи. В этом случае максимальная скорость теплопередачи NCL на основе CO 2 дает в 9 раз (900%) больше, чем NCL на основе солевого раствора для тех же рабочих температур, как показано на рис. На рисунке показано изменение перепада давления при различных рабочих давлениях и температурах.Интересно увидеть влияние рабочего давления на температурный градиент в левой и правой ветвях, как показано на рис. При понижении давления скрытая теплота парообразования увеличивается, что приводит к уменьшению разницы температур.

    Анализ ошибок

    Скорость теплопередачи, массовый расход и температура являются различными рабочими параметрами для функциональной зависимости (удельная теплоемкость внешней жидкости считается постоянной), соотношение задается следующим образом:

    Если M является определенный параметр измерения, его функциональная связь с независимыми переменными, представленная как M = f ( y 1 , y 2 , y 3 , y 4 , …… + y n ), то неопределенность различных параметров выражается как:

    uR = ∂M∂y1u12 + ∂M∂y2u22 + ∂M∂y3u32 +… + ∂M∂ynu121 / 2

    5

    где u 1 , u 2 , u 3 , ………, u n — неопределенности независимых переменных.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    2024 © Все права защищены.
  • Давление (бар) Температура насыщения (° C) Температура на входе CHX (° C) Температура на входе HHX (° C) Разница между температурой насыщения и температурой на входе HHX (° C)
    55 18.42 −10 35 21
    33 19
    31 17
    60 22,13 −18 43273 19
    39 17
    65 25,6 0 47 21
    45 19